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MiR-34c acts as a tumor suppressor in non-small

cell lung cancer by inducing endoplasmic reticulum

stress through targeting HMGB1
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Objective: To investigate the role of miR-34c in lung cancer.

Methods: The levels of microRNA-34c (miR-34c) expression in non-small cell lung cancer

(NSCLC) tissue and cell lines were examined by the qRT-PCR assay. High mobility group

box 1 (HMGB1) expression in NSCLC was assessed by immunohistochemical analysis

(IHC), qRT-PCR, and Western blot assays. The effects of miR-34c overexpression or

HMGB1 knockdown on cell proliferation and apoptosis were evaluated by CCK-8 and

flow cytometry analysis, respectively. Cellular reactive oxygen species (ROS) production

in NSCLC cells was detected using a ROS kit. The levels of Bax, p-ERK, eIF2α, GADD153,

and IRE1α expression in treated NSCLC cells were measured by Western blot assays. In

addition, the interaction between miR-34c and HMGB1 was verified by the dual-luciferase

reporter assay.

Results: miR-34c was only slightly expressed, while HMGB1 was highly expressed in

NSCLC tissues and cell lines. Overexpression of miR-34c or knockdown of HMGB1

inhibited cell proliferation, promoted cell apoptosis, and induced ER stress in NSCLC

cells. In terms of mechanism, miR-34c negatively regulated HMGB1 expression by directly

targeting the 3ʹ-untranslated region (UTR) of HMGB1 mRNA. In addition, we proved that

HMGB1 overexpression could block the effects of miR-34c on NSCLC cell proliferation,

apoptosis, and ER stress.

Conclusion: miR-34c may suppress NSCLC tumors by targeting HMGB1 mRNA, promot-

ing endoplasmic reticulum stress, and increasing ROS levels. Our findings suggest that miR-

34c has a role in NSCLC.

Keywords: non-small cell lung cancer, microRNA, high mobility group box 1, endoplasmic

reticulum stress, ER stress

Background
Although novel therapeutic strategies based on targeted therapy and new com-

pounds have been developed and applied in clinical settings, lung cancer remains

one of the most common and fatal malignancies worldwide. The 5-year survival

rate of lung cancer patients is generally <15%.1 More than 80% of all lung cancers

are non-small cell lung cancer (NSCLC), which is the most common subtype of

lung cancer, and the majority of NSCLC patients present with symptoms during the

advanced stages of their disease.2,3 Furthermore, >50% of newly diagnosed NSCLC

patients already have distant metastasis at the time their diagnosis is confirmed, and

the majority of NSCLC-related deaths are caused by metastatic disease.4,5 Although
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many improvements have been made in treating NSCLC

during past decades, tumor metastasis remains the biggest

challenge in its clinical therapy, and until relatively

recently, NSCLC patients with advanced stage disease

have been considered to be incurable.6,7 Therefore, it is

essential to better understand the mechanisms of NSCLC

tumorigenesis and identify novel therapeutic targets and

diagnostic biomarkers for NSCLC.

MicroRNA (miRNA) is widely expressed in mamma-

lian cells, and is a critical RNA molecule that was first

identified when studying heterochronic mutants of

Caenorhabditis elegans by use of genetic methods.

Numerous studies have shown that various miRNAs are

expressed in time-dependent and tissue-specific manners.8

Moreover, the expression profiles of miRNAs are dysre-

gulated in multiple human cancers, including NSCLC,

liver cancer, breast cancer, and gastric cancer. These find-

ings suggested that miRNAs could be utilized as unique

biomarkers for tumor progression. The miR-34 family

includes three types: miR-34a, miR-34b, and miR-34c.

MiR-34a originates from its own transcript, while miR-

34b and miR-34c share a common primary transcript.9 In

mice, miR-34a was found to be ubiquitously expressed in

the brain, while miR-34b and miR-34c were mainly pre-

sent in lung tissue.9 Recently, miR-34c was revealed to be

involved in various human diseases, including neuropathic

pain, diabetic corneal neuropathy, and cancers.10–12

However, its role in NSCLC remains largely unclear.

