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Abstract: Large samples of experimentally produced graphene are polycrystalline. For the study of
this material, it helps to have realistic computer samples that are also polycrystalline. A common
approach to produce such samples in computer simulations is based on the method of Wooten,
Winer, and Weaire, originally introduced for the simulation of amorphous silicon. We introduce an
early rejection variation of their method, applied to graphene, which exploits the local nature of
the structural changes to achieve a significant speed-up in the relaxation of the material, without
compromising the dynamics. We test it on a 3200 atoms sample, obtaining a speed-up between one
and two orders of magnitude. We also introduce a further variation called early decision specifically
for relaxing large samples even faster, and we test it on two samples of 10,024 and 20,000 atoms,
obtaining a further speed-up of an order of magnitude. Furthermore, we provide a graphical
manipulation tool to remove unwanted artifacts in a sample, such as bond crossings.

Keywords: polycrystalline graphene; monte carlo simulation; graphene models

1. Introduction

Graphene is a crystal of carbon atoms that form a three-coordinated honeycomb lattice.
It is a material with a large set of exotic properties, both mechanical and electronic, and it
has the particularity of being a two-dimensional crystal embedded in a three-dimensional
space [1–8]. Large samples experimentally produced are usually polycrystalline, containing
intrinsic [9–11], as well as extrinsic [12] lattice defects. These defects warrant a thorough
study as they both have a significant detrimental effect on the properties expected from pris-
tine graphene [13,14], and they can also cause new effects that are otherwise absent [15–18].

In particular, structural defects are both prominent and common in graphene [19], as
they can easily host lattice defects due to the flexibility of the carbon atoms in hybridiza-
tion. Such defects can be frozen in the sample during the annealing process and have
been experimentally observed [20–22]. Their controlled production in graphene has been
explored [23].

Since unsaturated carbon bonds are energetically very costly [19], polycrystalline
graphene samples can be studied with the use of continuous random network (CRN)
models [24], introduced by Zachariasen almost 90 years ago to represent the lack of
symmetry and periodicity in glasses [25]. The rules of this type of model are quite simple:
the only requirement is that each atom is always perfectly coordinated, i.e., their bonding
needs are fully satisfied. Wooten, Winer, and Weaire (WWW) introduced an explicit
algorithm to simulate the evolution of samples of amorphous Si and Ge, the so-called
WWW algorithm that became the standard for this kind of model [26,27]. In the WWW
approach, a configuration consists of a list of the coordinates of all N atoms, coupled with
an explicit list of the bonds between them.

We opted for the empirical potential for polycrystalline graphene recently proposed
by Jain et al. [24]:
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with rij as the distance vector between the atoms i and j, θj,i,k as the angle centered
on the atom i between the atoms j and k, ri,jkl as the distance between the atom i and
the plane described by its neighbors j, k, l, and d = 1.420 Å as the ideal bond length of
graphene. The other parameters, extracted from DFT calculations [24] are α = 26.060 eV/Å

2
,

β = 5.511 eV/Å
2

and γ = 0.517 eV/Å
2
. The interaction with the substrate on which the

sample lays is simulated by a harmonic confining energy term in our potential

Ec = K ∑
i=1

z2
i (1)

where zi is the z-coordinate of the atom with index i and K, a prefactor that is determined
empirically in order to constrain the maximum buckling height to the range of 4–8 Å,
experimentally observed with scanning tunneling microscopy (TEM) [11].

The process starts with a completely random 2D sample with all atoms perfectly
coordinated, in the case of graphene three-fold connected, generated with the Voronoi
diagram algorithm described in [24]. In order to generate an initial configuration with
N atoms, we place N/2 random dots in a 2D square box, which is then surrounded by
8 copies of itself to implement periodic boundary conditions. We then compute the N
vertices of the Voronoi diagram [28] of these random dots, which will be replaced by atoms,
and connect them along the edges of the diagram to form the bonds by them. This highly
energetic configuration is then carefully relaxed with molecular dynamics.

