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Abstract: Procyanidins are an important group of bioactive molecules known for their benefits to
human health. These compounds are promising in the treatment of chronic metabolic diseases such
as cancer, diabetes, and cardiovascular disease, as they prevent cell damage related to oxidative stress.
It is necessary to study effective extraction methods for the recovery of these components. In this
review, advances in the recovery of procyanidins from agro-industrial wastes are presented, which
are obtained through ultrasound-assisted extraction, microwave-assisted extraction, supercritical
fluid extraction, pressurized fluid extraction and subcritical water extraction. Current trends focus
on the extraction of procyanidins from seeds, peels, pomaces, leaves and bark in agro-industrial
wastes, which are extracted by ultrasound. Some techniques have been coupled with environmentally
friendly techniques. There are few studies focused on the extraction and evaluation of biological
activities of procyanidins. The identification and quantification of these compounds are the result of
the study of the polyphenolic profile of plant sources. Antioxidant, antibiotic, and anti-inflammatory
activity are presented as the biological properties of greatest interest. Agro-industrial wastes can be
an economical and easily accessible source for the extraction of procyanidins.

Keywords: procyanidins; agro-industrial waste; extraction process; bioactive

1. Introduction

Tannins are a class of heterogeneous phytochemicals of high molecular weight
(500–3000 Daltons). They represent an important niche market for the food and chem-
ical industry due to their biological potential [1]. Currently, tannins represent an
important alternative in the prevention of chronic and degenerative diseases in hu-
mans [2,3]. These compounds are produced as a defense strategy of the plant against
biotic or abiotic stress factors [1]. In addition, they are associated with growth and
development, and reproduction functions in the plant [2,4,5]. Tannins are categorized
into two groups: hydrolysable and condensed tannins, according to their chemical
structure withrespect to the presence of aromatic rings, the number of carbon atoms,
and the types of bonds [2–4].

In recent years, condensed tannins, especially procyanidins, have gained importance.
These compounds are abundant in nature and are found in vegetables, fruits, legumes,
cereals, and seeds of different plant species [6]. In the literature, they are also known as
polyphenols with potent biological activities, including anti-carcinogenic, antimicrobial,
antiviral, anti-inflammatory, anti-allergic, antimutagenic, and antihyperglycemic effects;
they also help to prevent obesity and heart disease problems [7–12].

Agro-industrial wastes are a promising source of procyanidin. Currently, they are
discarded at each stage of the food chain. It is estimated that 1.3 billion tons of waste are
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discarded, mainly pulp, peel, seed, leaf, stem, bark, and others [13]. Disposal is a significant
problem in the industry due to environmental pollution and high costs of handling and
transport. To overcome these drawbacks, composting, landfilling, feed, and incineration
has been explored [14,15]. However, these wastes have bioactive compounds with potential
in pharmaceutical, chemical, and food industries, but sustainable processes at low cost [15]
are required for extraction.

Degradative and nondegradative methods have been applied to obtain procyani-
dins [16]. Procyanidins can be in a soluble or insoluble form, and aqueous solvents can
extract the first group. Procyanidins in second group, termed nonextractable, are linked
to macromolecules of the cell wall as proteins by glycosidic or ester bonds, for which
chemical enzymatic and microbiological methods have been investigated [17,18]. Soluble
and low molecular weight procyanidins can be extracted through traditional methods
such as maceration, thermal reflux, and organic solvents [19,20]. Disadvantages of these
processes include high solvent consumption, highly laborious procedures, long extraction
times, and risks to human health [21,22].

Nontraditional extraction methods for nonextractable procyanidins include microwave-
assisted extraction, ultrasound-assisted extraction, supercritical fluid extraction, and pres-
surized liquid extraction, among others. These novel extraction methods are also called
green, clean or environmentally friendly methods due to their low solvent consumption
and short extraction times, and they also present high compound selectivity and higher
compound recovery [22–24].

Procyanidins are considered to be antinutritional compounds of great diversity and
structural complexity, which has led to their limited use in the food, agricultural and
livestock sectors [25]. For this reason, new recovery processes for obtaining value-added
products from natural economic sources have been advanced.

The current survey was performed using academic search systems, including Google
Scholar, ScienceDirect, PubMed, Scopus and Web of Science. The search was restricted to
only articles in English, where a screening by titles and abstracts was carried out according
to the topics of our interest. Inclusion criteria were procyanidins, condensed tannins,
agro-industrial wastes, biological activity, and extraction methods. Exclusion criteria were
articles on only traditional extraction methods or plant material that is not considered
agro-industrial wastes.

In studies published within the years 2009 and 2020, using several keywords in-
cluding “procyanidins”, “agro-industrial wastes”, “extraction methods”, “bioactive
compounds”, “structure” and “biological activity” two central axes were found: pro-
cyanidin extraction by extraction type or polyphenolic profile by type of agro-industrial
waste and its biological potential. The first axis describes various extraction methods,
including solid phase extraction, enzyme-assisted extraction, ultrasound-assisted ex-
traction (UAE), microwave-assisted extraction (MAE), accelerated solvent extraction
(ASE), pressurized liquid extraction (PLE), hot extraction (HE), and heat reflux (HR).
The UAE method has been coupled with the enzymatic and percolation method, and the
enzymatic method has been carried out with the help of filtration processes. In addition,
comparisons are presented between the conventional methods (infusion, maceration,
percolation) and the environmentally friendly methods (UAE, MAE, ASE, HE, HR). In
this axis three subcategories are presented: effects of extraction variables, optimization
of extraction variables and biological activity of these compounds.

The second axis of major interest is the identification, quantification, and analysis
of polyphenolic compounds. Several studies mainly used words such as “identification
and quantification of polyphenols”, “investigation of the phytochemical composition”,
“characterization of the polyphenolic profile” “determination of the chemical composition”
“study of the polyphenolic composition” in their proposed objectives. Five subcategories
can be detailed in these investigations: biological activity, cytotoxic effects, nutritional
composition, method of extraction, industrial or pharmaceutical application. However,
there are few documents that have the study of procyanidins as a central objective [26–29].
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Other studies present the analysis and extraction of catechin, epicatechin, flavan-3-ols,
proanthocyanidins, flavonoids, tannins, and condensed tannins, as part of their central
objective [29–32]. From all reviewed papers, only extraction studies of procyanidins and
their monomers were included. When the information was poor, studies of condensed
tannins were accepted. All the research was on procyanidins or condensed tannins from
agro-industrial residues.

Therefore, a review concerning the extraction of procyanidins is required to promote
the valorization of agro-industrial wastes. This paper has two main directions. The first
is to identify and discuss possible renewable sources of procyanidins and their biological
potential. The second is to identify and discussed environmentally friendly extraction
strategies for these compounds obtained from agro-industrial wastes. The information
found suggests fields for further study and encourages research to continue exploring the
discovery of new chemical structures from renewable sources.

2. Polyphenols and Procyanidins: Classification and Chemical Structure

Polyphenols comprise one of the most dominant classes of antioxidant bioactive
compounds in nature, also known as phenolic compounds [33]. Usually, the phenolic
compounds are distinguished on the base of high molecular weight, presence of hydroxyl
groups and aromatic rings, number of carbon atoms, and type of bond [1]. They are
classified as flavonoids, phenolic acids, lignans, and stilbenes [34]. Among these, the
flavonoids are further divided into six subclasses: flavones, isoflavones, flavanols, fla-
vanones, anthocyanins, and proanthocyanidins [35]. The latter group can also be found
in oligomeric or polymeric form, and are soluble or insoluble in water, respectively [36].
The proanthocyanidins consists of structures built by catechin, epicatechin and its gallated
forms, which are subdivided into three groups, those consisting of (–)-epiafzelequin are
called propelargonidins; and those containing (+)-afzelechin are called prodelfinidins, and
procyanidins [3,37]. These categories are proposed according to their degree of oxidation
and substitution pattern [38].

Other authors report two main groups of polyphenols: hydrolysable and condensed
tannins. Hydrolysable tannins, or polyphenolic nonflavonoids, contain hydroxyl groups
that are esterified with gallic or ellagic acid. They have a glucose or polysaccharide molecule
in their structure [39]. Condensed tannins, also known as proanthocyanidins, are, after
lignin, one of the most abundant groups of phenolic compounds in plants [40,41]. They
are characterized by having aromatic rings with hydroxyl groups that allow interactions
with proteins and carbohydrates through hydrogen bridges. These interactions dependent
of bond types (interflavanics), molar mass, galloyl groups and modification of the phenyl
hydroxyl groups [40,42]. Because of this, different conformations can be formed in the
procyanidin structure, resulting in highly complex molecules with different functional
characteristics [3,4,43].