Endoplasmic reticulum (ER) is an important organelle

involved in lipid and protein synthesis. Its function can be

disturbed by various stimuli, such as hypoxia, dysfunctional

protein synthesis, and calciumoverload; these disturbances can

result in ER stress.13 Previous studies have shown that ER

stress plays a critical role in regulating tumor cell apoptosis by

activating multiple ER-stress associated proteins, such as ino-

sitol requiring protein1α (IRE1α), PKR-like ER kinase

(PERK), eukaryotic translation initiation factor (eIF), and

GADD153.14 High mobility group box 1 (HMGB1) is a

nuclear DNA-binding protein that comprises 215 amino acid

residues and has three distinct domains: two tandemHMGbox

domains and an acidic C-terminal tail of 30 amino acids.15

HMGB1 was previously reported to participate in the patho-

genesis of various human diseases, such as sepsis,16 and

cancers,17 by interacting with miRNAs. During ER stress,

neurons could release HMGB1 to trigger the initiation of

neuron-inflammation and glial activation.18 As for cancer

research, HMGB1 has been demonstrated as an oncogene

inhibiting cell apoptosis through mediating ER stress,19

accompanying with reactive oxygen species (ROS)

production.20 A recent study suggested that ROS induction

can lead to cell apoptosis and exert a anti-drug-resistance effect

on lung cancer.21 This might be due to the occurrence of DNA

damage in lung cancer induced by ROS generation through

mitochondrial membrane potential reprogramming.22–24

In the present study, we investigated the effects of miR-34c

and HMGB1 on NSCLC growth and ER stress, as well as the

association between miR-34c and HMGB1. This was done to

better understand the pathogenesis of NSCLC, and identify

several novel therapeutic targets for NSCLC.

Materials and methods
NSCLC tissue samples and cell lines
A total of 20 pairs NSCLC and adjacent normal tissue samples

were collected from Peking University Shen Hospital during

2014–2019.Written informed consent was obtained from each

subject in advance, and the study protocol was approved by the

Ethics Committee of Peking University Shen Hospital. The

normal human lung cell line (MRC-5) andfive humanNSCLC

cell lines (A549, H460, H157, H1299, and H23) were pur-

chased from the Type Culture Collection of the Chinese

Academy of Sciences (Shanghai, China). The cells were main-

tained at 37 °C in RPMI-1640medium (HyClone Laboratories

Inc., Logan, UT, USA) containing 10% fetal bovine serum

(FBS), 1% penicillin/streptomycin, in an atmosphere of 5%

CO2 and 95% air.

Immunohistochemical analysis (IHC)
Briefly, fixed samples of NSCLC and normal tissue were

embedded with paraffin and then sliced into 4 µm sections.

Next, the tissue sections were deparaffinized, dehydrated,

and their antigens were retrieved. The slices were then

incubated in 3% H2O2 for 1 h, followed by incubation in

10% donkey serum for 2 h. Next, the slices were stained

overnight with a primary antibody against HMGB1 (rab-

bit, 1:2,000, Abcam, Cambridge, UK), using the streptavi-

din peroxidase-conjugated (SP-IHC) method.

Hematoxylin/eosin (H&E) staining
The treated NSCLC tissue samples were stained with Harris

hematoxylin (Surgipath, Richmond, IL, USA), acid alcohol

(1% concentrated hydrochloric acid in 70% ethanol), and 0.1%

eosin (Surgipath) using a Shandon LinistainTM GLX Linear

Stainer (Thermo Scientific, Cheshire, UK).
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RNA extraction and quantitative real-

