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Vitamin K content of foods is known to vary substantially by geographical location. In

Australia, no Vitamin K database of food exists, thereby creating ambiguity when trying to

develop national dietary intake guidelines. This investigation aimed to develop a Vitamin

K database for commonly consumed foods that are commercially available in Australian

supermarkets. The Vitamin K1 (phylloquinone; PK) and K2 (menaquinone; MK4, MK7)

content of 60 foods known to contain Vitamin K were assessed (e.g., vegetables fruits,

oils, animal products, dairy and fermented foods). A liquid chromatography with tandem

mass spectrometry (LCMS/MS) method was developed and used to measure PK and

MKs in different foods with an improved chromatographic separation and detection of

Vitamin K’s and their analogs. The LOD and LOQ for PK and MK4 was 0.1, 0.5 ng/ml and

0.5, 1.0 ng/ml, respectively. The majority foods contained detectable PK (53/60), about

half contained MK4 (31/60), and few contained MK7 (3/60). PK was highest in green

leafy vegetables, with moderate amounts in oils. Highest MK4 content was in chicken

eggs and meat products such as ham and chicken. This database enables nutritional

epidemiologist to estimate dietary Vitamin K intake, especially in Australian cohorts, for

a range of health outcomes.

Keywords: food analysis, food composition, food database, Vitamin K1, Vitamin K2, phylloquinone, menaquinone

INTRODUCTION

Vitamin K refers to a group of fat-soluble vitamins best known for their role in blood coagulation.
Other biological processes that Vitamin K has been implicated include blood calcium regulation,
vascular anti-calcification, and bone metabolism (1). There are two main forms of Vitamin K;
Vitamin K1 (phylloquinone; PK) and Vitamin K2 (menaquinones; MK). Phylloquinone is most
abundant in green leafy vegetables and their oils, but is also present in smaller concentrations in
the majority of food groups such as fruit, meat, and dairy products (2). In contrast to PK, the
MKs are a group of isoprenologs where the side chain varies by the number of isoprenoid units
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ranging from four to thirteen repeats (MK4 to MK13; see
Supplementary Figure 1) (3). Despite having analogous
structures, the origins of menaquinones differ. MK4 is
synthesized from PK by animals, and thus is obtained in
the diet from animal products (3). All other MK are synthesized
by anaerobic bacteria and thus are found in fermented foods,
such as cheese (4).

Presently, there are several databases listing the PK content
in a range of foods, especially vegetables and fruits. The
most extensive of these databases has been developed by
the United States Department of Agriculture (USDA) that
has recently been updated (5). The USDA National Nutrient
Database has recently been combined with the United Kingdom
Composition of Foods Integrated Dataset (COFID) to provide
an update to Vitamin K values in the Irish Food Composition
Database (6). Although MK4 content of some food are
listed, the USDA database does not include other MKs
(MK5-12). Generally, such MKs are found in much lower
quantities in meats and cheese compared to MK4, with the
exception of MK7 known to be high in fermented foods
such as Natto (7). Besides the USDA, MK reference ranges
for food products are also limited to a few individual
investigations (4, 7–10).

There are numerous methods to measure both PK and MK
in biological matrices, as reviewed previously (11, 12). However,
there is presently no standardized method to quantitate PK
and MK in food. This has likely contributed toward a lack of
detailed information on the Vitamin K content of food, which
is reported to vary by regions including Europe, Asia and the
United States of America by up to 50% (13). In Australia, a
Vitamin K database for commonly consumed foods does not
exist. This can limit nutritional epidemiology when researchers
seek to investigate the potential health benefits of Vitamin K
(PK and/or MK) for a range of health outcomes in Australian
cohorts. Since MKs are estimated to constitute about 10% of total
dietary Vitamin K intake, with themajority (up to 40%) of dietary
MK attributed to MK4 (3, 14), the aim of this investigation
was to develop a preliminary Vitamin K database, assessing PK
and MK4 for commonly consumed commercially available foods
in Australia.