Procyanidins are derived from the group of proanthocyanidins, being the most promi-
nent of this group in plants [44]. They are considered heterogenous compounds due to their
diverse chemical structure [45]. These molecules contain flavan-3-ol monomers as basic
units in their structure, which are composed exclusively of (+) catechin and (–) epicatechin.
(Epi)catechin monomers may be biosynthetic precursors of procyanidins [46–49]. The type
of monomer formed depends on the type of residue present in the structure, such as resorci-
nol and phloroglucinol, and are present in ring A, with catechol or pyrogallol in-ring B [5].
These compounds can be classified according to chemical structure, hydroxylation pattern
and stereochemistry, into oligomers and polymers that can be grouped in three groups by
their degree of polymerization (DP), i.e., monomers with DP equal to 1, oligomers with DPs
between 2 and 10 and the polymers with DPs higher than 10 [50]. Thus, according to the DP
there are monomers, dimers, trimers, and tetramers of procyanidins, corresponding to 1, 2,
3 and 4 base units, respectively [3,42,44]. Among the dimeric and trimeric procyanidins,
A1, B1, B2, B3, B4, B8, C1 and T2 have been identified, the last two belonging to the group
of trimeric procyanidins [40].
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Procyanidins possess interflavan bonds in the asymmetric carbons C2 and C3, C4-C8
and C4-C6 [49]. According to the nature of the bond, they can be further classified into type
A and B procyanidins. A-type procyanidins contain a double interflavanoid linkage C-C
(C4-C8/C6) and an additional ether bond (C2–O–C7 or C2–O–C5); these procyanidins may
result from additional oxidation reactions of B-type procyanidin dimers [36,43,51,52]. B-type
procyanidins contain interflavonic bonds that are covalently linked in carbon C-4–C-8 or
C-4–C-6, where the latter are more prevalent than A-type procyanidins. Figures 1 and 2
shows examples of dimeric procyanidins of type A and B, respectively.

Figure 1. Structure of A1-type dimer procyanidins linked with double C4→ C8 and C2-O-C7 linkage.

Figure 2. Structure of B1-type dimer procyanidin linked with a single C4→ C8.

3. Agro-Industrial Wastes and Procyanidins
3.1. Generation of Agro-Industrial Wastes

The idea of zero-waste has been proposed in production chains, and various investi-
gations have indicated the conversion of these wastes to value-added by-products such
as antioxidants, prebiotic ingredients, antimicrobial agents, enzymes, proteins, colorants,
bioplastics, and biofuels [45]. The food and nonfood processing industry generates many
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agro-industrial wastes, including agricultural vegetal and forestry wood, estimated at
55 million tons in 2016 for the European Union [53]. In developed countries, waste is
calculated at approximately 0.5 million tons of fruits and vegetables generated in the food
industry and establishments serving and distributing. Moreover, fruit and vegetable waste
represents 60% of the waste generated annually worldwide [54]. These residues have a
wide range of polyphenolic compounds with biological activities [55]. Knowledge of the
availability and quantity of these vegetal materials is indispensable for the development
and research of reuse strategies. However, accurate data on all waste generated worldwide
in each production process remains to be explored [56].

Several studies have been conducted to extract and recover bioactive compounds from
agro-industrial wastes which can generate value-added products in different production
chains while preserving environmental balance. The agro-industrial wastes commonly
indicated in the literature correspond to the production chains of coffee, cocoa, wood,
processed foods, and fruit (grapes, apples, limes, cranberries, lychee, avocado, noni, pineap-
ple) [57,58]. This last category covers considerable amounts of residues due to the wide
range of food products demanded by the market through the processing of fruit crops. It
is estimated that more than 50% of the mass of the fruit is used in obtaining beverages,
juices, concentrates, jams, sauces, and minimally processed products, with the remaining
percentage corresponds to agro-industrial waste [59]. One of the most important crops
is grapes, with an annual production of 74.3 million metric tons, where it is estimated
that between 15% and 20% is generated as waste. In the case of blueberries, it has been
considered that 96% of mass is used for manufacturing in the industry, in sour cherry about
85% used for the production of juices jams, fruit juices and frozen fruit [59]. From these
processes peels and seeds are discarded as the main by-products, which are not edible but
are rich sources of bioactive molecules [60].

Other types of waste are from fermentation processes in the production of cocoa
and coffee. In 2017, the international cocoa organization reported the production of
600 tons of cocoa shell [59]. The wastes generated during forestry activities, such
as skins, shells, husks, leaves, flowers and stems, contain bioactive compounds [45].
Commonly they have been used in organic fertilization, composting, energy generation,
incineration, animal feed and landfilling [14]. The latest studies on obtaining bioactive
compounds have been directed to the compositional and nutritional analysis of new
sources of isolation from Receptaculum nelumbinis, Acer truncatum (leaves, stems and
bark), Euterpe oleracea (seeds), Zanthoxylom bungeanum (pericarps), Hawthorn crataegus
(Flowers, leaves), Coniza banariensis (leaves), Vulgaris monocarpa (leaves and roots),
Rhodiola rosea (rhizome), Prunus spinosa (flowers), Elsholtzia ciliata, Fagopyrum tataricum
(flowers leaves, stalk and roots), among others.

The search for natural sources of antioxidants and other biological properties for the
benefit of human health has been a priority. One of the most important benefits reported in
the literature is antiproliferative activity against cancer cells and the ability to scavenge
free radicals [61–63]. However, in the literature, information on procyanidins from agro-
industrial wastes, their distribution, yields in extraction, and biological activity need to be
summarized and specified.

3.2. Ocurrence of Procyanidins in Agro-Industrial Wastes and their Biological Potential

Procyanidins and their monomers have been identified in several agro-industrial
wastes from the food processing industries such as cocoa, berries, grapes, apples, litchi,
blueberries, plums, avocado, nuts, tea leaves, coffee, cinnamon, peanut, leguminous
plants, and several other wastes, as illustrated in Table 1 [38,44,64–70]. Among the main
parts of the plant that are considered agro-industrial wastes and do not conflict with
human food include leaves, flowers, stems, roots, bark, skin, pomace, pulp, and seed.
These compounds have been found in a high percentage in seeds and berry skins. In
Saskatoon berry peel, 53% of the total polyphenols are polymeric procyanidins. Moreover,
the highest antioxidant activity was found in the peel, which was 16 and 5 times higher
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than in seeds and pulp, respectively [71]. Studies have focused on the characterization
and quantification of bioactive components in baobab, a tree of African origin, concerning
obtaining procyanidins; yields corresponding to 100.1 mg/100 g were reported [72]. Similar
studies were carried out by Tembo et al. [73], who demonstrated that the antioxidant activity
was correlated with the total phenolic content, procyanidin B2, and vitamin C.

Research indicated the presence of procyanidins in the pericarp of lychee, a residue
that represents 15% of total fresh fruit weight. Miranda-Hernández et al. [74] reported
percentages between 65–70% using methanol and acetone (70% v/v) as the solvent for ex-
traction. Wong-Paz et al. [75] extracted procyanidins from coffee pulp with a concentration
of 98.6% in extractions with acetone (70% v/v). Luo et al. [76] developed a method for
obtaining high purity procyanidins (90%) in grape skins and seeds, achieving maximum
yields of 4.1 and 13.6 mg, respectively. Other authors reported a yield of 3.94 mg of pro-
cyanidin (catechin equivalents)/gram of dried sea buckthorn seed [77]. The procyanidin
content may vary according to the origin and variety of the plant material. For example, in
coffee hulls, the highest procyanidin content was found in samples of the Robusta variety
from India and Arabica from Mexico with 534 and 260 µg/g, respectively [78]. Authors
suggest that the differences found may be due to factors such as geographic location,
average temperature and irradiation level [79].

On the other hand, another topic of interest is the correlation of biological activity
with the structural and chemical characteristics of procyanidins. In previous studies, the
correlation of molecular weight and antioxidant activity of phenolic compounds from
Choerospondias axillaris peel residues was determined by cellular and chemical tests,
with a decrease in this biological activity occurring with an increase of molecular weight
in cell assays with proanthocyanidins, while for spectrophotometric chemical assays,
an increase in this variable was observed [80]. Other works report different biological
activities of extracts from Tectaria coadunata rhizomes obtained with methanol and
ethyl acetate, finding inhibitory enzyme activity (amylase and tyrosinase) associated
with degenerative diseases and anticancer activity in ethyl acetate fractions. Anti-
invasive and anti-proliferative activity in pancreatic cancer cell lines was also found.
The highest procyanidin yields were found in the polymeric (85.46 mg/g) and trimeric
(57.79 mg/g) fractions corresponding to the extractions performed with methanol
and ethyl acetate, respectively [81]. A recent finding in laurel wood extracts demon-
strated that B-type dimer and A type trimer procyanidins exhibited antimicrobial and
antibiofilm activity [82]. Procyanidin of Annona crassiflora fruit peel show antiglyca-
tion capacities [83]. From Vaccinium meridionale Swartz pomace was obtained A-type
procyanidin, demonstrating its effectiveness in the control of pathogenic bacteria [84].