time PCR (RT-PCR)
The total RNA of NSCLC and normal tissue samples, as well

as treated and non-treated NSCLC cells was extracted with

TRIzol reagent (Invitrogen, Carlsbad, CA, USA). After

determining the quality of the extracted RNA with a

NanoDrop2000c spectrophotometer (Thermo Scientific,

Waltham, MA, USA), 2 μg of total RNA was used as a

template for the reverse transcription of cDNA that was

performed using a BestarTM qPCR RT Kit (#2220, DBI

Bioscience, China). The RT-PCR was performed using

BestarTM qPCR MasterMix (#2043, DBI Bioscience,

China) on an ABI7500 system for purposes of quantifying

the levels of miR-34c and HMGB1 in NSCLC tissues and

cells. The sequences of the primers used were as follows:

GAPDH, F: 5ʹ-TGT TCG TCA TGG GTG TGA AC-3ʹ, R:

5ʹ-ATG GCA TGG ACT GTG GTC AT-3ʹ; U6, F: 5ʹ- CTC

GCT TCG GCA GCA CA −3ʹ, R: 5ʹ-AAC GCT TCA CGA

ATT TGC GT-3ʹ; miR-34c, F: 5ʹ- ACACTCCAGCTGGG

AGGCAGTGTAGTTAGCTG −3ʹ, R: 5ʹ- CTCAACTGGTG
TCGTGGA −3ʹ, RT: 5ʹ-CTC AAC TGG TGT CGT GGA

GTC GGC AAT TCA GTT GAG GCA ATC AG-3ʹ;
HMGB1F: 5ʹ-CTC GCT TCG GCA GCA CA-3ʹ, R: 5ʹ-

AAC GCT TCA CGA ATT TGC GT-3ʹ. The level of

HMGB1 expression was normalized to that of GAPDH,

and miR-34c expression was normalized to that of U6.

Gene expression was quantified using the 2−ΔΔCt method.

Western blot assay
The total proteins of NSCLC tissues and cells were extracted

using a radioimmunoprecipitation assay reagent that con-

tained protease inhibitors (Beyotime Institute of

Biotechnology, Haimen, China). After determining the con-

centration of protein in each sample with a BCA Protein

Assay Kit (Beyotime Institute of Biotechnology), 40 µg of

denatured total protein was separated by 10% SDS-PAGE.

Next, the target proteins were transferred onto nitrocellulose

membranes (EMD Millipore, Billerica, MA, USA), which

were subsequently incubated in 5% low fat milk for 2 h at

room temperature. After incubation, the membranes were

washed twice with PBS, and then incubated overnight with

primary antibodies against HMGB1, Bax, p-ERK, eIF2α,
GADD153, and IRE1α, followed by a 2 h incubation with

peroxidase-conjugated secondary antibodies (anti-mouse,

Cat. No. SC-2005 and anti-rabbit, Cat. No. SC-2004).

Finally, the membranes were analyzed with an enhanced

chemiluminescence detection system (EMD Millipore,

Burlington, MA, USA). The primary antibodies used were

anti-HMGB1 (Dilution 1: 1,000, Abcam, ab77302), anti-Bax

(Dilution 1: 1,000, Abcam, ab32503), anti-p-ERK (Dilution

1: 500, Abcam, ab76165), anti-eIF2α (Dilution 1: 1,000,

Abcam, ab26197), anti-GADD153 (Dilution 1: 1,000,

Abcam, ab11419), anti-IRE1α (Dilution 1: 100, Abcam,

ab37073), and anti-GAPDH (Dilution 1: 2,000, Santa Cruz

Biotechnology, Dallas, TX, USA).

Cell counting kit-8 (CCK-8) assay
The effects of miR-34c and HMGB1 on the proliferation of

NSCLC cells were evaluated by the CCK-8 assay. In brief,

2×104 treated NSCLC cells were seeded into the wells of 96-

well plates, and incubated at 37°C for 24 h. Next, the CCK-8

assay was used to assess cell viability at intervals of 24, 48,

and 72 h after seeding. The absorbance at 450 nm was

detected with a microplate reader (Thermo Plate, Rayto

Life and Analytical Science, Co., Ltd., Hamburg, Germany).