The structure of the sample evolves through a series of bond transpositions involving
four connected atoms with two bonds that are broken to create two new bonds. After each
bond transposition, the system is relaxed; the move is accepted according to the Metropolis
acceptance probability [29,30]:

P(X′|X) = min
{

1, exp
[

E(X)− E(X′)
kb T

]}
(2)

where X and X′ are the configurations of the system respectively before and after the bond
transposition, both the coordinates and the list of bonds. kb is the Boltzmann constant, T
is the temperature, and E(Y) the energy of the configuration Y after complete relaxation.
Relaxing the sample, even with an optimized molecular dynamics algorithm such as the
FIRE algorithm [31], has a significant computational cost, which is wasted if the bond
transposition is ultimately rejected. As the energy of the sample is gradually lowered
through bond transpositions, the accepted ratio becomes smaller, often well below one per
cent, and almost all computational time is wasted on proposed bond transpositions that
are eventually rejected.

Barkema and Mousseau [32] developed a method for amorphous silicon that allows
the early rejection of bond transpositions before completing the relaxation of the sample. It
generates a stochastic energy threshold beforehand, given by

Et = Eb − kb T ln(s) (3)

where s is a random number between zero and one. In the first ten relaxation steps, the
sample is relaxed only locally up to the third neighbor shell. The energy is assumed to
be harmonic around the minimum; therefore, the final energy can be approximated as
proportional to the square of the force

E(X′) ≈ E− c f |F|2 (4)

where c f is an empirically determined constant, and F the force vector. Once we are
close enough to the minimum, we can immediately reject the bond transposition if, at any
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moment during the relaxation, E− c f |F|2 > Et. The efficiency of this method is dependent
on the quality of the assumption Equation (4); for amorphous silicon, the type of model
for which it has been developed, this approximation is generally valid after just a few
relaxation steps.

In theory, this approach could also be applied to polycrystalline graphene. Unfortu-
nately, the harmonic approximation of Equation (4) is only valid very close to the minimum;
as we show in Figure 1, the trajectory of the system in the phase-space fluctuates rapidly
and erratically during the relaxation, instead of following the expected linear relation be-
tween the excess energy and squared force magnitude after a certain number of relaxation
steps. Without this approximation, a very costly full relaxation is necessary after each
attempted bond transposition. A different approach is needed.
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Figure 1. Some typical relaxation trajectories of a 3200 atoms sample, farther (a) and closer (b) to the origin. Even after
thousands of iterations, the approximation of Equation (4) cannot be applied to this system as it fluctuates rapidly in the
phase space. ∆E is the energy difference with the relaxed (final) energy, |F|2 the magnitude of the forces.

In this work, we propose a new method where only the atoms up to a shortest-path
distance l from the atoms involved in the bond transpositions are initially allowed to relax.
The energy of the sample after this local relaxation is then used to predict the final energy
and immediately reject hopeless bond transpositions, without requiring a full relaxation.
We test this approach on a 3200 atoms sample, comparing the performance for different
values of l. The quality of the results is also compared to those obtained only through
global relaxation. We further propose a variation of this method for relaxing large samples,
and we test it by generating and relaxing a 20,000 atoms random sample.

2. Materials and Methods

The initial configuration of the sample is a disordered, perfectly three-fold coordi-
nated, and two-dimensional random network. It is generated following the procedure
described in [24].

The coordinates of the sample are relaxed to an energy minimum with molecular
dynamics, following the FIRE technique [31]. After setting a temperature lower than the
melting point of graphene, several bond transpositions are performed until it reaches
reasonably low energy and a realistic configuration. Once this flat sample is sufficiently
relaxed, every atom is placed at a random non-zero distance out of the two-dimensional
plane and allowed to relax to a buckled three-dimensional configuration.
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Our approach to the structural relaxation of graphene can be followed in Figure 2.
Four consecutive atoms are randomly selected (Figure 2a), and the bonds between the
first two and the last two are transposed (Figure 2b). The energy threshold is computed
from Equation (3), and we perform a local relaxation around the four atoms involved in
the bond transposition; instead of limiting it to a certain number of relaxation steps, the
atoms up to a shortest-path distance l from the transposed bonds are allowed to relax
completely (Figure 2c). The list of atoms involved in the local relaxation is computed after
each attempted bond transposition by iteratively exploring the network, starting from the
four atoms involved in the bond transposition, and checking against duplicates. After local
relaxation, attempted bond transpositions for which El(X′)− c f |F|2 > Et, with El(X′) the
energy of the sample after local relaxation up to distance l, are immediately rejected. In
contrast with the method from [32], the criterion is applied only once, instead of at each
point of the relaxation (with possibly some upper bound on the force strength). As we note
in Figure 3, the force strength after local relaxation (Figure 3b) is a good estimator for the
final energy, especially in comparison to the force strength during the global relaxation
(Figure 3a), which is used by the method in [32].

a b

c d

Figure 2. Successful bond transposition on a sample of graphene: (a) initial configuration; (b) bond
transposition—atoms involved are marked with red dots; (c) local relaxation—atoms involved are
marked with blue squares; (d) final configuration after global relaxation.