METHODS

Database Creation
Food items were primarily selected based on the foods assessed in
a commonly used Australian food frequency questionnaire (FFQ)
developed by the Cancer Council of Victoria (DQES V2) (15, 16).
This FFQ is designed to cover dietary intake over a period of
12 months, a timeframe thought to represent the “usual” diet.
From the 101 foods and beverages (including alcohol) recorded
in the FFQ, this was subsequently condensed to 60 food items
which were known to contain PK and MK4 or MK7, based on
previous work (8–10, 17). The main categories of food groups
considered included vegetables (n = 20), fruits (n = 3), oils (n =

4), animal products (n= 16), dairy (n= 14) and fermented foods
(n = 3). This list also included food items unique to Australia
[kangaroo, yeast extract spread (Vegemite)]. It was beyond the

scope of the current investigation to explore all other MKs in the
selected foods. As previously highlighted, MKs are estimated to
constitute about 10% of total dietary Vitamin K intake, with the
majority (up to 40%) of dietary MK attributed to MK4 (3, 14).
Hence, we were primarily concerned with assessing MK4 content
in food. Nevertheless, we also quantified MK7 which is known to
be present in food such as fermented vegetables and dairy.

Three leading local supermarket franchises were visited to
obtain one sample (or brand) of food item from each store.
This resulted in up to three samples per food item obtained for
analysis, depending on availability. Vegetable, fruit, and meat
products were processed in a food processor (Multichopper,
Sunbeam Australia) prior to storage. The food samples were
stored in 5ml freezer tubes at −80◦C until extraction. Every
food item obtained was subsequently analyzed in duplicate. For
example, if three separate brands of full fat milk were obtained, a
total of six samples would have been analyzed. Once analyzed, the
median value was calculated to provide an estimate of the content
of Vitamin K in the analyzed food item.

Chemicals and Reagents
Chemicals used for extraction were of HPLC grade and
solvents used for chromatography were of LCMS grade.
Chemicals: dichloromethane (VWR International Ltd, Tingalpa,
QLD), absolute ethanol (VWR International Ltd, Tingalpa,
QLD), ammonium formate (Sigma Aldrich, Castle Hill,
NSW), formic acid (Univar, Sydney, NSW) n-hexane (Fisher
Scientific, Loughborough, England), methanol (Fisher Scientific,
Loughborough, England), isopropanol (Fisher Scientific,
Loughborough, England) and diethyl ether (Sigma Aldrich,
Castle Hill, NSW) were all used as received.

Deuterium-labeled Vitamin K standards: PK-d7 (5,6,7,8-
d4,2-methyl-d3), MK4-d7 (MK4)-(5,6,7,8-d4,2-methyl-d3) and
MK7-d7 (MK7)-(5,6,7,8-d4,2-methyl-d3) were purchased from
Sigma Aldrich (St Louis, USA), each with chemical purity of
≥95%, and ≥98 atom % deuterium. Non-deuterated PK and
MK4 were purchased from Sigma Aldrich (St Louis, USA). Non-
deuterated MK7 was unavailable to our lab.