Cell apoptosis analysis
The effects of miR-34c and HMGB1 on cell apoptosis were

studied using an Annexin V-fluorescein isothiocyanate

(FITC) and propidium iodide (PI) apoptosis detection kit

(BestBio, Shanghai China), followed by a flow cytometric

analysis. Briefly, treated A549 and NCI-157 cells (2×104)

were harvested and re-suspended in culture medium. After

staining with Annexin V FITC/PI according to the manu-

facturer’s instructions, the cells were analyzed by flow

cytometry (Becton-Dickenson, Franklin Lakes, NJ, USA).

Detection of cellular ROS production
The cellular ROS production of treated A549 and NCI-

H157 cells was detected using a ROS Kit (CA1410,

Solarbio Life Science, Beijing, China). In brief, treated

NSCLC cells were cultured at 37°C for 24 h; after which,

they were collected and re-suspended in serum-free culture

medium containing 10 µmol/L DCFH-DA at a concentra-

tion of 2×107 cells/mL. After incubation at 37°C for 20 min,

the NSCLC cells were observed with a laser scanning

confocal microscope (Leica, Heidelberg, Germany).

Plasmid construction and dual luciferase

activity assay
For the construction of recombinant luciferase reporter

plasmids, the wild type (WT) and mutant (Mut) fragments

of the 3ʹ-UTR of HMGB1 mRNA containing putative

miR-34c binding sites were amplified and inserted into a
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pGL3 (Promega, Madison, WI, USA) vector to create a

HMGB1-WT and HMGB1-MUT recombinant plasmid.

For the dual-luciferase reporter assay, A549 cells were

seeded into 96-well plates (1×104 cells/well) and cultured

overnight at 37°C; after which, they were co-transfected

with miR-34c mimics or the miR-NC plus the HMGB1-

WT or HMGB1-MUT. The firefly and Renilla luciferase

activities of the treated A549 cells were examined using a

Dual-Luciferase Assay System (Promega), and Renilla

luciferase activity was normalized to Firefly luciferase

activity.

Statistical analysis
All data were analyzed using Graphpad software (Ver.

Prism 7, GraphPad Prism Software, La Jolla, CA, USA),

and results are expressed as the mean ± SEM. Student’s

test and one-way analysis of variance were used to analyze

differences between groups, and a P-value <0.05 was

considered to be statistically significant. Each experiment

was repeated at least three times.

Results
MiR-34c was downregulated and HMGB1

was upregulated in NSCLC
The pathological changes seen in NSCLC tissues were

evaluated by H&E staining. When compared to adjacent

normal tissues, the structure of NSCLC tissues was

obviously destroyed; furthermore, the nuclear chromatin

was darker, and the number of tumor cells was signifi-

cantly increased (Figure 1A). To further investigate the

role of HMGB1 in NSCLC, we detected the levels of

HMGB1 expression in NSCLC tissues by use of an immu-

nohistochemical staining (IHC) assay. Our results showed

that HMGB1 was significantly upregulated in NSCLC

tissues (Figure 1B). Moreover, an analysis of 20 paired

NSCLC and adjacent normal tissue samples performed

using the qRT-PCR assay also showed that the relative

level of miR-34c expression was significantly decreased

in the NSCLC tissues when compared with the adjacent

normal tissues (Figure 1C). An analysis of 10 paired

NSCLC and adjacent normal tissue samples performed

using qRT-PCR and Western blot assays revealed a sig-

nificant upregulation of HMGB1 mRNA and protein in the

NSCLC tissues when compared with the adjacent normal

tissues (Figure 1D and E). In addition, the relative levels

of miR-34c expression were remarkably lower in four

NSCLC cell lines (A549, H157, H1299, and H23) when

compared to their expression levels in the normal human

lung cell line (MRC-5) (Figure 1F).