Table 1. Sources of procyanidins from agro-industrial wastes.

Plant Waste Type Compound Type Concentration Reference

Artocarpus heterophyllus Lam

Peel

PCB - [85]

Choerospondias axillaris PCB2 390 mg/g extract [86]

Musa AAA C, EC,
PCs: B1, B2 and B4 - [87]

Passiflora ligularis and P. edulis,
P. mollissima PCs: dimers and trimers - [88]

Litchi chinensis
Pericarp

PCs: A and B - [74]

Litchi chinensis Sonn PCO - [76]

Vitis vinifera L. Pomace PCs: B1, B2 4.8–4.3 ug/kg extract [89]
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Table 1. Cont.

Plant. Waste Type Compound Type Concentration Reference

Apocynum venetum

Leaf

PCB2 13.4 ug/mL [90]

Persea americana PCB - [91]

Combretum mucronatum EC, PCs: B2, B5, C1, D1 - [92]

Moringa oleifera PCB7 (dimer) - [93]

Litchi chinensis EC, PCA2 14.8–44.5 and
44.8–69.6 mg/g extract [94]

Psidium guajava L. PCs - [95]

Psidium guajava L. PCs - [95]

Vaccinium myrtillus L.
Leaf and stem

EC and PCB2, respectively - [96]

Vaccinium vitis-idaea L. C, PCs: A, B, dimers, trimers - [85]

Crataegus spp Leaf and flower PCO - [97]

Juglans regia

Flower

PCA [98]

Crataegus monogyna PCO - [97]

Tilia sp PCs - [99]

Trifolium pratense PCs - [99]

Vitis vinifera L.

Seed

PCB2 0.41–1.6 mg/g
extract [100]

Vitis vinifera L. PCs: B1, B3, B6, B4, B2, B7, B5 - [101]

Vitis vinifera L PCs - [99]

Euterpe oleracea C, EC, PCB1 - [95]

Amelanchier alnifolia Nutt Seed and peel PCP 1189.76–2631.73 mg/100 g
extract [71]

Cinnamomum cassia

Bark

PCs: A, B - [18]

Aronia melanocarpa PCs: B2, B5, C1 - [102]

Fagus sylvatica L. C, EC, PCs: B, C. - [103]

Calliandra haematocephala CT 841 mg/g extract [104]

Laurus nobilis L. Wood PCB2 - [82]

Saraca asoca Stem and root PCB2 - [105]

Coffea Arabica Pulp PCs: B2, A (trimer), C1,
tetramer, pentamer, - [75]

Theobroma cacao L. Hulls PCs: B1, B2
0.55–0.83 and
0.23–0.9 mg/g
extract

[106]

Elsholtzia ciliata Aerial parts PCB - [107]

Pyrus communis Ripe and
over-ripe pears PCs (low DP) - [108]

Other studies suggest that the biological activities of these compounds depend on
their structure, degree of polymerization, and their degree of galloylation [109]. The
degree of polymerization determines their bioavailability and their ability to be adsorbed
into the blood. Some studies indicate that oligomeric procyanidins are more absorbable
than polymeric procyanidins [110–112]. Antioxidant activity has been reported to depend
on the presence of the catechol group of some procyanidins, which acts as a donor of
hydrogen atoms to free radicals. Other authors indicate that such activity depends directly
on the number of hydroxyl groups present in the structure, which increases with the
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polymerization of the molecule [113,114]. In a previous study, the antidiabetic activity of
oligomeric procyanidins types A and B from litchi pericarp was evaluated in tests with
mice, finding the best results in type A procyanidin [115]. Oligomeric procyanidins are
more effective in capturing free radicals and superoxide anions, as well as in weight control
and blood glucose regulation in tests with mice [12,116]. In polymeric procyanidins, it has
been verified that a protective effect against oxidative damage in hepatic cells occurred, as
well as a reduction of cholesterol and fatty acid in diabetic mice [117,118]. Other studies
indicated that procyanidin C1 from grape seed could prevent neurodegenerative diseases,
and its antioxidant activity was verified [119].

Procyanidins are of economic interest due to their antioxidant [120], anti-inflammatory [121],
antidiabetic [122], anti-aging, neuroprotective, cardioprotective [123], antiviral, and antimicro-
bial effects [124,125]. These biological properties allow the generation of value-added products
for the pharmaceutical, food and cosmetic industries [109]. Table 2 summarizes some rele-
vant advances in the biological activity of procyanidins from different types of agro-industrial
wastes. Early studies demonstrated that grape seeds, which are source of C1-type procyanidins,
showed a neuroprotective effect [119]. Forestry waste such as leaves, roots, and bark from
Annona muricate [126], Paullinia pinnata [127] and Albizia odoratissima [128] have an inhibitory
effect in lipid peroxidation, pathogen growth of plants and cancer cell proliferation, respectively.
Other biological activities such as anti-VIH, anti-inflammatory, antiwrinkle effects are reported
for Cinnamomum zylanicum [129], coffee pulp [130], and cocoa pods [46], respectively. Com-
mercial sources obtained from grape seed have the potential for treatment of cardiovascular
diseases and obesity control [131].

Table 2. Biological activity of procyanidins obtained from agro-industrial wastes, and possible applications.

Agro-Industrial Waste Procyanidin Type Application
Potential/Attributes

Assay
Type Biological Activity Reference

Alectryon oleifolius PCA2 Control programs of
Cyathostomin In Vitro Anthelmintic activity

in larval [132]

Cinnamomum zeylanicum
bark

PCA (commercial
compound of Indus
Biotech Private
Limited, Pune, India)

- In Vivo (animals) Anti-allergic [133]

Rhododendron formosanum
leaves

PCC4 and
cinnamtannin D1

Development of
pharmaceutical
products

In Vitro Antibacterial, and
pleiotropic effects [134]

Theobroma cacao L. pods PCs: dimer B1 and
trimer C2 Functional cosmetic In Vitro Antioxidant and

anti-wrinkles [135]

Punica granatum L. peel
C, EC, dimer A,
dimer B1, dimer B2,
dimer B3, trimer A

- In Vitro

Antioxidant,
inhibition of
α-glucosidase
activity, lipase
activity,
LDL-cholesterol
oxidation

[46]

Cinamomum Zylanicum bark PC A (trimerics and
pentamerics) - In Vitro Anti-VIH-1 [8]

Vitis vinifera seed PCB1

Cancer
chemoprevention,
antineoplastic agent,
cardiovascular
benefit

In Vitro/In Vivo
(animals)

Inhibition of
cyclooxygenase-2
and enhance
prostacyclin

[9]

Potentilla erecta L. rhizome PCB - In Vivo (animals) Antithrombotic [115]

Garcinia mangostana
pericarp

Monomers, dimers,
and PCO

-Ingredient in
chocolate processing
-Nutritional and
sensory quality

In Vitro - [136]

Paullinia pinnata L. Roots
C, EC, and PCs:
trimeric A, tetrameric
A, and PCP.

- In Vitro Anthelmintic [127]
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Table 2. Cont.

Agro-Industrial Waste Procyanidin Type Application
Potential/Attributes

Assay
Type Biological Activity Reference

Theobroma cacao L. powder C, and PCB2 Treatment against
cancer In Vitro

Cytotoxic effect in
ovarian cancer cell,
impact the regular
cell cycle progression
of cancer and
overcoming drug
resistance

[135]

Litchi chinensis pericarp PCO: A-type - In Vitro Hypoglycemic [137]

Acacia mearnsii leaves PC: dimer B - In Vitro Anti-inflammatory
and antioxidant [138]

Larix decidua bark
C, EC, and PCs: B2,
trimer B, and
tetramer B

- In Vitro Antioxidant [139]

Clausena lansium pericarp C, EC PC with DP up
to the 20-mers. Chelating ability In Vitro

Inhibition on the
melanogenic activity
in B16
anti-tyrosinase

[140]

Litchi chinensis pericarp PCA2 Therapy of liver
damage

In Vitro/In Vivo
(animals) Antioxidant [141]

Annona crassiflora peel C, EC and PC B2 Treatment of diabetes In Vitro

Antioxidant,
hepatoprotective
effect, influence
glutathione reductase
activity and
glutathione level.