Vitamin K Extraction
The method of Vitamin K extraction was adapted from prior
published methods (18–20). All procedures were performed
under yellow light to reduce the photo-oxidation of Vitamin
K by UV light. Approximately 0.2 g of the food was weighed
into 15ml screw-capped polyethylene centrifuge tubes and
spiked with PK-d7 (10 ng), MK4-d7 (10 ng) and MK7-d7 (15
ng). Proteins were denatured with ethanol (1ml), followed by
a 1min wait period. Extraction was performed with hexane
(2ml) and Millipore H2O (1ml). The samples were vortexed
(1min) and shaken (3min), followed by further agitation in an
ultrasound bath (10min), and gyratory mixer (20min). Meat
samples were also sonicated for 30 s, to further homogenize
the sample (Branson Ultrasonics Corporation, Sonicator 150).
Samples were centrifuged at 1,800×g for 10min at 25◦C. The
upper organic layer was removed and purified on 3ml silica
columns (Agilent Technologies Bond Elute, Mulgrave, VIC)
according to Tarvainen et al. (21). Since Vitamin K is fat soluble,
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foods with a high fat content used a high capacity column
(Agilent Technologies, Bond Elute silica, 10 g, 60ml, 120µm,
Mulgrave, VIC), subsequently, extraction volumes were doubled,
and the columns were preconditioned with 60ml diethyl ether,
washed with 60ml hexane, and eluted with 54ml of hexane:
diethyl ether (3.5: 96.5%). The purified solution was collected into
glass tubes then dried under nitrogen at 50◦C. The residue was
dissolved in dichloromethane (20 µl), dried under nitrogen, and
then heated for 10 mins at 60◦C to remove any residual solvent.
Samples were then reconstituted in isopropanol (200 µl) and
placed in amber vials for analysis by LCMS/MS.

Liquid Chromatography With Tandem Mass

Spectrometry (LCMS/MS) Parameters
The extracted phylloquinone and menaquinones were analyzed
on a Thermo Scientific TSQ Quantum Ultra Triple Quadrupole
mass spectrometer equipped with a heated ESI source. It
was operated in the positive ion mode and connected to an
Accela Autosampler system. Chromatographic separation was
performed on a reverse-phase Accucore PFP HPLC column
(2.6µm, 100× 2.1mm). Themobile phase consisted of methanol
containing 0.1% formic acid (solvent A) and 5mM ammonium
formate with 0.1% formic acid (solvent B). Column and tray
temperature was maintained at 40 and 35◦C, respectively. The
run time for the LC method was 6 mins and the solvent gradient
conditions were as follows, 90% A at 0 time, isocratic at 90%
A for 1 mins, 100% A at 1.01 mins and held at 100% A to 5
mins, then reduced to 90% A at 5.01 mins and held at 90%
A for 6 mins to equilibrate to starting conditions. The flow
rate was 0.5 ml/min, with a 10 µl injection volume. The mass
spectrometer was used in the multiple reaction monitoring mode
with argon as the collision gas to detect PK, PK-d7, MK4, MK4-
d7, MK7 and MK7-d7, with MS parameters listed in Table 1.
For quantitative analysis, ratios of area of peak for PK and
MK4, to their deuterated standards at the respective RTs, to
known amount of added internal standards, PK-d7 and MK4-
d7 were used to calculate concentration in µg and expressed
as per 100 g of food matrix. The concentration of MK7 in
food samples was determined by measuring the area under
the peak of non-deuterated precursor ion, transition m/z 650

TABLE 1 | MRM transitions and RT for deuterated and non-deuterated

phylloquinone (PK), menaquinone-4 (MK4), and menaquinone-7 (MK7).

Precursor

ion

Product

ion

Collision

Energy

RT

mins

m/z m/z eV

PK 451.0 187.0 25 1.90

PK-d7 458.4 194.2 23 1.91

MK4 445.0 187.0 20 1.53

MK4-d7 452.0 194.0 25 1.57

MK7 650.0 187.0 26 -

MK7-d7 657.1 194.2 28 2.30

RT, retention time.

> product ion m/z 187 based on the RT of the deuterated
internal standard, MK7-d7, transition m/z 657.1 > m/z 194.2
(Supplementary Figure 2). The ratio of area of peaks for MK7
and MK7-d7, assuming a 1:1 response, to a known amount of
MK7-d7 (15 ng) added during the analysis was used to calculate
the concentration of MK7 in µg and expressed as per 100 g of
food matrix.