MiR-34c overexpression significantly

inhibited cell growth and induced ER

stress in NSCLC cells
The degree of miR-34c overexpression in A549 and NCI-

H157 cells was assessed using the qRT-PCR assay. Results

indicated a significant upregulation of miR-34c in A549 and

NCI-H157 cells transfected with miR-34c mimics when

compared to those cells treated with the NC (Figure 2A).

After transfecting the NSCLC cell lines (A549 and NCI-

H157) with miR-34c mimics or the negative control (NC),

we evaluated the proliferation and apoptosis of those cells

by use of CCK-8 and flow cytometric assays, respectively.

Results of the CCK-8 assays suggested that the proliferative

ability of both NSCLC cell lines transfected with miR-34c

mimics was significantly reduced when compared to the NC

group (Figure 2B). Results from flow cytometry analyses

revealed that A549 and NCI-H157 cells treated with miR-

34c had a higher rate of apoptosis than cells treated with the

NC (Figure 2C, lower panel). Furthermore, we also inves-

tigated the effects of miR-34c overexpression on intracel-

lular ROS production in A549 and NCI-H157 cells by using

a ROS Assay Kit. The fluorescence image analysis showed

that ROS production in A549 and NCI-H157 cells treated

with miR-34c mimics was significantly increased when

compared to ROS production in the Blank and NC groups

(Figure 2C, upper panel). In addition, a Western blot ana-

lysis revealed significantly increased levels of Bax, p-ERK,

eIF2α, GADD153, and IRE1α in A549 and NCI-H157 cells
that overexpressed miR-34c, when compared to cells in the

NC group (Figure 2D). Bax is an apoptosis-related protein,

and p-ERK, eIF2α, GADD153, and IRE1α are associated

with the endoplasmic reticulum stress (ERS) mechanism.

Our findings suggest that miR-34c overexpression signifi-

cantly inhibited NSCLC cell proliferation, and promoted

NSCLC cell apoptosis and ER stress.

MiR-34c negatively regulated HMGB1

expression in NSCLC cells
To demonstrate the regulatory effect of miR-34c on HMGB1

expression, we identified a putative miR-34c binding site

located in the 3ʹ-UTR of HMGB1 mRNA by performing a

bioinformatics analysis (Figure 3A). We then used the dual-

luciferase reporter assay to confirm the interaction between

miR-34c and HMGB1 in A549 cells. Our results showed that
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when compared to the NC group, miR-34c mimics could

significantly attenuate the luciferase activity of A549 cells

driven by HMGB1-WT, but not by HMGB1-MUT (Figure

3B). To further assess the effect of miR-34c on HMGB1

expression, we performed Western blot assays to examine

the levels of HMGB1 protein expression in A549 and NCI-

H157 cells transfected with miR-34c mimics or the NC.

Results showed that HMGB1 levels were significantly

lower in the miR-34c-transfected A549 and NCI-H157

cells when compared to cells in the NC group (Figure 3C).
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Knockdown of HMGB1 strongly inhibited

