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Abstract

During the winter of 2016-2017, an epidemic of highly pathogenic avian influenza (HPAI) led

to high mortality in poultry and put a serious burden on the poultry industry of the Republic of

Korea. Effective control measures considering spatial heterogeneity to mitigate the HPAI

epidemic is still a challenging issue. Here we develop a spatial-temporal compartmental

model that incorporates the culling rate as a function of the reported farms and farm density

in each town. The epidemiological and geographical data of two species, chickens and

ducks, from the farms in the sixteen towns in Eumseong-gun and Jincheon-gun are used to

find the best-fitted parameters of the metapopulation model. The best culling radius to maxi-

mize the final size of the susceptible farms and minimize the total number of culled farms is

calculated from the model. The local reproductive number using the next generation method

is calculated as an indicator of virus transmission in a given area. Simulation results indicate

that this parameter is strongly influenced not only by epidemiological factors such as trans-

missibility and/or susceptibility of poultry species but also by geographical and demographi-

cal factors such as the distribution of poultry farms (or density) and connectivity (or distance)

between farms. Based on this result, we suggest the best culling radius with respect to the

local reproductive number in a targeted area.

Introduction

During the 2016-2017 winter season, the epidemic of highly pathogenic avian influenza

(HPAI) in the Republic of Korea led to high mortality rates in domestic poultry and put a seri-

ous economic burden on the poultry industry. By April 4, 2017, 383 farms were reported to be

infected by the HPAI virus (subtype H5N6 and H5N8), and approximately 3.7 million poultry

(3154 thousand chickens and 332 thousand ducks) from 946 farms were culled (i.e., depopu-

lated) [1]. As most of the culled chickens are layer chickens (2518 thousand), it disrupted the

egg supply and led to a surge in the egg price [2, 3].
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Avian influenza (AI) virus is usually not serious in wild birds, but it causes a critical infec-

tion in domestic poultry such as chickens and ducks. By ability of the virus to cause disease

and mortality in chickens, the infections divided into two forms [4]: low pathogenic avian

influenza (LPAI), causing mild symptoms such as decreasing egg production, and the HPAI,

causing infected hosts to have high mortality rates up to 90-100% within 2 days [5]. AI is

spread by direct contact with birds. The AI virus is mainly transmitted through the feces or

respiratory tract of infected birds [6]. Poultry can be infected with the AI virus via between-

farm movements of vehicles, people, feed and poultry [2, 7].

Culling is the process of killing poultry, both infected and uninfected, in areas around the

infected region to rapidly contain the spread of an infectious disease with the aim of finally

eradicating the disease [8]. Based on a zoning strategy, in practice, authorities mainly carry out

following two culling strategies.

• Infected premises (IP) culling: killing all poultry in a farm or small area where the sick or

dead poultry are diagnosed as AI-positive.

• Preemptive (PE) culling: preemptively killing all poultry within a protect area, which is

declared a area around the IP up to 3 km in the Republic of Korea.

Although such stamping-out policies have been considered to be one of the main control

measures for decades, there remain some controversies about animal welfare and effectiveness.

Especially, when PE culling is conducted in dense area of farms, it inevitably leads to a huge

number of killed poultry. Over 10 million chickens were culled in the Republic of Korea to

mitigate H5N1 in 2008 [1]. The decreased poultry industry revenue in China from February to

April 2004 caused by HPAI was estimated to 49.6% [9]. Nonetheless, a culling policy is widely

adopted because of a dramatic reduction in the risk of dispersion in a short time by decreasing

the infectious period of infected farms and also removing susceptible farms which can be infec-

tious in advance.

Mathematical modeling has been used to understand the dynamics of AI epidemics and to

provide insights on control measures against the spread of the AI virus. Compartmental SIR-

type models without spatial heterogeneity were studied for human infection of the AI virus

[10–12] with optimal control theory [13], AI transmission between wild birds and poultry

[14], and impact of culling strategies on H5N1 infection in domestic bird populations [15, 16].