[142]

Vitis vinifera seed

C, EC, and PCs:
dimer B1, dimer B2,
dimer B5, dimer B2
gallate, trimer C1,
trimer T2, tetramer
A2, unknown dimers,
pentamers, and
hexamers

- In Vitro Antimicrobial [143]

Triplaris gardneriana seeds

C, PCs: dimer B,
digalloylated PC
PCB,
monogalloylated
procyanidin dimer B

Rapid
biotransformation In Vitro Antioxidant [144]

Schinus terebinthifolia Stems PCB
Treatment of Herpes
simplex virus type
infections

In Vitro/In Vivo
(animals) Antiviral [145]

Larix gmelini bark PCs
Healthcare, and
cosmetic
products

In Vitro

Antimicrobial, affects
membrane protein
synthesis of
Staphylococcus aureus

[146]

Paullinia cupana PCs
Prevention and
control of Helicobacter
pylori

In Vitro
Antioxidant and
gastroprotective
activity

[144]

Tamarindus indica seed coat Mixture of
procyanidins

Treatment
therapeutics In Vitro Antioxidant [145]

Vitis vinifera pomace
PCs: dimer, trimer C1
and trimer
(possible C2)

- In Vitro/In Vivo
(animals)

Antioxidant,
enhancement of
catalase and
glutathione
peroxidase activity in
colon.
Enhancement of
superoxide
dismutase activity in
duodenum

[147]

Juice from Unripe
Vitis vinifera

C, EC and
PCs: B1 and B2. - In Vitro Antioxidant and

Anti-browning [148]
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Table 2. Cont.

Agro-Industrial Waste Procyanidin Type Application
Potential/Attributes

Assay
Type Biological Activity Reference

Annona muricata leaves EC, and PCs: B2 and
C1

Treatments in
diabetes mellitus In Vitro

Antioxidant,
inhibitory activities
against advanced
glycation
end-product
formation, pancreatic
lipase, α-amylase,
α-glucosidase,
and lipid
peroxidation

[129]

Vitis vinifera seed PCB2
3,3”-di-O-gallate

Control malignant
cells in prostate In Vitro Inhibition MAP

kinase phosphatase [149]

Commercial (Vitis vinifera
seed) PCs dimers

Potential in
cardiovascular and
obesity treatment

In Vivo (animals)
Reduces adiposity
and oxidative stress
in the heart

[150]

Coffea arabica L. pulp PCs: dimers and
trimers In Vitro

Anti-inflammatory
and inhibition
interleukin-8 release
in human gastric
epithelial cells

[151]

Trichilia catigua bark

PCB2–8-C-
rhamnoside, PCB2
(epi)-catechin—(epi)-
catechin

Potential as
antifatigue drug In Vivo (animals) Antioxidant,

anticholinesterase, [149]

Calluna vulgaris L. flowers Proanthocyanidins Food ingredient In Vitro Antioxidant and
antimicrobial [152]

Persea americana peel and
seed

C, EC, and PCs: B1
and B2, - In Vitro Antioxidant and

anti-inflammatory [153]

Persimmon vinegar pulp PCA2 - In Vitro Hepato-protective
effects [154]

Stem bark of Detarium
microcarpum, Cassia siamea,
and Guiera senegalensis

PCB3 Anti-breast cancer
agents In Vitro

Antioxidant, and
antiproliferative
effects on cancer cells

[155]

Leaves and stem bark of
Ficus curtipes

C, EC and
PCs: B2 and C - In Vitro

Anti-inflammatory
and modulation of
nitric oxide synthase
enzyme expression

[156]

Fraxinus angustifolia C and PCB1
Regulation of
signaling pathways
homeostasis

In Vitro Antioxidant and
anti-inflammatory [157]

Nelumbo nucifera seed
epicarp

PC with of
epicatechin units
linked by B-type
interflavan bonds

- In Vitro Antioxidant and
anti-α-amylase [158]

Commercial standard of
Sigma-Aldrich, Merck
KGaA

PCB2 -

Inhibition of
angiogenesis,
fibrogenesis
processes, Inhibition
of proliferation and
induction apoptosis
of human hepatic
stellate cell

[156]

Vitis vinifera marc C, EC, and PC trimer Thermal stability In Vitro Antioxidant [159]

Commercial of
Extrasynthese (Genay,
France)

PC s: A2 and B2, and
cinnamtannin B-1

Prevention of urinary
tract infections In Vitro Antiadhesive of

uropathogens [160]

Vitis vinifera seed and pine
bark

C, EC, PCs: dimers 1,
2, B1, B2, and B5,
trimers 1, 2, 3 and C1,
tetramer 1, pentamer
1 and 2, hexamer
1and 2, heptamer 1
and 2, octamer,
decamer, dimer
gallate and dimer B2
gallate

- In Vivo (animals) Enhances cytokine
production [161]
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Table 2. Cont.

Agro-Industrial Waste Procyanidin Type Application
Potential/Attributes

Assay
Type Biological Activity Reference

Melastoma malabathricum
leaves PCA - In Vivo (animals)

Cytotoxic effect
against colon cancer
cells

[162]

Albezia odoratissima bark PCC1 - In Vitro Anticancer in breast [131]

Feijoa sellowiana leaves

C, PCs: dimer B1, B2
and B3, galloyled
procyanidin dimer,
digalloylled PC
dimer

- In Vitro

Inhibition of
acetylcholinesterase
and antilipase
activity

[163]

Residual cake of
Pistacia vera L.

C, EC, and PCs: B1,
B2, and galloylated
dimer

- In Vitro Antioxidant [128]

Vitis vinifera seed PCC1
Application for
neurological
disorders

In Vitro Antioxidant,
neuroprotective [164]

Skin, seed, skin, and bunch
stem of Vitis vinifera

PC tetramer (crown
PC), PCO, PCP - In Vitro Inhibition of

amyloid-β peptide [162]

4. Extraction of Procyanidins from Agro-Industrial Wastes

Extraction methods have been used to recover bioactive phytochemicals from nat-
ural sources, which are of interest in human health. These methods were previously
required to separate, purify and analyze bioactive compounds of plants [163] and are
referred to in the literature as conventional or traditional or classical methods, among
them being maceration (M), percolation (P) and successive solvent extraction (SSE). These
methods have been widely used in the extraction of procyanidins. Some authors report
procyanidin extraction from different food production chains, for example, raw cacao
and blueberry [164,165]. However, researchers have proposed alternative methods that
allow higher compound yields, process efficiency, and lower solvent use. Efficiency is
an important factor in choosing the extraction method, being related to the recovery of
compounds and biological stability of compounds, time, and energy-saving during the
extraction process. Efficiency depends on the conditions of extraction, which could affect
the structure of compounds as location and distribution of hydroxyl groups, terminal and
extension units, interflavanic bonds, and interactions with other compounds [166,167].
This review focuses on eco-friendly recovery methods of proanthocyanidins, procyanidins,
and monomeric and polymeric forms through UAE, MAE, supercritical fluid extraction
(SFE), PLE and subcritical water extraction (SWE) (Table 3).
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Table 3. Research on extraction of procyanidins from agro-industrial wastes, and future applications.

Plant/Waste Technique Conditions * Type de Procyanidin or Yield Type of Application Reference

Vitis vinífera/skin SSE and UAE
5 g/100 mL

Methanol 60%
Solution acidified water pH 1.5

- Conservation of food [168]

Vaccinium
macrocarpon/pomace SSE

-Hexane 40 mL, centrifugation 10 min
at 10,864× g.

-Ethyl acetate (40 mL), and
centrifugation for 10 min at 10,864× g.
-Neutralization and mixing with 20 mL

of acetone/water/acetic acid,
(70:29.5:0.5 v/v/v), homogenization for

1 min.
-All treatments at 25, 40 and 60 ◦C.

519.3 mg of PC/100 g DM
at 60 ◦C.

Nutraceutical, estimation method
of PC [111]

Malus domestica/pomace Enzymatic maceration Pectinex (20 mL/100 kg sample),
stirring 1 h at 20 ◦C.

-PCs: B1 (18.7 mg/mL), B2
(80.2 mg/mL), and C1 (18.7%).

-PCP: 57 and 24%
corresponding to total

polyphenols in pomace and
fresh juices, respectively.

Production of beverages and
drinks [169]

Betula pendula/bark SSE Methanol (8%)-Water. PC (dimer) Isolated procyanidin glycosides
(rarely found in nature) [170]

Vitis vinífera (Wine
waste)/seed, skin, pomace SSE Acetone (50%)-water, ethanol

(50%)-water, Methanol (50%)-water. PCs: A and B Antioxidant activity [171]
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Table 3. Cont.

Plant/Waste Technique Conditions * Type de Procyanidin or Yield Type of Application Reference

Pinus pinaster/bark High pressure solvent
(HPE)

-CO2, CO2-ethanol (90:10), 3 times, 323
and 303 ◦C, 20.3 and 25.1 MPa, 370 and
360 min; 7.6, 13.2, and 19.1 kg/s × 105,

solvent-to-solid mass ratio 28:1, 2:1,
20:1.

-CO2-ethanol (90:10) 3 times, 303 ◦C,
25.1 MPa, 360 min; 7.6, 13.2, and

19.1 kg/s × 105, solvent-to-solid mass
ratio 28:1, 2:1, 20:1.