NSCLC cell growth and promoted ER

stress
To investigate the role of HMGB1 in NSCLC, HMGB1

expression was silenced by using two siRNAs against

HMGB1 (si-HMGB1-1 and si-HMGB1-2) in vitro. The

knockdown efficiency of the siRNAs was assessed via

the qRT-PCR (Figure 4A). Subsequently, the effects of

HMGB1 knockdown on cell proliferation and apoptosis

were evaluated via CCK-8 and flow cytometry analysis,

respectively. Results from CCK-8 assays indicated that

both NSCLC cell lines transfected with si-HMGB1-1 and

si-HMGB1-2 showed a significant inhibition of cell pro-

liferation when compared with cells in the NC group

(Figure 4B). A flow cytometric analysis of cell apoptosis

showed that knockdown of HMGB1 significantly pro-

moted the apoptosis of A549 and NCI-H157 cells

(Figure 4C, lower panel; Figure 4D). We then investigated

the effects of HMGB1 knockdown on ROS production in

A549 and NCI-H157 cells. Results from fluorescence

images indicated that ROS production in A549 and NCI-

H157 cells transfected with si-HMGB1 and si-HMGB2

was significantly higher than in A540 and NCI-H157

cells transfected with nothing or the NC (Figure 4C,

upper panel). Furthermore, Western blot assays showed

that HMGB1 knockdown resulted in a significant upregu-

lation of Bax, p-ERK, eIF2α, GADD153, and IRE1α
expression in both A549 and NCI-H157 cells (Figure 4E).

HMGB1 overexpression reversed the

effects of miR-34c on NSCLC cell growth

and ER stress
To better understand the association between HMGB1 and

miR-34c in NSCLC cells, miR-34c mimics and HMGB1

plasmids were co-transfected into A549 and NCI-H157

cells, followed by the detection of NSCLC cell proliferation,

apoptosis, and ROS production. Results from qRT-PCR

assays showed that the downregulation of HMGB1 levels

in A549 and NCI-H157 cells induced by miR-34c mimics

could be reversed by the ectopic expression of HMGB1

(Figure 5A). CCK-8 assays revealed that A549 and NCI-

H157 cell proliferation was suppressed by miR-34c mimics,

whereas the ectopic expression of HMGB1 could abrogate

the inhibitory effect of miR-34c on cell proliferation (Figure

5B). Moreover, our flow cytometric analysis showed that the

promotive effect of miR-34cmimics on A549 and NCI-H157

cell apoptosis could be partially reversed by the ectopic

expression of HMGB1 (Figure 5C, lower panel, Figure

5D). An analysis of cellular ROS production revealed that

HMGB1 overexpression could block the increased produc-

tion of ROS in A549 and NCI-H157 cells induced by miR-

34c transfection (Figure 5C, upper panel). In addition, results

from Western blot analyses suggested that miR-34c mimics

caused an upregulation of Bax, p-ERK, eIF2α, GADD153,
and IRE1α expression in A549 and NCI-H157 cells, and that
effect was also abolished by the ectopic expression of

HMGB1 (Figure 5E).
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Figure 4 Knockdown of HMGB1 strongly inhibited proliferation and promoted apoptosis and endoplasmic reticulum stress in non-small cell lung cancer cells. (A) The
knockdown efficiencies of two siRNAs targeting HMGB1 (si-HMGB1-1 and si-HMGB1-2) in A549 and NCI-H157 cells were assessed via the qRT-PCR assay, **P<0.01 vs NC

group. (B) The effect of treatment with si-HMGB1-1 and si-HMGB1-2 on the proliferation of A549 and NCI-H157 cells was evaluated via the CCK-8 assay, **P<0.01 vs NC

group. (C and D) Upper panel: the effects of HMGB1 knockdown on cellular reactive oxygen species (ROS) production in A549 and NCI-H157 cells transfected with
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and IRE1α expression in HMGB1-blocked A549 and NCI-157 cells.
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Figure 5 MiR-34c suppressed proliferation, accelerated apoptosis, and alleviated endoplasmic reticulum stress in non-small cell lung cancer cells via its effect onHMGB1. (A) qRT-PCR
analysis of HMGB1 expression in A549 and NCI-H157 cells treated with nothing, the NC, miR-34c mimics, or miR-34c mimics + HMGB1, **P<0.01 vs NC group, #P<0.05 vs mimics.