Many studies have explored the role of spatial heterogeneity and control measures in AI epi-

demics [17–23]. Agent-based models are beneficial to show warnings on mass culling strategy

[17, 18]. Distance-dependent transmission probability between poultry farms provides trans-

mission risk in a geographical region [19, 24]. Stochastic farm-to-farm transmission models

have been used to investigate control measures dependent on spatial heterogeneity, including

poultry farm density [19, 20]. The transmission characteristics of the HPAI virus were quanti-

fied by the estimation of the reproductive number and used it to evaluate the effectiveness of

various control measures against HPAI epidemics in recent studies [19, 21–23, 25].

Even though many mathematical models have focused on various control measures against

AI virus, there has been little research on various culling strategies considering the breeding

type of poultry farms and the farm density in targeted areas. Moreover, it is still a challenge to

suggest an effective control scenario based on the geographical distribution of poultry farms.

In this study, we focus on the effects of various culling scenarios on the spread of avian influ-

enza between domestic poultry farms in the Republic of Korea, taking into consideration their

breeding types and geographical distributions. We introduce culling functions incorporating

the farm density of targeted areas and describe the farm-based metapopulation model with

these culling functions. The model is parameterized with AI data reported to the Ministry of
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Agriculture, Food and Rural Affairs (MAFRA) [1] for the 2016-2017 period. We introduce key

parameters to quantify the local transmissibility and use it to compare culling scenarios to

maximize the number of surviving farms after the AI epidemic.

Materials and methods

Epidemiological and geographical data

In this study, we focus on the 2016-2017 HPAI outbreak in the neighboring sixteen towns

which are lower-level administrative divisions of Eumseong-gun and Jincheon-gun in Chung-

cheongbuk-do. Before the HPAI outbreak, there were 589 poultry farms (454 for chicken and

135 for duck) in these sixteen towns [26]. With the onset of the HPAI outbreak, starting from

the town Maengdong, which is located at the center of Eumseong-gun and Jincheon-gun, 71

farms (14 for chicken and 57 for duck) were reported as infected and approximately 2 millions

poultry were culled [1] in these sixteen towns.

The data in Table 1 shows the geographical and epidemiological information of the sixteen

towns, and is used in our mathematical model. The sequential outbreak data for each type of

poultry farms (S1 and S2 Tables) is used for estimation of model parameters. Note that each

town is assigned an index in the ascending order of the distance from Maengdong, which is set

to index 0. Matrix of pairwise distances between towns (S3 Table) is used in a transmission

kernel of our model. Assuming that the farms are uniformly distributed in each town, the farm

density is the number of farms per area. The distribution of farm density in a map is shown in

Fig 1. The reported numbers of outbreak farms were 57 for duck and 14 for chicken. Maeng-

dong had the largest reported number, i.e., 23, and Iwol-myeon had the second largest num-

ber, i.e., 11. The ratio of reported number of farms to total number of farms was 0.12. The

ratio of reported duck farms to total number of duck farms was 0.42 while the ratio of reported

chicken farms to total number of chicken farms was 0.03. These imply that the 2016-2017

HPAI outbreak occurred mostly at duck farms.

Table 1. Numbers of poultry farms and reported cases of sixteen towns in 2016-2017.

Poultry farms Outbreaks

Town (Index) Chicken Duck Total Chicken Duck Total Area (km2)