2.1. Early Rejection

In the early rejection approach, the whole sample is otherwise allowed to relax (Figure 2d)
and, if E(X′) < Et, the bond transposition is finally accepted. As less than one per cent of
proposed moves are accepted in a relaxed sample, we expect the speed-up to be significant:
most are rejected after relaxing a limited number of degrees of freedom.

The value of c f is fine-tuned from empirical data collected from the simulation itself,
targeting a higher bound on the rate of false negatives (i.e., bond transposition that are
rejected erroneously), which in this work was fixed at 2% of the total number of attempts
that should have been accepted. No transposition is accepted without complete relaxation,
regardless of the result of the local minimization; therefore, no false positive (i.e., a bond
transpositions is accepted erroneously) can be introduced by this technique.
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Figure 3. Two-dimensional histograms of the energy difference with the relaxed (final) energy ∆E and the force strength
|F|2 over many relaxations of a 3200 atoms sample, from the values assumed during global relaxation, (a), and at the end
of local relaxation, (b). Frequency is show in logarithmic scale. We can see that the values assumed at the end of local
relaxation follow the harmonic approximation of Equation (4).

2.2. Early Decision

While the computational time required for each local relaxation is constant with
regard to the size of the sample, the same cannot be said for the global relaxation after
each tentatively accepted bond transposition. For large samples, due to the amount of
computational time that this requires, the structural relaxation still grinds almost to a
halt. This is particularly problematic for the initial structural relaxation of a large random
sample, which requires a large number of bond transpositions to reach a realistic, more
relaxed state.

We propose, as an alternative for such cases, the early decision approach: the decision
on whether to reject or accept a bond transposition after the local relaxation is treated as
final, without having to perform a global relaxation to accept it. The parameter c f is still
fine-tuned from empirical data but in this case, we opt for the value that best fits it. After a
successful bond transposition, the system will not reach the energy it would have reached
with global relaxation and the forces on atoms outside those involved in the last local
relaxation will not go to zero. To correct for this issue, the energy threshold for accepting a
bond transposition, see Equation (3), will be computed replacing the current energy of the
system (Eb) with an estimation of the energy that our current configuration would reach
after a global relaxation according to Equation (4). It can also be useful to set an upper
value for the magnitude of the forces that, when reached, will trigger a global relaxation
that will stop when the magnitude of the forces is comparable to those that are leftover after
a single bond transposition, to reduce the time spent on these occasional global relaxations.

It must be noted that since we are replacing the energy of the relaxed system after
a bond transposition in Equation (2) with an estimate, the early decision method does
not guarantee detailed balance, as opposed to the early rejection method. Nevertheless,
this method is extremely powerful when performance is more critical than accuracy; for
instance, for the structural relaxation of a very large randomly generated sample when it is
still far away from equilibrium. In these cases, detailed balance is not as critical and a large
number of bond transpositions are required to reach a state closer to the equilibrium.

2.3. Manipulation Tool

The initial random configuration can incorporate artifacts such as two bonds crossing
each other. While in most cases these defects will gradually disappear as the sample relaxes
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to a more ordered configuration, some artifacts might be particularly resilient and can
persist even when the sample is otherwise sufficiently relaxed. Such defects have to be
removed manually. We have developed a graphical tool called Graphene Editor (available
online: https://github.com/jorisBarkema/Graphene-Editor, accessed on 13 March 2021)
to facilitate this work. This tool allows the user to upload and download a sample, explore
it visually, add and remove bonds, move one or more atoms, replace a single atom with
three connected atoms and vice-versa and check the consistency of the sample over the
number of bonds for each atom and bond crossings.

3. Results
3.1. Early Rejection

A random sample with N = 3200 atoms was generated following the procedure
described in the previous section. WWW bond transpositions are performed until the
sample is relaxed to reasonably low energy, approximately 625 eV (less than 0.2 eV/atom).
The values of c f , seen in Table 1, for different values l of the local relaxation radius are
chosen empirically, with the constraint of keeping the ratio of false negatives (successful
bond transpositions that are nevertheless rejected) over successful bond transpositions
under 2%, while still rejecting a large part of unsuccessful moves. The quantity c f is
expressed in units of seconds squared over the atomic mass unit (s2 u−1). The average
number of atoms involved in the local relaxation for different values of l is also shown in
Table 1.