(B)CCK-8 analysis of the proliferation of A549 and NCI-H157 cells treated with nothing, theNC, miR-34c mimics or miR-34cmimics + HMGB1, *P<0.05, **P<0.01 vs NC group, and

#P<0.05 vs mimics. (C and D) Upper panel: reactive oxygen species (ROS) production in A549 and NCI-H157 cells treated with nothing, the NC, miR-34c mimics, or miR-34c

mimics + HMGB1 was detected using an ROS kit. Lower panel: the apoptosis rates of A549 and NCI-H157 cells treated with nothing, the NC, miR-34c mimics or miR-34c

mimics + HMGB1 were evaluated by flow cytometric analysis, **P<0.01 vs NC group, #P<0.05 vs mimics. (E) Western blot analysis of Bax, p-ERK, eIF2α, GADD153, and IRE1α
expression in A549 and NCI-H157 cells treated with nothing, the NC, miR-34c mimics or miR-34c mimics + HMGB1.
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Discussion
NSCLC, characterized by large alterations in cellular phos-

pholipid profiles, is the most common subtype of lung

cancer derived from the bronchial epithelium. Although

tremendous progress has been made in diagnostic and ther-

apeutic technologies in recent decades, the incidence and

prognosis of NSCLC remain dismal.25 Due to their tissue-

and time-specific expression patterns, miRNAs are consid-

ered to be promising biomarkers for use in the early detec-

tion of NSCLC.26 It is currently well known that miRNAs

help to regulate the initiation and progression of NSCCL by

directly regulating expression of oncogenes or tumor sup-

pressors. For example, miR-671-3p was shown to suppress

NSCLC progression by directly binding to and inhibiting

Cyclin D2 (CCND2).27 Moreover, miR-19 was shown to

promote NSCLC cell proliferation in vitro by binding to the

3ʹ-UTR of CBX7 mRNA and thereby inhibiting CBX7

expression.28 Our study is the first to explore the roles and

mechanisms of miR-34c in the pathogenesis of NSCLC,

and the results not only increase our understanding of

NSCLC pathogenesis, but also suggest a new potential

therapeutic target for NSCLC.

ER stress can be induced by high rates of cell prolif-

eration and metabolism, resulting in unfolded protein

response (UPR) signaling cascades. Mounting evidence

suggests that chemotherapeutic drug treatments, oncogene

activation, B-Raf proto-oncogene mutations, H-Ras proto-

oncogene mutations, and c-Myc amplification create ER

stress in cancer cells.29 It was recently reported that mod-

ulation of ER stress could mediate the effects of multiple

anti-cancer agents on NSCLC progression.30

HMGB1 is a small DNA-binding protein involved in

various cellular processes. It is translocated from the

nucleus into cytosol by either active or passive release

processes.31 Accumulating evidence suggests that extra-

cellular HMGB1 supports tumorigenesis by promoting

inflammatory reactions, the epithelial-mesenchymal transi-

tion process, cell migration, and angiogenesis.32,33 The

roles played by HMGB1 in regulating ER stress and

ROS production have also been well documented. Cells

exposed to external or internal stress release a series of

damage-associated molecular patterns (DAMPs), includ-

ing HMGB1; this release mediates an inflammatory

response, ER stress, and ROS synthesis.18 Recent studies

have shown that HMGB1 might affect the tumorigenesis

of cancers by interacting with miRNAs.34,35 Furthermore,

the association between miRNA expression and HMGB1

has been verified in various diseases.36 However, in this

present study, we found that knockdown of HMGB1

remarkably inhibited NSCLC cell survival by promoting

ER stress, ROS synthesis. This discrepancy might because

of multifunction of ROS and ER stress in cancer.37,38

In summary, our findings revealed a significant downregu-

lation ofmiR-34c and a significant upregulation of HMGB1 in

NSCLC cells and tissues. Our functional assays demonstrated

that miR-34c overexpression and HMGB1 knockdown signif-

icantly inhibited NSCLC progression and alleviated ER stress.

Additionally, HMGB1 was identified as a target gene of miR-

34c, and we found that HMGB1 overexpression could abolish

the effects of miR-34c mimics on NSCLC cell growth and ER

stress in vitro. Ourfindings provide a novelmolecularmechan-

ism for NSCLC tumorigenesis, and suggest the miR-34c/

HMGB1axis as a promising therapeutic target for NSCLC.
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