Method Validation
Linearity, limit of detection (LOD), and limit of quantification
(LOQ) were determined for the vitamin PK and MK4 by
using incrementally diluted calibration standards ranging from
0.01 to 500 ng/ml. Linear regression analysis was conducted
using the ratio of the K vitamin to deuterated internal
standard (PK-d7 or MK4-d7) as a function of concentration
of the K vitamin. The R2 for both PK and MK4 was 0.9987
(Supplementary Figure 3). LOD and LOQ was determined
in accordance with the US Food and Drug Administration
guidelines (22). The LOD and LOQ for PK was 0.1 and
0.5 ng/ml. respectively. The LOD and LOQ of MK4 was
0.5 and 1 ng/ml, respectively. Precision was determined by
calculating the % CV of PK and MK4 concentrations in
standard solutions and was repeated over three consecutive
days to determine intra- and inter-assay variability. Intra and
inter-assay variability for phylloquinone was 10.6 and 12.8%,
respectively. Intra and inter-assay variability forMK4 was 3.9 and
10.1%, respectively.

Due to the wide range of food matrices investigated
precision was not determined in all matrices. As such, a
simulated matrix was used to determine recovery. Recovery
was determined for PK and MK4 by spiking a low-fat milk
matrix with known amounts of PK, PK-d7, MK4, and MK4-
d7. In two tubes a known amount of the standards was added
at the start of the extraction process and in three separate
tubes the same amount of standard was added at the end
of the extraction process, with the recovery determined by
comparing the measured concentrations of PK and MK4 in
samples spiked before extraction to those spiked following
purification. Recovery for PK was 41.3% and for MK4 was
43.4%; the recovery for PK-d7 and MK4-d7 was 37.0 and
40.2%, respectfully, resulting in approximately equal ratios.
MK7 was not included in these experiments due to lack of a
MK7 standard.

RESULTS

Food Database
The PK,MK4, andMK7 content for the individual foods analyzed
are displayed in Table 2. All PK and MK4 measurements
were higher than the LOQ. The selective reaction monitoring
chromatograms of PK, MK4 and MK-7 in selected foods
(including spinach, cheese and natto, respectively) are presented
in Supplementary Figure 2. The majority of assessed foods
contained detectable PK (53/60), just over half contained MK4
(31/60), and few contained MK7 (3/60).

Phylloquinone was detected in all vegetables, being highest in
green leafy vegetables such as spinach (median 263.0 µg/100 g)
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TABLE 2 | Median (range) values of the phylloquinone and menaquinone content

of commonly consumed foods obtained from Australian supermarkets.

Food item Phylloquinone

(µg/100g)

MK4

(µg/100g)

MK7

(µg/100g)

Vegetables

Spinach 262.9

(244.7–286.2)

ND ND

Kale 128.5

(92.5–272.6)

ND ND

Cabbage 70.4 (28.6–94.4) ND ND

Broccoli 67.9 (50.9–92.9) ND ND

Carrot 36.4 (10.0–67.5) ND ND

Green beans 32.5 (29.1–46.7) ND ND

Cucumber 26.4 (17.1–32.0) ND ND

Lettuce 25.7 (10.3–43.2) ND ND

Peas 22.7 (17.9–31.4) ND ND

Kidney beans 21.0 (5.4–29.7) ND ND

Zucchini 18.3 (12.8–24.7) ND ND

Celery 17.3 (13.6–20.8) ND ND

Cauliflower# 16.4 (12.5–20.1) ND ND

Pumpkin 14.8 (3.3–19.3) ND ND

Capsicum 9.55 (8.2–14.1) ND ND

Tofu# 7.0 (5.9–8.1) ND ND

Tomato 6.0 (4.4–7.3) ND ND

Bean shoots* 5.4 (5.1–5.7) ND ND

Potato 0.5 (0.2–0.7) ND ND

Fruits and nuts

Avocado 23.6 (16.2–31.4) ND ND

Cashews 12.3 (5.4–14.0) ND ND

Pear 1.8 (1.4–2.7) ND ND

Apple 1.4 (1.2–2.2) ND ND

Oils

Canola oil 75.0 (64.6–121.4) ND ND

Margarine 69.2 (53.4–80.1) 6.41 (3.9–8.1) 3.5 (0.0–37.8)