-CO2-ethanol (70:30), CO2-ethanol
(50:50), CO2-ethanol (30:70) and

CO2-ethanol (10:90); 303 ◦C, 25.1 MPa,
210 min; 7.6 kg/s × 105,

solvent-to-solid mass ratio 28:1, 2:1,
20:1.

19.8 % (mg CME **/mg
extract × 100 dried base).

The best result was achieved
with CO2-ethanol (70:30) with

Flow rate of 7.6 kg/s
treatments.

Improved extraction
methodologies [172]

Malus domestica/pomace * 1. M, 2. PLE, 3. UAE, 4.
MAE

1. Solid-solvent ratio (ethanol)
1 g/1 mL, stirred 1 h, room

temperature.
2. Ethanol, 3 min 40 ◦C, 100 bar,

3 cycles.
3. Relation solute—solvent (ethanol)

3 g/60 mL, 30 min, room temperature.
4. Solid-solvent ratio (ethanol ethyl

acetate or water/methanol) 1 g/20 mL,
3 s, 3 cycles, 1000 W.

PC (dimer), best results: MAE
(ethanol or ethyl acetate). Antioxidant activity [173]

Larix gmelinii/bark, xilem UAE Bath power 250 W, Solute-solvent ratio
5 g/100 mL ethanol (50%), 0.5 h.

601.94 mg PC/g bark (North
orientation) Use of wood in industrial process. [151]

Coffea arabica L./pulp * 1. UAE, 2. M

1. Ethanol-water (70:30), water-ethanol
(30:70), 100% milliQwarer, Power

100 W, 30 min, room temperature in
the dark.

2. Ethanol-water (70:30), water-ethanol
(30:70), 100% milliQwarer, 16 h, room

temperature in the dark.

PC A (dimers and trimers)
obtained with UAE. Food supplements [174]
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Table 3. Cont.

Plant/Waste Technique Conditions * Type de Procyanidin or Yield Type of Application Reference

Theobroma cacao/bean shell PLE Solvent-to-solid ratio 1:3, 60, 70 and
90 ◦C, 5–50 min, 10.35 Mpa.

Yield: 0.73 mg PC B2/g dried
cocoa Shell (60 ◦C, 50 min) Antioxidant activity [73]

Acer truncatum/seed coat SSE

Solution with 20 g of sample, water,
ethanol (100%), aqueous acetone (70%),
acetone (100%), aqueous ethanol (70%),

and aqueous ethanol (40%), 30 min,
centrifugation 6000 rpm by 10 min.

PC (dimer, trimer, tetramer,
pentamer) New phytochemical [75]

Vitis vinífera (Wine
waste)/seed, stem skin,

pomace
MAE

Power 98 W, 24 ◦C, Ethanol (10 mL),
extraction time 5-15 min, vegetal

sample 1–2 g.
PC (trimer) Formulations of food, chemical,

pharmaceutical products [157,175]

Theobroma cacao/bean shell * 1. UAE, 2. Hydrodynamic
cavitation (HC)

1. -Hexane, 40 ◦C, 15 min
-Solvent-to-solid ratio 70:30

(ethanol/Water).
-Solvent-to-solid ratio 30:49:21

(Hexane/ethanol/water).
2. Ethanol/Water 3000 rpm, 11 min,
cycles 47.1, cycle times 5 s, residence
time 5 s, adsorbed energy 6.82 KW.

PC for HC Process design [175]

Malus domestica/parenquima,
skim SSE

Hexane, methanol/acetic acid (99:1
v/v), Acetone/water/acetic acid

(60:39:1 v/v/v).
PC with a DP 9 Formulations of juices [176]

Vitis vinífera/seed SSE Ethanol/water (1:1, v/v),
stirring 30 min in the dark. PCB (dimer and tetramer) Nutraceutical products [27]

Theobroma cacao L./bean
shell * 1. MAE, 2. SSE

1. Power 500 W, heating rate
20 ◦C/min, 400 rpm, initial

solid-solvent ratio 6 g/250 mL water,
solid/liquid ratio 0.030, 0.045,

0.060 g/mL, extraction time 5, 15,
25 min and at 70, 85, 100 ◦C.

2. Solid/liquid ratio 0.045 g/mL,
100 ◦C, 90 min, centrifugation

5300 rpm, 25 min.

Polyphenols 35.9 mg GAE/g. Food additives, food packaging [177]



Foods 2021, 10, 3152 15 of 33

Table 3. Cont.

Plant/Waste Technique Conditions * Type de Procyanidin or Yield Type of Application Reference

Malus domestica/pomace SSE

-Diethyl ether/ethyl acetate (DE/AE)
(1:1, v/v), Acid hydrolysis (pH 2).

-DE/AE (1:1, v/v), base hydrolysis
(pH 2).

-Methanol (80%)-Water, 1% acid formic,
exposition 2 times.

PC B2 Functional products [178]

Vaccinium/pomace * 1. PLE—Ethanol
2. PLE—Water

1. 83 ◦C, 15 min, ◦C, 3 cycles.
2. 130 ◦C, 10 min, ◦C, 3 cycles.

198.5 and 532.2 mg of
proanthocyanidins/g.

Recovery of dimer PCB2
(578.5 Daltons)

Processing residue at industrial
level. [176]

* The numbers correspond to the conditions in each type of extraction described in the table. ** CME: (+)-catechin monohydrated equivalents.
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4.1. Ulltrasound-Assisted Extraction

Ultrasound-assisted extraction (UAE) is a simple method with short duration and has
little effect on the environment. It is considered an emerging technology and better than
classical methods due to rapid mass production [177]. This type of extraction has several
applications in various industries (agro-industrial wastes) to obtain polyphenols such as
procyanidins [107]. For the extraction of procyanidins from by-products of wine processing,
UAE has been used to study its effect on the compounds’ structure and biological activity.

Extraction obtaining bioactive compounds by the ultrasound method from agro-
industrial residues has been widely reported [164,179]. However, few reports of pro-
cyanidin extraction have been reported in the last five years, and most studies have
focused on the evaluation of different extraction conditions on the yields of bioactive
compounds [164,180–186]. The mechanism of extraction occurs by mechanical vibration
through waves that penetrate a liquid system and form gas bubbles [187]. These bubbles
are affected by the acoustic cavitation phenomenon, which leads to their collapse. Thus,
there is an increase in pressure and temperature in the medium that creates an ultrasound
micro-jet in the solution [188].

Grape seeds are rich sources of oligomeric procyanidins, rather than polymeric pro-
cyanidins, which represents an advantage for different industries. The ultrasound tech-
nique was used to study the depolymerization of procyanidins, finding considerable
increases in the content of polymeric procyanidins, oligomeric and catechin monomers,
corresponding to 41%, 35% and 49%, respectively [189].

Researchers also used this technique by varying the frequency of the test (45 and
20 kHz), obtaining higher polymeric procyanidin concentrations at 20 kHz. The breakdown
of procyanidins was expected in tests with the frequency change. However, at 45 kHz
the concentration of procyanidins decreased, due to obstructions in the mass transfer that
occurred during the bubble formation. The improved antioxidant activity in treatments
with ultrasound was associated with the hydroxyl groups, which were identified by Fourier
transform infrared spectroscopy (FTIR) analysis, and could be generated by the rupture of
links between procyanidins with polysaccharides or proteins [189].

A modification to the UAE is called the high-intensity ultrasound (HIUS) technique
that is characterized by working at high intensity and low-frequency conditions. HIUS
is attractive because of production costs, simplicity, reduced extraction times and small
environment effect. Applying ultrasound of high intensity on Araticum peel extracts
increased antioxidant activity of procyanidins A and B. These the results were achieved
with short extraction times (0.5–5.0 min) [190].

Recently, combination with cavitation methods using negative pressure has been
proposed to increase the yields of procyanidins, by increasing ultrasonic power between
0.2–0.35 W/cm2. A combination of nitrogen pressure on cavitation, collision of bubbles,
cell disruption, and transfer of compounds in the extracting medium during extraction
improved the yields of compounds, [164,191]. Other process conditions could affect the
biological activity of procyanidins, such as vegetal material concentration, type of solvent,
temperature, stirring speed, and time stirring [192,193]. Improvement of the bioavailability
of procyanidins for pharmaceutical purposes has led to the development of methods for
controlling the particle size of the compounds. To this goal, ultrasonic methods have
been combined with the precipitation of antisolvents, with successful results under the
optimal parameters of power, stirring speed, stirring of 620 W, 760 r/min, 14 min and
0.3 mg/mL, respectively, which allowed increase antioxidant activity. This may be due to
the phenomenon of collision of particles by cavitation and a decrease in the agglomeration
of crystals [192].