Maengdong (0) 14 33 47 1 22 23 34.69

Deoksan (1) 35 11 46 2 5 7 35.02

Geumwang (2) 29 9 38 0 4 4 71.33

Daeso (3) 6 15 21 0 3 3 38.17

Saenggeuk (4) 23 0 23 2 0 2 56.04

Chopyeong (5) 21 6 27 0 2 2 76.29

Wonnam (6) 38 5 43 1 1 2 64.77

Jincheon (7) 38 8 46 1 1 2 70.49

Iwol (8) 17 21 38 1 10 11 55.20

Gwanghyewon (9) 37 2 39 0 0 0 29.80

Samseong (10) 65 16 81 6 3 9 50.59

Eumseong (11) 11 0 11 0 0 0 86.42

Baekgog (12) 45 0 45 0 0 0 80.09

Gamgok (13) 4 2 6 0 2 2 69.48

Munbaek (14) 60 6 66 0 4 4 60.18

Soi (15) 11 1 12 0 0 0 48.90

Total 454 135 589 14 57 71 927.46

https://doi.org/10.1371/journal.pone.0218202.t001

Effective control measures considering spatial heterogeneity to mitigate the avian influenza epidemic

PLOS ONE | https://doi.org/10.1371/journal.pone.0218202 June 13, 2019 3 / 15

https://doi.org/10.1371/journal.pone.0218202.t001
https://doi.org/10.1371/journal.pone.0218202


Culling rate functions

In this subsection, we describe nonlinear culling rates as a function of the number of AI-con-

firmed farms. Constant culling rate is used for simplicity in compartmental models [14, 16],

but it might be inappropriate to consider culling capacity or resource limitation [15, 22]. In

practice, when a poultry farm is diagnosed positive for HPAI on either clinical diagnosis or

laboratory analysis, PE culling is conducted on farms within a protect area which is a declared

area around the reported farms of perimeter 3 km in general. The PE culling process is analo-

gous to transmission of diseases; once an infected farm is identified and confirmed AI infec-

tion by a epidemiological surveillance, most farms having close contacts would be designated

as dangerous contacts and depopulated soon. Therefore, it is reasonable to adopt nonlinear

culling terms (or constant culling rates) [15] similar to nonlinear transmission terms such as

density-dependent transmission [28, 29]. In this work, we employ the nonlinear culling terms

in depopulation of the poultry farms. Under the limited culling strategy, we set the culling rate

Fig 1. Map of Eumseong-gun and Jincheon-gun, which are the municipal-level divisions located in the central

part of the Republic of Korea, including the density of poultry farms with white indicating low density and red

indicating high density. The index of the town is written below its name. There are 16 towns; 9 towns in Eumseong-

gun and 7 in Jincheon-gun. Reprinted from [27] under a CC BY license, with permission from National Geographic

Information Institute, original copyright 2017.

https://doi.org/10.1371/journal.pone.0218202.g001
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as a rational function of the number of reported farms. Two nonlinear culling types are consid-

ered in this study: PE culling and IP culling.

PE culling rate function. We set the PE culling rate as a rational function of the number

of reported farms [15]. For culling by a reported farm (R), the number of susceptible farm (S)

to be culled is proportional to density of those farms within a culling area of radius, rc, i.e.,

ðS=aÞpr2
c ¼ ðpr

2
c =aÞS ¼ DS, where D is the fraction of culling area, D ¼ pr2

c=a and a is the

area. Then, rate of culling with a saturation factor is given as ZD SR
AþR, where η and A are PE cull-

ing constant and decay constant for the PE culling rate, respectively. In this study, we define

the nonlinear PE culling rate function as cðRÞ ¼ ZD R
AþR. Note that ψ(0) = 0, which means PE

culling strategy is employed after an AI outbreak occurs.

IP culling rate function. The IP culling process is a control strategy that removes the

reported farms to stop disease spreading. Although emergency action guidelines for AI

describe that culling procedure should be proceeded in a day [30], it is likely to take 2 days or

more because of the simultaneously surging reported cases and limitation of the resources for

control measures. We assume that the IP culling rate is a decreasing function of R, and given

by �ðRÞ ¼ gB
BþR, where γ is maximum culling rate and B is a decay constant. When γ is fixed as