Table 1. Empirically determined values of the harmonic coefficient c f and average number of
atoms involved in local relaxation 〈Nloc〉 for different local relaxation distances l, in a sample of size
N = 3200 atoms.

l c f [s2 u−1] 〈Nloc〉

1 3.21× 10−3 13
2 4.63× 10−3 28
3 5.33× 10−3 53
4 9.08× 10−3 90

Starting from the same initial sample, we perform bond transpositions both using the
usual WWW algorithm with full minimization and the early rejection method proposed
here, with different values of l. The temperature is set to T = 3000 K for both samples.
After each successful bond transposition, we record the energy, the elapsed time in cen-
tral processing unit (CPU) clocks, and the number of attempts since the last successful
move. The simulation is stopped once the system reaches a final energy of E f = 200 eV,
equivalent to 0.0625 eV/atom. At least ten relaxation cycles are performed with the early
decision method (with different values of l) and with complete relaxation after each bond
transposition. As we note in Figure 4, the average CPU time per accepted bond transpo-
sition is improved by at least an order of magnitude. The speed-up grows as the sample
grows larger crystalline domains and more random attempts are necessary per accepted
bond transposition. The best results are obtained for l = 3, which leads to an efficiency
improvement of a factor between 20 and 40.

https://github.com/jorisBarkema/Graphene-Editor, 
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Figure 4. Average speed-up per accepted bond transposition, as ratio between CPU time required
with full relaxation and early rejection, for different values of l: blue dots (2), orange squares (3) and
grey crosses (4). The shaded area shows one standard deviation from the average. The speed
improvement grows as the sample becomes more crystalline and its energy lowers, while best results
are obtained for l = 3, with an improvement of a factor between 20 and 40.

The early rejection method does not alter the amount of relaxation obtained at
the end of the process. As we note in Figure 5, both the level of separation between
crystalline domains, i.e., the degree to which the defects are present on the borders be-
tween them, and the size of the domains are consistent. The ring statistics of the two
final configurations, computed with the Ring Statistics Algorithm (available online:
https://github.com/vitroid/CountRings, accessed on 13 March 2020) [33] and reported in
Table 2, are also consistent. In this final configuration, the ratio of false negatives is lower
than 0.5%.

Table 2. Ring statistics for the two final configurations of the 3200 atoms sample, relaxed with full
relaxation (left) and Early Rejection (right). We note that they both have reached similar statistics,
with around 93% of the rings being hexagons, 3–4% heptagons and pentagons, while octagons are
too rare at this energy to compare between the two.

Atoms Full Relaxation Early Rejection

Size # % # %

5 56 3.50 60 3.75
6 1489 93.06 1480 92.50
7 54 3.38 60 3.75
8 1 <0.01 0 0.00

https://github.com/vitroid/CountRings
https://github.com/vitroid/CountRings
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(a) (b)

Figure 5. Final configurations of the sample at E ≈ 200 eV obtained (a) through only global relaxations; (b) through our
local relaxation method with l = 3. Highlighted in blue are the defective (i.e., non-hexagonal) rings. The two samples are
qualitatively indistinguishable: same level of separation between crystalline domains of similar sizes.

3.2. Early Decision

As we noted in the previous section, while the early rejection technique is quite
powerful for most samples, it is insufficient for very large samples; our attempt to relax a
very large sample (N = 20,000) could not reach our initial energy target of 1 eV/atom after
more than a month, due to the computational time required by each global relaxation that
takes place at least once per accepted bond transposition. In the early decision method,
the decision on whether to accept a bond transposition or not takes place directly after
performing a local relaxation, based on the estimated relaxed energy of the sample.

We relaxed with both approaches a randomly generated sample of 20,000 atoms. We
opted again for l = 3 for the local relaxation, and c f is set after fitting the data from 1̃00
global relaxations. The force magnitude thresholds are set in such a way that a global
relaxation should be triggered each 50–100 successful bond transpositions and stopped
when the force magnitude reaches a value comparable with what is usually left after just
one local relaxation. The temperature is set to T = 3000 K.