Olive oil 43.6 (38.6–45.1) ND ND

Butter 5.10 (3.5–5.6) 24.69

(30.9–30.4)

ND

Animal products

Egg 3.34 (1.9–4.4) 32.61

(22.5–37.9)

ND

Ham ND 28.78

(22.1–45.7)

ND

Chicken 0.3 (0.2–0.6) 26.4 (18.5–31.8) ND

Salami 0.3 (0.0–0.9) 18.18

(16.0–42.0)

ND

Pork ND 15.9 (8.5–19.1) ND

Beef 0.6 (0.4–1.6) 15.6 (5.9–21.6) ND

Beef mince 1.2 (0.5–1.8) 13.7 (12.2–17.8) ND

Bacon ND 12.72 (9.5–13.0) ND

Lamb 0.4 (0.3–0.5) 11.6 (7.8–14.9) ND

Sausage (beef) 0.3 (0.2–0.7) 3.0 (2.1–9.7) ND

Barramundi 0.2 (0.0–0.4) 2.16 (1.5–2.7) ND

Tinned salmon 0.4 (0.3–0.7) 2.0 (1.4–4.4) ND

(Continued)

TABLE 2 | Continued

Food item Phylloquinone

(µg/100g)

MK4

(µg/100g)

MK7

(µg/100g)

Tinned tuna ND 1.4 (1.1–2.0) ND

Kangaroo* 0.17 (0.13–0.21) 1.1 (1.0–1.2) ND

Veal* 0.1 (0.1–0.2) 1.0 (0.9–1.1) ND

Snapper# ND 0.8 (0.7–1.1) ND

Dairy

Thickened cream ND 20.1 (18.2–29.8) 0.9 (0.4–3.1)

Sour cream 3.0 (2.6–4.4) 12.72

(10.9–16.4)

ND

Brie 1.84 (1.1–2.9) 9.34 (3.7–11.3) ND

Cheddar 1.1 (0.8–1.2) 5.5 (4.6–5.9) ND

Parmesan 0.7 (0.4–1.0) 5.4 (3.3–8.0) ND

Cream cheese 1.3 (0.7–1.9) 5.0 (3.4–10.8) ND

Low fat cheddar 0.7 (0.5–0.9) 4.1 (3.4–4.7) ND

Ice cream 2.3 (0.0–5.3) 4.07 (1.8–6.7) ND

Greek yogurt 0.6 (0.0–1.2) 3.5 (0.0–5.1) ND

Full fat milk 1.3 (1.1–2.7) 1.21 (1.0–1.8) ND

Yogurt 0.3 (0.2–0.5) 1.0 (0.5–3.0) ND

Cottage cheese 0.4 (0.3–0.5) 0.97 (0.6–1.1) ND

Reduced fat milk 0.21 (0.0–0.3) ND ND

Skim milk ND ND ND

Fermented foods

Sauerkraut* 7.0 (3.2–10.7) ND ND

Natto* 6.2 (6.0–6.4) ND 81.6 (68.8–94.5)

Yeast extract*

spread (vegemite)

2.34 (1.9–2.8) (1.4–8.6) ND

*Indicates mean value; ND, not detected. Three separate samples were analyzed for

all food items apart from those indicated by # or *, where two or a single food item

was analyzed, respectively. Each sample of food was also assessed in duplicate. Where

only one food sample was analyzed (in duplicate), the mean and range has been

presented instead.

and kale (median 128.5 µg/100 g) (Figure 1). Phylloquinone was
of lower abundance (<25 µg/100 g) in fruit. MK4 and MK7 were
not detected in any non-fermented vegetable or fruit. Japanese
fermented soybeans (Natto), contained the highest content of
MK7 (mean 81.6 µg/100 g).