1 [30], parameter B can be estimated from the IP culling rates with respect to the number of

reported farms by the following approximation: ignoring the type of farm and patch, let NIP be

the number of IP culling obtained by data (S4 Table), i.e., NIP = ϕ(R)R, then ϕ(R) = NIP/R. By

integrating dR/dt from (2), we have R ¼
R t

0
½I � �ðRÞR� ¼

R t
0
aI �

R t
0
�ðRÞR, where the left

term is the cumulative number of AI-reported farms and the right term is the cumulative num-

ber of IP culling. These data are provided in S4 Table. In Fig 2, the stars and the solid curve

Fig 2. Estimation of IP culling rate. The stars and the solid curve denote the approximated IP culling rate with

respect to the number of AI-reported farms and the corresponding calibrated curve, respectively. The dashed line

represents constant culling rate averaged over data. The data for IP culling rate approximation is presented in S4 Table.

https://doi.org/10.1371/journal.pone.0218202.g002
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denote the approximated IP culling rate with respect to the number of AI-reported farms and

the corresponding calibrated curve, respectively. Fig 2 shows that the IP culling rate decreases

as the number of reported farms increases. Note that the average of IP culling rate from the

data might be overestimated when there are a large number of AI-reported farms.

Metapopulation model with two species

Now we consider a compartmental model to incorporate spatial effects. Let Si, Ii, Ri denote

respectively the number of susceptible, infective but not identified, and reported farms in

patch i for i = 0, . . ., 15. Note that in our model Ii and Ri are infectious, but Ri has less trans-

missibility because of control measures after the case is identified, such as isolation and

restriction. Ignoring the species, the spatial-temporal model can be written for i = 0, . . ., 15 as

follows

dSi
dt

¼ �
X15

j¼0

bðIj þ �RjÞKði; jÞSi � cðRi;Di;RÞSi;

dIi
dt
¼
X15

j¼0

bðIj þ �RjÞKði; jÞSi � aIi � cðRi;Di;RÞIi;

dRi

dt
¼ aIi � �ðRÞRi;

where Kði; jÞ ¼ e�
dði;jÞ
r0 :

ð1Þ

The parameter β is the transmission rate, α is the AI virus progression rate to infective farms,

and � is the reduction factor of the virus transmissibility for the reported farms. Susceptible

farms in town i, Si, can be infected by two ways: either random contacts with infectious farms

in the same town, Ii and Ri, or nonrandom contacts with infectious farms from other towns,

Ij and Rj, for j = 0, . . ., 15 and j 6¼ i. Here, contacts between domestic poultry farms represent

indirect ways likely to transmit the AI virus via vehicles related to domestic poultry industry.

Assuming density-dependent transmission, we use an exponential decay function with

respect to the distance between two towns i and j, dij, as a transmission kernel for nonrandom

contact with infectious farms outside the local town i, Kði; jÞ ¼ e�
dði;jÞ
r0 , ro is the scaling con-

stant of the transmission kernel. The distance matrix whose the entry in the i-th row and j-th

column is dij is estimated by the shortest path (road) in a map between two towns instead of

the Euclidean distance between them. This estimation is reasonable in the case when neigh-

boring two towns have no direct path between them because of some geographical reasons,

such as rivers or mountains.

Culling is a localized control measure; it is only implemented in the premises affected by

the AI virus. To add this spatial heterogeneity to the model we extend the PE culling rate func-

tion. We assume that the susceptible and infective poultry farms in town i are preemptively

culled at a rate ψ(Ri, Di; R) when there are AI-reported farms in town i. It is supposed that satu-

ration of culling rate is dependent on the total number of reported farms across all towns, i.e.,

R ¼
P15

i¼0
Ri. Then, we let cðRi;Di;RÞ ¼

ZDiRi
AþR with A> 0. The PE culling rate, ψ(Ri, Di; R), lin-

early increases with respect to the number of reported cases in town i once the outbreak

occurs, i.e., ψ� ηDiRi, and the fraction of culling area in town i, Di. Finally, the PE culling rate

does not continue to increase indefinitely when there exist reported farms in excess. Similarly,

we assume that the IP culling is delayed by the total number of reported farms in all towns.