We initially performed the relaxation on a sample with energy of 1.15 eV/atom. As
we can see in Figure 6, the early decision approach leads to a significant speed-up that
we estimate to be around one further order of magnitude. The speed-up factor per bond
transposition is stable during the relaxation at approximately 22. Both methods accept,
on average, a bond transposition every seven attempts, but the early decision method
is, as expected, less stable: there can be phases where it is not able to correctly estimate
the correct decision to take. In these extreme cases, bond transpositions are erroneously
rejected and the evolution of the sample slows down. This is especially the case when the
magnitude of forces accumulated from previous bond transpositions become significantly
large. We can see such a case in the plateau of the orange dotted line in Figure 6, and
it underscores the importance of setting a correct threshold for the magnitude of forces
accumulated before triggering a global relaxation.

Finally, we relaxed the 20,000 atoms sample and another sample of 10,024 atoms
down to 1488.05 eV (0.074 eV/atom) and 695.51 eV (0.066 eV/atom), respectively. The
temperature is initially set at 3000 K and then gradually reduced, in order to reach lower
energies. The resulting samples, as we note in Figure 7, present large crystalline domains
with defects accumulating on their boundaries, similar to Figure 5. As we note in Table 3,
both samples have reached similar ring statistics, with less than 10% of defected rings and
only a handful (less than 0.2%) defected by more than one atom (i.e., octagons). The ring
statistics are computed with the Ring Statistics Algorithm [33].
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All the samples presented in this paper are available online: (https://github.com/
federicodambrosio/graphene-samples, accessed on 20 March 2021).

0 1 2 3 4 5 6 7
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er

gy
 lo

st
 (e
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Early rejection
Early decision

Figure 6. Structural relaxation of a large, randomly generated sample (N = 20,000), starting from an
energy of 1.15 eV/atom with early rejection (blue solid line) and with early decision (orange dotted
line) methods. The early decision method performs significantly faster, reaching a speed-up of a
further order of magnitude. We also notice a plateau around 0.5× 1011 CPU cycles in the early
decision line where, due to the forces accumulated from previous bond transpositions, our algorithm
was incorrectly rejecting bond transpositions, slowing the evolution of the sample significantly.

(a) (b)

(c) (d)

Figure 7. Final configurations of the 10,024 atoms sample in two (a) and three (b) dimensions and the 20,000 atoms sample
in two (c) and three (d) dimensions, obtained through early decision local relaxation with l = 3. Defects (i.e., non-hexagonal
rings) are highlighted in blue in the two-dimensional plots and clearly visible due to the buckling in the three-dimensional
plots. The two samples are qualitatively very similar to those of Figure 5, with large domains surrounded by defects.

https://github.com/federicodambrosio/graphene-samples, 
https://github.com/federicodambrosio/graphene-samples, 
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Table 3. Ring statistics for the two large samples of 10,024 and 20,000 atoms. We note that they both
have reached similar statistics, with over 90% of the rings being hexagons, 4–5% heptagons and
pentagons and less than 0.2% octagons.

Atoms 10,024 20,000

Size # % # %

5 231 4.6 487 4.87
6 4554 90.86 9043 90.43
7 223 4.45 453 4.53
8 4 0.08 17 0.17

4. Discussion

In summary, we introduced two techniques that, through local relaxation, can estimate
the success of bond transpositions reducing or eliminating the need for relaxing the entire
sample, which is extremely time-consuming. Both techniques significantly reduce the
computational time required per accepted bond transposition: the early rejection method
by immediately rejecting, without a global relaxation, hopeless attempts; the early decision
method avoids global relaxations entirely, relying on the estimate of the energy of the
relaxed sample.

The early rejection technique should be preferred for average-sized samples, especially
if already well-relaxed since it gives an already significant speed-up while it guarantees
that the dynamics are not compromised. Furthermore, its accuracy also improves as the
energy of the sample is reduced. The early decision technique leads to an even larger
speed-up but does allow for attempts to be erroneously rejected and should therefore be
used when performance is a priority above accuracy, for instance when the sample is still
very far from equilibrium and detailed balance is less critical. Since thousands of bond
transpositions are required to reduce the energy of a few hundreds of electron volt, the
cumulative speed-up obtained through either of these techniques can easily reach multiple
orders of magnitude. These techniques open up the possibility of generating larger random
samples with ordinary computers in an affordable amount of time.

Finally, our manipulation tool Graphene Editor makes those small manipulations that
are often necessary as simple and quick as they can be.
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