Vegetable oils contained moderate amounts of PK.
Noteworthy, margarine contained moderate amounts of
PK, MK4 and in some samples MK7. Butter contained smaller
amounts of PK (5.1 µg/100 g), but a high abundance of MK4
(24.7 µg/100 g).

The majority of animal products, with exception of reduced
fat and skim milk, contained MK4 (Figure 2). The highest
MK4 content was in chicken eggs (32.61 µg/100 g) and meat
products such as ham (28.8 µg/100 g) and chicken (26.4
µg/100 g). MK4 content was low in fish products (<5.0µg/100 g)
and kangaroo meat (1.1 µg/100 g). The PK content of all
animal products was minimal (<6.0 µg/100 g). Finally, only
a small amount of MK7 was detected in thickened cream
(0.9 µg/100 g).
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FIGURE 1 | Median phylloquinone content of individual vegetables, vegetable oils, and fruits from highest to lowest.

DISCUSSION

For the first time, we present an Australian food composition
database for Vitamin K. Specifically, we present the PK, MK4
and MK7 content of 60 commonly consumed commercially
available foods. Food items analyzed comprised a wide range
of food groups known to provide the majority of dietary
Vitamin K1 and K2, including vegetables, oils, meat, and
dairy. We were able to accomplish this by adopting an
LCMS/MS method to assess the Vitamin K content of
these food items. Findings of this work may help with the
revaluation of Vitamin K intake guidelines in Australia where
an adequate intake of 60 and 70 µg/day for men and
women, respectively, is proposed (23), which are substantially
lower than the USA (120 µg/day for men, 90 µg/day for
women) (24).

Similar to previous work, vegetables were found to be
a major source of PK. We report that specific vegetables
including spinach and kale as the richest sources of PK (263,
129 µg/100 g, respectively). Noteworthy, the PK content of
these vegetables differed substantially compared to previous
work. For example, Schurgers and Vermeer report that PK in
spinach and kale to be 387 and 817 µg/100 g. Alternatively,
the USDA report these measurements to be 483 and 390
µg/100 g, respectively. Compared to these studies, PK content
in spinach we measured varied between 33 and 45%. For kale,
the PK content was approximately 6 times lower compared to
Schurgers and Vermeer (8), and 3 times lower compared to
the USDA. Nevertheless, it has been suggested that the average
PK content in “green vegetables” to be in the range of 100–
750 µg/100 g (14). Although canola oil and margarine were
shown to contain a high-moderate amount of PK, these foods are
typically consumed in quantities less than 100 g/day. Therefore,
such foods may not be a large contributor toward overall
dietary Vitamin K intake. Collectively, these results highlight

that the importance of accounting for regional differences in PK
content of food to reduce inaccuracies when trying to estimate
PK intake for specific populations. Noteworthy, the Vitamin
K content of fruits are reported to be low (25, 26), a finding
we also observed in apples and pears in this study. Although
it would have been ideal to assess the Vitamin K content of
more fruits, due to limited resources, we selected some of the
most commonly consumed fruits previously shown to contain
Vitamin K.