Effective control measures considering spatial heterogeneity to mitigate the avian influenza epidemic

PLOS ONE | https://doi.org/10.1371/journal.pone.0218202 June 13, 2019 6 / 15

https://doi.org/10.1371/journal.pone.0218202


Then, we let �ðRÞ ¼ gB
BþR with B> 0. Hence the IP culling rate decreases as the total number of

reported cases across all towns increases.

We now introduce a metapopulation model with two-type poultry farms: chicken and

duck. For i = 0, . . ., 15, Si, Ii and Ri are divided into two poultry farms such as Sci, Ici, Rci, Sdi, Idi
and Rdi, respectively, where the subscript c is for chicken and d for duck. Then the model with

two different farms can be written for i = 0. . ., 15 as the following nonlinear differential equa-

tions:

dSci
dt
¼ �

X15

j¼0

bccðIcj þ �RcjÞ þ bcdðIdj þ �RdjÞ
� �

Kði; jÞSci � cðRi;Di;RÞSci;

dIci
dt
¼
X15

j¼0

bccðIcj þ �RcjÞ þ bcdðIdj þ �RdjÞ
� �

Kði; jÞSci � acIci � cðRi;Di;RÞIci;

dRci

dt
¼ acIci � �ðRÞRci;

dSdi
dt
¼ �

X15

j¼0

bdcðIcj þ �RcjÞ þ bddðIdj þ �RdjÞ
� �

Kði; jÞSdi � cðRi;Di;RÞSdi;

dIdi
dt
¼
X15

j¼0

bdcðIcj þ �Rcj þ bddðIdj þ �RdjÞÞ
� �

Kði; jÞSdi � adIdi � cðRi;Di;RÞIdi;

dRci

dt
¼ adIdi � �ðRÞRdi;

where Kði; jÞ ¼ e�
dði;jÞ
r0 :

ð2Þ

The parameter bk1k2
, for k1, k2 2 {c, d}, denotes the transmission rate from k1 farm to k2 farm.

For example, βcd represents the transmission rate from duck farms to chicken farms. For

model simplicity, we suppose that interactions between chicken and duck farms are symmet-

ric, i.e., βcd = βdc. The parameters αc and αd denote the progression rate of chicken and duck

farms, respectively.

The parameters βcc, βcd, βdd, r0, η and B were estimated using the least squares fitting

method. The model prediction CðtÞ ¼
R t
t0
cðRðtÞÞIðtÞ þ �ðRðtÞÞRðtÞdt was fitted to the

cumulative number of AI-reported farms which is the summation of the cumulative number

of PE culled farms that are confirmed as AI-positive and the cumulative number of IP culled

farms. The built-in routine lsqcurvefit in MATLAB was used to solve the nonlinear least-

squares problem.

As the first case was reported at a duck farm in Maengdong-myeon during the 2016-17

HPAI epidemic, we set Rdi(0) = 1 for i = 0 (indicating the infection source town), and Rdi(0) =

0 for i = 1, . . ., 15. For chicken, there were no initial cases, thereby setting Rci(0) = 0 for all i.
Although it was found that there were a few farms already infected when the first case was

reported [30], it might be hard to measure the exact number of those farms even by epidemio-

logical surveillance. Therefore, the initial number of infective duck farm Id(0) in Maengdong-

myeon was also estimated through the least-squares fitting method.
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Reproductive numbers

When an infected individual invades the susceptible population, the average number of sec-

ondary infection generated by the primary case over the infectious period, called the basic
reproductive number and denoted by R0, is an important threshold quantity [31–33]. In this

work, to find the basic reproductive number, we use the next generation method [33, 34]. Let