Recent advances in UAE have been explored using a macroporous resin to improve
the purification and recovery of bioactive compounds, including procyanidins. The combi-
nation of these methods helps to increase extraction yield and reduce process times. The
main factors that influence the quantification of the extraction process are the structure,
polarity, and size of a bioactive molecule, type of resin, solution concentration, interac-
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tion resin-molecule, and ultrasound power [194]. A previous study confirmed that the
employed resins (HPD-500) in ultrasonic treatments, when applied at 270–540 W for
15 and 5 min, respectively, increased adsorption capacity and mass transfer of procyanidins
from baobab fruit pulp, as compared to treatments without use of ultrasound. In this study,
procyanidins B2 and C1 were identified and quantified in samples treated at high power
sonication (540 W) and short exposure time (5 min), with concentrations corresponding
to 751.34 ± 32.76 mg/100 g dry matter (DM) and 566.38 ± 10.78 mg/100 g DM, respec-
tively [193]. Limwachiranon et al. [180] reported procyanidin concentrations of 20 mg in
lotus seed extracts using mixed solvents (acetic acid, acetone, and water).

Another type of combination with the ultrasound technique is the use of enzymes.
Research has been carried out to obtain more available bioactive compounds using enzymes
in ultrasound extractions using methanol as a solvent. Martins et al. [149] studied the
biotransformation of condensed tannins through the enzymatic hydrolysis of tannase alone,
pectinase plus cellulase, or a mixture, in white, red and mixed of grape pomaces, which
were obtained from Brazilian wine production. The content of condensed tannins decreased
in the enzymatic treatments with respect to the control treatment (without enzymes) and
had variations in the different grape pomaces. The best results were obtained in red grape
pomace in a treatment with pectinase-cellulase (21.5 mg catechin equivalents (CE)/g DM).
The main polyphenolic compounds found were catechin and procyanidin B2, catechin
standing outfor all treatments, with range of values for catechin and procyanidin being
from 575–2009 and 166–1071 mg CE/g DM, respectively. The highest values of these
compounds were observed in the grape pomace network, although they were not affected
by enzymatic treatments.

In another study, isolation of procyanidins from lychee pericarp by ultra-high-pressure
(UHP) extraction was compared to UAE and extraction with ethanol (ECE), to evaluate
the polyphenolic profile and antioxidant activity of samples dried in an oven at 80 ◦C
for 36 h. Polyphenolic compounds such as procyanidins A2, procyanidin B2, epicatechin,
isoquercitrin and quercetin-3-rutinoside-7-rhamnoside were identified. The B2 procyani-
dins content was 1.13, 1.21 and 1.29 mg/g in ECE, UAE, UHP, respectively. However,
the content of the A2 procyanidin was higher, with values of 4.46, 4.68, 4.97 mg/g in the
same extraction treatments. These results were correlated with antioxidant activity tests,
where the content of total polyphenols and antioxidant activity increased when UHP was
used. Although studies have confirmed the presence of lychee procyanidins, few studies
have focuses on the extraction of these compounds. The authors state that the yields of
polyphenols could be improved with the adjustment of temperature and pressure in the
extraction processes, since compounds such as anthocyanins are sensitive to heat, and in
the case of procyanidins they can be polymerized at high temperature and pressure [195].

On the other hand, procyanidin oligomers have been extracted and purified mainly
from by-products of the wine industry such as grape seeds. Due to their availability
and cost, the extracts have been marketed in the food industry, especially the dietetic
and supplementary market. Procyanidin polymers are macromolecules generated in
these purification processes, for which extraction methods have been developed that
allow their depolymerization and reduction in molecular size as catechins or oligomers.
Structural characteristics and antioxidant activity of procyanidins and their derivatives in
methodologies with an ultrasound bath and by a probe were evaluated. The conditions of
both extraction methods were varied; the first with continuous and degas mode, and the
second with 30% and 70% of amplitude in pulsed mode. The analyzes show the presence
of 85% of polymeric procyanidins and 2.5% of monomeric and oligomeric flavan-3-ols.
Increases in the molecular masses of these compounds were also observed when using an
ultrasonic bath in continuous mode. In the MALDI-TOF analyses, type B procyanidins
were observed, and the best results of antioxidant activity were obtained in the probe assays
at an amplitude of 70% and a procyanidin concentration of 0.01%, while for the assays
carried out in the ultrasonic bath antioxidant activity was better at higher concentration of
procyanidins. The data obtained on antioxidant activity were positively affected compared
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to controls. The authors suggest that the ultrasound method may constitute an effective
strategy to modify the structure of polyphenolic compounds in grape seeds, allowing the
formation of procyanidin oligomers and polymers with antioxidant activity, that apparently
could happen by the breaking of linkages with proteins and/or polysaccharides [189].

Tannin contents were reported by Kim et al. [196] in grape skin and seed ultrasound-
assisted extractions using methanol, ethanol and acetone at different concentrations
(10%, 70% and 70%, the latter with HCl addition). The highest content of these compounds
was observed in seeds extracted with 70% acetone (acidified) at 14.72 mg/g. The identified
compounds were monomers and dimers of tannins such as catechin, epicatechin, epigallo-
catechin, procyanidin B1 and B2, procyanidin B1 being the main compound extracted for all
trials. The highest content was found in skin (1076 mg/kg) and seed (1741 mg/kg) using
extractions by acetone and methanol at 70%, respectively. The authors indicate that the
content of the type of tannin (monomer or dimer) extracted depends on the type of solvent
used. In this study, methanol was more efficient for the extraction of condensed tannins
as procyanidins (dimers), while molecules of lower molecular weight, such as catechins
(monomers), were extracted mainly with acetone and methanol, both at 70%.

There is extensive information on the extraction of polyphenolic compounds from
winemaking pomace and marc. However, few works have focused on the use of other
sources such as seedless table grape residues for the optimization of extraction parameters
such contact time and solid-to-solvent ratio in UAE and MAE using mixtures of water
and acidified ethanol. Crupi et al. [197] used water/ethanol/phosphoric acid (70:30:1)
as solvents in UAE and MAE to recover phenolic compounds of seedless table grape
residues. The main polyphenolic compounds found were procyanidin B1, procyanidin B2,
(+)-catechin, peonidin-3-O-glucoside, quercetin-3-O-rutinoside, quercetin-3-O-glucoside,
among others.

In processing of cranberry juice (Vaccinium macrocarpon), three by-products are ob-
tained skin, seed and flesh, which are called “cranberry pomace”. The use of wastes for
procyanidin extraction is an alternative to reduce the costs of blueberry juice production.
Researchers have evaluated the adsorption and desorption capacity of procyanidins by us-
ing different amberlite resins (XAD-7HP, XAD-761, XAD-16N, XAD-1180, FPX-66) coupled
to UAE, to study if this new method is suitable for the separation and concentration of these
compounds. The results showed that the adsorption and desorption capacity of procyani-
dins on the resin were higher with the resin XAD-7HP. The adsorption of procyanidins on
the resin was most marked between the times 600 and 800, with a maximum adsorption
value of 52.2 mg/g resin. XAD-7HP resin was also used to evaluate the desorption capacity
of procyanidins using different solvents (30%, 50%, 70%, 95% ethanol and 70% acetone),
where the highest procyanidin desorption value was found with 95% ethanol (>250 mg/g
resin), the lowest desorption capacity was found with 30% ethanol and 70% acetone [198].

Procyanidins have also been extracted from cranberry leaves by negative pressure
cavitation (NPCE) and its combination with UAE. This technique was called U-NPCE by
the authors. The effects of ethanol concentration, ultrasonic power, temperature, extrac-
tion time, negative pressure and solid/liquid ratio were evaluated. The authors reveal
that there are still no reports indicating a solvent capable of simultaneously extracting all
phenolic compounds; however, methanol followed by ethanol is more efficient for this
purpose [199]. In this study, ethanol was chosen because it is food grade and was evaluated
at concentrations between 40% and 90%, and for ultrasonic power and negative pressure it
was evaluated at 0.3–0.4 W/cm2 and −0.06 to −0.08 Pa, respectively. Extraction yields of
procyanidins, flavonoids and the total content of polyphenols were influenced by ethanol
concentration. At 40% and 70% of solvent, the total content of polyphenols and procyani-
dins had higher values of 300 mg gallic acid equivalents (GAE)/g DM and 200 mg CE/g
DM, respectively, which were obtained at a 70% concentration, while for concentrations
between 80 and 90%, extraction yields were decreased. For the ultrasonic power parameter,
an increase in extraction yields between 0.2 and 0.35 W was observed, and at the latter value
the maximum yield of total polyphenols, procyanidins and flavonoids, was obtained. The
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temperature and extraction time positively affected the yields of the compounds studied
in a range of values from 5 to 15 min, and from 30 to 50 ◦C. At these ranges, a gradual
decrease was observed for the extraction time, while the temperature remained stable.
Negative pressure significantly increased the yield of total polyphenols and procyanidins
between −0.04 and −0.07 Pa. The same behavior was observed for a solid/liquid ratio
between 1:10 and 1:30 g/mL. The variables ethanol concentration, ultrasonic power, and
negative pressure were optimized by response surface methodology and evaluation of
the bioactivity of the substances evaluated. From these results it was determined that
the U-NPCE method was the most suitable for extraction of phenolic compounds such
as procyanidins and flavonoids, especially those sensitive to heat, due to its high yield,
bioactivity and shorter treatment time [164].