Others including ourselves have now demonstrated that the
MK4 in foods also differ between regions (13). Specifically,
MK4 content of beef cuts from the USA (1.1–9.3 µg/100 g) was
substantially lower compared to Japan (15.0 ± 7.0 µg/100 g)
(9, 18). Egg yolk MK4 content was also 4 times greater in Japan
compared to the USA (64 vs. 15.5 µg/100 g, respectively). In
comparison, our measurements in whole egg and beef indicated
a MK4 content of 33 and 16 µg/100 g, respectively. Such regional
differences may be attributed to differences in food production
including the use of menadione in animal feeds (13). Hard
and soft cheese are also known to be dietary sources of MKs
(4, 13) that provide between 4 and 10 µg/100 g (13). These
findings are consistent with our results where MK4 content
of brie, cheddar and parmesan were 9, 6 and 5 µg/100 g,
respectively. Although not assessed, it is worth highlighting
that up to 15% of variability has been reported in the MK
content (MK-6 to MK-10) of semi-hard cheese varieties from
three different European countries, including France, Poland and
Denmark (4). Similar to previous work, MK7 was not detected
(or found in very small amounts) in cheese varieties (13), whilst
margarine was found to contain almost double the amount of
MK7 compared to MK4 (6 vs. 11 µg/100 g, respectively). In line
with previous work, natto was found to be a rich source of MK7
(82 µg/100 g). However, this was substantially lower compared
to the MK7 content previously measured (902–998 µg/100 g)
(9, 13, 21).
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FIGURE 2 | Median menaquinone-4 (blue) and phylloquinone (green) content

of (A) meat products and (B) dairy products. Presented from highest to lowest

menaquinone content.

In order to create food databases, a validated method of
measuring PK and MKs simultaneously, with accuracy and
high throughput, is required. This is further complicated as the
Vitamin K content in foods are typically low, in conjunction
with the added complexity of extraction from the food matrix
(27). We have previously provided an overview of the current
methods for analyzing Vitamin K compounds in food (12). An
emerging method to measure Vitamin K in foods is a HPLC-MS
method developed by Karl et al. (20), which has high versatility
and may be used to measure PK and all MKs in a variety
of forms such as food, serum and feces. A combination of
HPLC and gas chromatography-MS (GC-MS) has been used with
deuterium-labeled internal standards to accurately measure PK
in serum (28). However, there are limitations in using GC for
measuring Vitamin K, as high temperatures are needed to volatise

Vitamin K compounds (>300◦C) (29). Therefore, HPLC is the
preferred method to separate Vitamin K compounds for analysis.

Previously, reverse-phase HPLC with fluorescent detection or
HPLC–MS, with K1 or deuterated-K1 as the internal standard
have been used to determine PK and MK from food (4, 20).
Most recently, a whole range of fermented foods were assessed
for their PK and MK content using a newly developed ultra-
high performance liquid chromatography–atmospheric pressure

chemical ionization tandemmass spectrometric (UHPLC-APCI-
MS/MS) method (21). They reported a LOD and LOQ for
PK and MK4 of 1.0, 3.2 pg and 6.4, 21.2 pg, respectively.
In the present study, we used HPLC method coupled to
heated electrospray ionization tandem mass spectrometry (H-
ESI-MS/MS) to measure PK and MK in different foods with an

improved chromatographic separation and detection of Vitamin
K’s and their analogs with the LOD and LOQ for PK and
MK4 as 1 and 5 pg (0.1 and 0.5 ng/ml) and 5 and 10 pg
(0.5 and 1 ng/ml), respectively. These values are comparable
to that reported by Tarvainen et al. (21). In comparison, we
have developed an efficient LCMS/MS method with a shorter
chromatography run time for the quantification of PK and MK4
with the use of deuterated internal standards. Specifically, when
adopting a modified LCMS/MS method here (30), we recorded
faster elution of PK and MK4 retention times (1.90 and 1.53
mins), compared to previous work analyzing fermented foods
(5.52 and 4.66 mins) (21) as well as human serum and plasma
(12.20 and 10.41 mins) (19).

In conclusion, we have provided the Vitamin K (PK, MK4 and
MK7) content of commonly consumed commercially available
food products in Australia. The LCMS/MS method enabled the
quantification of PK, MK4, and MK7 in these food products with
acceptable LOD and LOQ and inter and intra-assay precision.
In conjunction with other Vitamin K food database, this data
can be used by nutritional epidemiologist seeking to quantify
dietary intake, especially in Australian cohorts, for a range of
health outcomes.
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