G be the next generation matrix, then R0 ¼ rðGÞ where ρ is the spectral radius. The (i, j) ele-

ment of G means how many new infections are introduced into compartment i by the infected

from compartment j. We now define the local reproductive number in town j, RðjÞ
0

, as how

many poultry farms are newly infected by infected poultry farms from town j, and it is

obtained by the maximum value among the farming types in each town after the sum of each

column of G. As we consider two types of poultry farms, the next generation matrix can be

written as a 2×2 block matrix,

G ¼
Gcc Gcd

Gdc Gdd

" #

ð3Þ

where the block Gk1k2
for k1, k2 2 {c, d} is a 16×16 matrix, and the entry of Gk1k2

is given by

Gk1k2
½i; j� ¼ bk1k2

Sk1 i
ð0Þ

1

ak2

þ
�

g

 !

Kði; jÞ: ð4Þ

A detailed report can be found in [33].

Results

Parameter estimations

In our study, the progression rate of chicken and duck farms, the initial IP culling rate, and the

culling radius were set as αc = 1/2, αd = 1/4, γ = 1, and rc = 3, respectively [1]. We assumed that

saturation factor for the PE culling rate, which is the farm number where the culling rate

reaches half of its maximum, A = 1 and the infectivity reduction factor, � = 0.01. The model

parameters are listed in Table 2.

Fig 3 displays the cumulative number of AI-positive farm (circles) and the best-fitted model

results (solid curves) after the first case was reported on November 16, 2016, in Maengdong-

Table 2. Model parameters.

Symbol Description Value References

βcc transmission rate between chicken farms 0.00441 data-fitted

βdd transmission rate between duck farms 0.00707 data-fitted

βcd transmission rate between different species 0.00007 data-fitted

αc progression rate of chicken farms 1/2 [1]

αd progression rate of duck farms 1/4 [1]

r0 scaling constant of the transmission kernel 4.5019 data-fitted

γ initial infectious premises culling rate 1 [1]

η PE culling rate 0.0618 data-fitted

A decay constant for PE culling 1 assumed

B decay constant for IP culling 2.995 data-fitted

rc culling radius 3 [1]

� infectivity reduction factor 0.01 assumed

https://doi.org/10.1371/journal.pone.0218202.t002
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myeon (Index 0). The fitted model agrees well with the observed data for both types of farms.

Note that the transmission rate between duck farms (0.00707, 95% confidence interval:

0.00484-0.00930) is approximately 1.6 times higher than the transmission rate between

chicken farms (0.00441, 95% confidence interval: 0.00183-0.00700). Interestingly, even though

we only estimated non-spatial parameters such as transmission rates and scaling constants in

the metapopulation model with two species, the total number of AI-positive farms from the

model demonstrated a good fit to the corresponding data in most towns; the root-mean-square

errors between data and model for chicken, and duck and total farms of the sixteen towns are

0.9392, 1.5020 and 1.5572, respectively.

Reproductive numbers

Based on the initial population of poultry farms in Table 1 and the estimated parameters in

Table 2, the estimate R0 for the AI outbreak was 1.3427. Fig 4 displays the local reproductive

number of each town by a map and graph which shows the correlation among local reproduc-

tive number, the farm density and the number of duck farms. In Fig 4, the towns with the local

reproductive number greater than 1 are Maengdong (Rð0Þ

0
¼ 1:6095), Daeso (Rð3Þ

0
¼ 1:5144),

Fig 3. In each panel, circles represent the AI-reported farm data and black solid curves represent the corresponding simulation results.

https://doi.org/10.1371/journal.pone.0218202.g003

Fig 4. (A) Local reproductive numbers in each town. The darker red color represents the larger reproductive number.