4.2. Microwave-Assisted Extraction

Microwave extraction (MAE) is a technique used for extraction of polyphenols such
as condensed tannins and flavonoids. However, studies of procyanidins, catechins, and
their structural differences still need to be updated [185,200–206]. MAE use solvents with
a high dissipation factor (tan δ) or high polarity, such as methanol or water [207]. The
mechanism consists of the transfer of heat to solvent by frequencies in the range of 300 MHz
to 300 GHz, facilitating the disruption of cell wall and cellular structures. The interaction
between solvent molecules and compounds released increases by the formation of pores
that allow rapid mass transfer resulting in an efficient extraction process [208]. The results
depend on factors such as concentration, volume, and chemical characteristics of the
solvent and the cell wall [209]. The advantages of this technique are high-quality substance
recovery, low use solvent, fewer plant materials, moderate time-extraction and paid energy
transfer [173,184,210]. There are reports of other factors, such as extraction temperature,
pressure, pH, solvent concentration and particle size, which influence choice of extraction
method and solvent. However, the target compounds determine this selection, since the
extraction process is specific for each plant material [91,209,211]. The variability of the food
matrix and the process variables promote the selection of optimal conditions [212]. Various
factors influence on the yield of the substances using this technique include temperature,
time, type of solvent, ratio (solvent/solid) and power. Authors suggest response surface
methodology (RSM) could reduce experiment size [157,213].

To increase extraction yields, process conditions could be modified. An example is
the technique of microwave superheated water extraction (MWE) [210]. Previous find-
ings revealed interactions between nonextractable procyanidin (native and oxidized) and
polysaccharides in apple pomace using acetone (60%) and water as solvents with extraction
temperatures above 100 ◦C for 2 and 5 min in each treatment [173]. Previous work was
reported in extractions of microwave-assisted seed grape proanthocyanidin yield with
recovery rates of 30.7 mg g−1 and 99.3%, respectively, compared with traditional extrac-
tions. This technique was carried out in two aqueous phases: acetone and ammonium
citrate [211]. Proanthocyanidins extraction from apple pulp by MAE was evaluated and
could improve yield and reduce extraction times.

The surface response methodology obtains the best extraction yields with the least use
of solvent, energy, and time [214,215]. Authors have determined the optimal conditions in
extraction processes from residues (bark) of the tree species from Acacia mollissima, where
condensed tannin concentrations correspondimg to 74 mg cyanidin/g bark were achieved
using 20% of methanol in water, 182 W and 3.66 min of time exposure [201].

4.3. Supercritical Fluid Extraction

The method of supercritical fluid extraction (SFE), is called supercritical CO2
extraction (SC-CO2) when CO2 is used as a unique solvent [216]. It has potential food
applications, roles in pharmaceuticals manufacturing and polymers, and is a potential
tool in separation and purification of chemical compounds and natural substances
with antioxidant potential [211,214,217]. Some studies have reported results about
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flavonoids [218–220], but few are specific for procyanidins from agro-industrial and
agroforestry residues [221–223]. This technique cannot be used with a solvent such
as n-hexane, chloroform, and dichloromethane. Carbon dioxide can be used with
compounds which are easily degradable by temperature, since their critical points of
temperature (31 ◦C), and pressure (74 bar) is low; besides it is inexpensive, possess low
viscosity, polarity, and reactivity, is nontoxic, nonexplosive and safe for use in food [224].
CO2 is useful in nonpolar and slightly polar substance extraction and, in the case of
polyphenols other alternatives have been proposed to improve solvation properties
and yields, such as CO2 in mixtures with ethanol (EtOH) and water [225,226]. The
process should be designed to take into account that water in supercritical conditions is
dangerous [221,225].

Temperatures and pressure monitoring makes the extraction process highly se-
lective, and adjusting these variables obtains bioactive compounds without thermal
degradation. Other solvent properties, such as volatility and surface tension are key to
produce specificity for each process [227]. Some variables should be taken into account
to control processes, including solvent flow rate, temperature, pressure, time, and the
features of material [179,228,229]. Another important factor is equipment cost, which
affects manufacturing cost. It is crucial to evaluate cost-benefits and extraction yields
for future applications [230].

Authors have suggested that SFE is better than traditional methods in compound
extractions with biological activity from wastes [231]. In addition, high recovery of com-
pounds from mixtures with solvent extract can involve improved solid/liquid contact
through of swelling of the solid sample or semi-solid (matrix), and can involve a low
proportion of solvent [107,222]. Other researchers have found that proanthocyanidins
were obtained of 139.7, 123.8, 309.3 mg catechin/100 g dried matter for monomeric,
oligomeric and polymeric fractions, respectively, with mixtures of pure carbon dioxide,
carbon dioxide-water (15%), and water-ethanol (15%) using grape marc at high concen-
trations, The authors attributed this to antioxidant activity obtained for this treatment
(2649.6 mg α-tocopherol/100 g dried matter), which were greater compared to methanol
extraction [227]. In a similar study, apple peel was extracted at 50 ◦C and 25 MPa with
a mixture of CO2-EtOH (25%). This was correlated strongly with antioxidant activity
in the presence of catechin, epicatechin, and procyanidin B [231]. Methanol (40%) was
used for the modified SFE process. Three steps for the recovery procyanidin monomers
were proposed, consisting of a cycle with pure CO2, followed by a cycle with methanol
(40%)-CO2 and finally with pure methanol. The best recovery rates of catechin (77%) and
epicatechin (79%) were achieved in the second step with 60 min of exposure [223]. Other
forms of grape pomace extraction, including the coupling of ultrasound techniques with
supercritical fluids, has been proposed. The maximum concentrations proanthocyanidins
were achieved by SFE, which correspondedto 282.8, 167.4, and 360.3 (mg catechin/100 g
dried matter) for monomeric, oligomeric, and polymeric fractions, respectively. Regarding
monomeric fractions, the extraction by ultrasound was 10-fold lower than by SFE [232].

4.4. Pressurized Liquid Extraction

Pressurized liquid extraction (PLE), also called as accelerated solvent extraction (ASE),
is considered a clean and green technology that generates by-products with added value
from different natural sources [124,216,233–235]. However, few studies have been found
concerning procyanidin extraction [236], though some works report total flavonoid con-
tent [228]. PLE has advantages over conventional extraction, such as the use of short
exposure time and low solvent consumption. A range of pressure is employed (4 to
20 MPa) to keep solvent in a liquid state at high temperature when operating conditions
are above boiling [219].

This process takes place in a closed and inert system at high temperatures, allowing
rapid mass transfer and increasing dissolution of the plant material in the solvent [229]. The
molecular interactions into the sample matrix are affected by high temperatures, surface
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tension and viscosity of the solvent. Polar substances and thermally sensitive subtannces
have been extracted successfully with water and ethanol. The most common solvent used in
PLE is water, being non-toxic, non-inflammable, and having a low cost [237]. According to
operating conditions, the procyanidin content may vary. Studies have reported interactions
between temperature, pressure, and/or time extraction. Okiyama et al. [29] performed
extraction kinetics with cocoa bean shell at 60, 75 and 90 ◦C for 50 min and using 10.35 MPa.
The highest yields of procyanidin were obtained at 90 ◦C, but this content decreased
after 30 min. Researchers deduced possible changes in the matrix-solute. Mustafa and
Turner [237] and Wijngaard et al. [238] indicated that the use of PLE did not increase the
extraction of bioactive compounds with respect to solid-liquid extraction.

The use of PLE for bioactive substances extraction from Blackberry residues was evalu-
ated using acidified water at 100 ◦C, which affected negatively the anthocyanin content but
promoted the increase of activity antioxidant and total phenolics yield. Authors attributed
these results to the possible presence of procyanidins and other compounds; however,
the latter compounds were not measured. High temperatures allow the breakdown of
interactions (hydrogen bonds, Van der Waals and others), which occur between the solvent
and the plant material [234]. This activity also may be a consequence of the generation
of Maillard reaction products that could affect procyanidins content. Others changes in
nutritional and physicochemical characteristics have been observed [228].

An interesting option is the use of enzymes with PLE to investigate compounds from
crude Guarana seeds; a plant with health benefits. This work was achieved to improve
concentrations of catechin (50.59 g/100 g extract) and epicatechin (31.32 g/100 g extract)
pressurizing the system at 10 MPa. The results were best with treatments using water-
ethanol (50% w/w) [239], and 20 times higher than a study carried out with SFE using the
same plant source [240], possibly due to low affinity of CO2 by polar molecules such as
catechins [239]. Understanding of phenomena occurring in PLE has been mathematically
modeled to optimize the process, determine interactions between variables, and allow
scale-up [241].