(B) Local reproductive number with respect to farm density in each town. The size of circle shows the size of duck

farms. Reprinted from [27] under a CC BY license, with permission from National Geographic Information Institute,

original copyright 2017.

https://doi.org/10.1371/journal.pone.0218202.g004
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Deoksan (Rð1Þ

0
¼ 1:3913), Iwol (Rð8Þ

0
¼ 1:2940), Samseong (Rð10Þ

0
¼ 1:0926), and Jincheon

(Rð7Þ

0
¼ 1:0277). In most towns, the local reproductive numbers are positively correlated to

the farm density (with correlation coefficient, ρ = 0.6606). Furthermore, the local reproductive

numbers are also positively correlated to the number of duck farms (with correlation coeffi-

cient, ρ = 0.9383).

PE culling strategy

Fig 5 shows the impact of culling radius on the AI outbreak using the metapopulation model

(Eq (2)) with all other parameters in Table 2. The left panel depicts the final size of susceptible

farms with respect to culling radius. The right panel displays the total number of PE culling

(dot-dashed), IP culling (dashed) and both (solid) with respect to culling radius. A larger cull-

ing radius increases the loss by PE culling and suppresses outbreaks thereby decreases the loss

by IP culling. This implies that the two culling strategies are in a compensatory relationship.

The total loss of farms by culling reaches its minimum at rc best = 2.24 km of culling radius in

which the final size of the AI epidemic reaches its peak.

Although we found the best culling radius, rc best, at which the total loss of farms by culling

reaches its minimum, spatial heterogeneity was not considered. We set culling radius as local-

ized parameter; rc high, culling radius of towns with RðiÞ
0
> 1 and rc low, culling radius of towns

with RðiÞ
0
< 1. Fig 6 depicts the impact of the two localized culling radii on the final size of sus-

ceptible farms by a color bar. In the parameter domain, the final size of susceptible farms along

the axis rc high dramatically increases at first, then slowly decreases later. Meanwhile, the final

size of susceptible farms decreases as rc low increases. The final size of susceptible farms is maxi-

mized as 459 when rc high and rc low are 2.65 and 0, respectively. The best culling radius in

towns with RðiÞ
0
> 1, rc high = 2.65 km, is smaller than the government’s policy (3 km), but

greater than one ignoring the spatial heterogeneity, rc best = 2.24 km.

Discussion

Using farm-to-farm transmission dynamics incorporating the two poultry types, chicken and

duck, we estimated the spread of the HPAI outbreak in the Republic of Korea in 2016-2017.

Fig 5. Impact of culling radius on the AI outbreak using the metapopulation model (Eq (2)) with all other

parameters in Table 2. The left panel depicts the final size of susceptible farms with respect to culling radius. The right

panel displays the total number of PE culling (dot-dashed), IP culling (dashed) and both (solid) with respect to culling

radius. Note that when culling radius is 2.24 km, the final size of susceptible farms is maximized and the total number of

culling is minimized.

https://doi.org/10.1371/journal.pone.0218202.g005
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We found that from modeling result the transmissibility between duck farms was higher than

that between either chicken farms or different type of farms. Ducks can carry and shed the AI

virus without symptoms and have low mortality while chickens have high pathogenicity and

mortality [5]. In addition, the outbreak started at a duck farm in high farm density area. These

epidemiological and spatial factors amplified the virus and allowed it to spread easily sur-

rounding poultry farms. Therefore, duck farms played an important role in the spread of the

HPAI virus in Eumseong-gun and Jincheon-gun. This is the first study on estimating the basic

reproductive number of the 2016-2017 HPAI epidemic in the Republic of Korea and introduc-

ing the local reproductive number as an indicator of the virus transmission in a given area.

There were six towns in which the local reproductive number is greater than 1: Maengdong

(Rð0Þ

0
¼ 1:6095), Daeso (Rð3Þ

0
¼ 1:5144), Deoksan (Rð1Þ

0
¼ 1:3913), Iwol (Rð8Þ

0
¼ 1:2940),

Samseong (Rð10Þ

0
¼ 1:0926), and Jincheon (Rð7Þ

0
¼ 1:0277). These towns seem to be either rel-

atively close to Maengdong (Deoksan, Geumwang and Daeso) or have high farm density

(Maengdong, Deoksan and Samseong). The distance from Maengdong to Deoksan, Geum-

wang and Daeso are 7.76 km, 9.77 km and 9.95 km, respectively, which are almost half of mean

distance (18.31 km) to Maengdong. Since the transmission rate depends on the distance

between towns by the kernel, Kði; jÞ ¼ e�
dði;jÞ
r0 , it is clear that the local reproductive number is

affected by the distance. The high farm density in Deoksan and Samseong (1.31 and 1.60,

respectively) might allow the virus to spread easily surrounding poultry farms via movement

of humans (farm personnel and visitors) and vectors (rodents), or contaminated environment

(air and water) [35].

Maengdong, which is the town with the highest local reproductive number, is the region

with the highest number of duck farms and the source of outbreak. The three towns with the

Fig 6. Impact of local-dependent culling radii on the final size of susceptible farms. The final size of susceptible

farms with respect to culling radii is maximized as 459 when rc high and rc low are 2.65 and 0, respectively.

https://doi.org/10.1371/journal.pone.0218202.g006
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lowest local reproductive number are Gamgok, Soi, and Eumseong, which also have the lowest

farm density. These imply that farm density plays an important role on the 2016-2017 HPAI

epidemic in the Republic of Korea, which is in line with the previous works on livestock dis-

eases [19, 20, 36–40]. Furthermore, we found that RðiÞ
0

is strongly influenced by not only epide-

miological factors, such as the number of duck farms with high transmissibility in town i, but

also by geographical factors, such as the location of town i and its proximity to other towns

with high susceptibility.

Our finding showed that culling strategies need to take heterogeneity into account for

reducing loss of poultry farms. We suggested that PE culling has to be focused on the area in

which the local reproductive number is greater than 1, and the culling radius must be greater

than that, ignoring the spatial heterogeneity; Reinforced PE culling in the area wherein the

local reproductive number is greater than 1 could allow for early depopulation of infected

farms before infection spreads to dense area. Meanwhile, in the areas in which the local repro-

ductive number is less than 1, losses from the infection might be greater than losses from PE

culling.

Conclusions

In this paper, we presented mathematical modeling for the spatial-temporal transmission

dynamics of HPAI using geographical and epidemiological data of the 2016-2017 AI epidemic

in the Republic of Korea. To consider spatial heterogeneity, we introduced the PE culling rate

as a function of the number of reported farms [15] with different coefficients based on the

farm density in each town. As the exact location of the poultry farms affected by the AI virus

was not available, a metapopulation framework has been adopted with the two types of poultry

farms assuming random mixing between farms in a patch and nonrandom contact by the

transmission kernel [19, 41] between farms in different patches. We introduced the local

reproductive numbers using the next generation method [33, 34] in the metapopulation

modeling framework. This quantified parameter allowed one to assess the transmissibility in

each town. For total and even both types of farms, the model predictions and data about the

AI-reported farms are in good agreements. The estimated transmission rates showed that the

transmission between duck farms played an important role in the spread of the HPAI virus in

Eumseong-gun and Jincheon-gun.

Our findings showed that the local reproductive number could be an indicator of the likeli-

hood of virus transmission in a given area. It was revealed that this parameter was strongly

influenced not only by epidemiological factors such as transmissibility and/or susceptibility of

poultry species but also by geographical and demographical factors such as the distributions of

poultry farms (or density) and connectivity (or distance) between farms. Based on this result,

we found that the culling radius of PE culling should be adjusted by considering the local

reproductive number in the target area. Therefore, to determine which area is supposed to be

more strictly controlled during an AI outbreak, we believe that veterinary/public health offi-

cials can use the local reproductive number in a real-time warning system. Our study can be

applied to other animal diseases (e.g., foot-and-mouth disease [42], brucellosis [25]) in which

such heterogeneities are crucial factors to be considered.
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