Subcritical Water Extraction

A modification of PLE using only water in extraction system has been reported in the
literature. Different names could be found, for example, subcritical water extraction (SWE),
superheated water extraction, pressurized low polarity water extraction and pressurized
hot water extraction [242], but the mechanism is the same.

This method represents an alternative use of organic solvents and could reduce
negative effects to the environment and risks for human health. The use of new sol-
vents is necessary to overcome these limitations [221]. Moreover, unlike traditional
methods, it does not require removal proceedings after the process, and manipulation is
automated, allowing savings of time and money. It also has good selectivity with rapid
extraction. Reports have shown that treatments with SWE have a manufacturing cost
higher than assays with supercritical fluids (carbon dioxide) and may be better for total
flavonoid content than traditional methods, and nontraditional methods such as UAE
and MAE [225,243–245]. SWE is used in different fields to extract bioactive compounds
of different polarities, obtained using water as the solvent at high temperatures and
pressures [225].

The main property of subcritical water is its dielectric constant (ε), which depends on
the extraction temperature. By controlling this variable, water polarity can be changed, and
thus its solvation capacity. The characteristics of water according to its dielectric constant,
facilitates obtaining a wide variety of byproducts.

Other variables such as exposition-time during treatment and chemical composition
of plant material represent key points in obtaining target compounds with specific char-
acteristics. The adjustment of temperature and pressure between 100 and 374.1 ◦C and
1 and 221 bar, can achieve changes in viscosity, surface tension, polarity and diffusivity of
water, besides improving sample solubility and mass transfer [235]. In high-temperature
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extractions of flavonoids, it was reported that the viscosity, density and surface tension
of water can influence the structural characteristics of these compounds. Ko et al. [246]
revealed the efficiency of the SWE method in extractions with residues of onion skins and
sea-buckthorn leaves for nonpolar flavonoids, where temperature determined the presence
of hydrogen bonding in the molecule. In this study flavonoid extractions with hydroxyl
groups at low temperatures were achieved.

In previous work with winemaking residues, proanthocyanidins were extracted from
grape seeds at different temperatures and cycle extractions using subcritical water. Each
treatment resulted in changes in structure, linkages of catechin, and antioxidant activity of
the compound. The authors indicated that this strategy allowed selectivity of processes;
the type of procyanidin, number of catechin units, and ubication galloylated moieties
are influenced by extraction temperature and this variable can be applied individually or
sequentially. High temperatures favor polymerization of procyanidins, increased procyani-
din trimers and tetramers content occurring at 150 ◦C, whereas subsequent treatments at
100–150 ◦C favored procyanidins with galloylated moieties [244].

5. Conclusions

Agro-industrial wastes can be used as renewable sources for the extraction of
procyanidins. Undoubtedly, proper selection of the solvent and extraction technique
can significantly influence the yields of these compounds. In the case of solvents, those
with the highest affinity for procyanidins are methanol, ethanol and acetone, in mixtures
with water. The ultrasound technique is the most preferred by researchers, followed by
MAE and ASE. In order to improve extraction efficiency and procyanidin yields, UAE
has been combined with other methods such as MAE, UNPLE, UHP, and hot water,
among others. This is because ultrasonic extraction does not use high temperatures and
is environmentally friendly. In addition it could allow greater stability of the biological
activity of extracted compounds.

On the other hand, procyanidins are molecules of industrial interest for their biological
properties and their effect on human health. It is common to find procyanidin extracts
with high antioxidant activity, which may vary according to the plant material and the
geographical area of the crop origin. Different types of procyanidins have been identified
in agro-industrial wastes, among them A2, B1, B2, B3 and C1. B1 and B2 being the most
frequently found.

We are aware that it is necessary to promote the saving of natural resources and
promote their efficient use. Therefore, here we have shown the potential of different
agro-industrial wastes as cheap sources of procyanidins, among which grape seed, litchi
pericarp and plant bark are the most studied sources. In this review it was found that about
90% of studies are focused on the polyphenolic profile and biological activity of different
types of wastes, while a small fraction of these studies focussed only on procyanidins.
Therefore, this review encourages the researcher to study cheap and easily accessible raw
plant materials as sources of procyanidins.
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218. Krakowska, A.; Rafińska, K.; Walczak, J.; Buszewski, B. Enzyme-assisted optimized supercritical fluid extraction to improve
Medicago sativa polyphenolics isolation. Ind. Crops Prod. 2018, 124, 931–940. [CrossRef]

219. Garcia-Mendoza, M.P.; Paula, J.T.; Paviani, L.C.; Cabral, F.A.; Martinez-Correa, H.A. Extracts from Mango Peel By-Product
Obtained by Supercritical CO2 and Pressurized Solvent Processes. LWT-Food Sci. Technol. 2015, 62, 131–137. [CrossRef]

220. Wang, L.; Yang, B.; Du, X.; Yi, C. Optimisation of Supercritical Fluid Extraction of Flavonoids from Pueraria lobata. Food Chem.
2008, 108, 737–741. [CrossRef] [PubMed]

221. Abdelmoez, W.; Nage, S.M.; Bastawess, A.; Ihab, A.; Yoshida, H. Subcritical Water Technology for Wheat Straw Hydrolysis to
Produce Value Added Products. J. Clean. Prod. 2014, 70, 68–77. [CrossRef]

222. Pereira, C.; Meireles, M. Supercritical Fluid Extraction of Bioactive Compounds: Fundamentals, Applications and Economic
Perspectives. Food Bioprocess. Technol. 2010, 3, 340–372. [CrossRef]

223. Ashraf-Khorassani, M.; Taylor, L.T. Sequential Fractionation of Grape Seeds into Oils, Polyphenols, and Procyanidins via a Single
System Employing CO2-Based Fluids. J. Agric. Food Chem. 2004, 52, 2440–2444. [CrossRef]

224. Sánchez-Vicente, Y.; Cabañas, A.; Renuncio, J.A.R.; Pando, C. Supercritical Fluid Extraction of Peach (Prunus persica) Seed Oil
Using Carbon Dioxide and Ethanol. J. Supercrit. Fluids 2009, 49, 167–173. [CrossRef]

225. Todd, R.; Baroutian, S. A Techno-Economic Comparison of Subcritical Water, Supercritical CO2 and Organic Solvent Extraction of
Bioactives from Grape Marc. J. Clean. Prod. 2017, 158, 349–358. [CrossRef]

226. Cardenas-Toro, F.P.; Forster-Carneiro, T.; Rostagno, M.A.; Petenate, A.J.; Maugeri Filho, F.; Meireles, M.A.A. Integrated Supercrit-
ical Fluid Extraction and Subcritical Water Hydrolysis for the Recovery of Bioactive Compounds from Pressed Palm Fiber. J.
Supercrit. Fluids 2014, 93, 42–48. [CrossRef]

227. Da Porto, C.; Decorti, D.; Natolino, A. Water and Ethanol as Co-Solvent in Supercritical Fluid Extraction of Proanthocyanidins
from Grape Marc: A Comparison and a Proposal. J. Supercrit. Fluids 2014, 87, 1–8. [CrossRef]

228. Shang, Y.F.; Kim, S.M.; Um, B.H. Optimisation of Pressurised Liquid Extraction of Antioxidants from Black Bamboo Leaves. Food
Chem. 2014, 154, 164–170. [CrossRef]

229. Pereira, R.G.; Garcia, V.L.; Nova Rodrigues, M.V.; Martínez, J. Extraction of Lignans from Phyllanthus amarus Schum. & Thonn
Using Pressurized Liquids and Low Pressure Methods. Sep. Purif. Technol. 2016, 158, 204–211. [CrossRef]

230. Veggi, P.C.; Prado, J.M.; Bataglion, G.A.; Eberlin, M.N.; Angela, M.; Meireles, A. The Journal of Supercritical Fluids Obtaining
Phenolic Compounds from Jatoba (Hymenaea courbaril L.) Bark by Supercritical Fluid Extraction. J. Supercrit. Fluids 2014, 89, 68–77.
[CrossRef]

231. Massias, A.; Boisard, S.; Baccaunaud, M.; Leal Calderon, F.; Subra-Paternault, P. Recovery of Phenolics from Apple Peels Using
CO2 + Ethanol Extraction: Kinetics and Antioxidant Activity of Extracts. J. Supercrit. Fluids 2015, 98, 172–182. [CrossRef]

232. Da Porto, C.; Natolino, A.; Decorti, D. The Combined Extraction of Polyphenols from Grape Marc: Ultrasound Assisted Extraction
Followed by Supercritical CO2 Extraction of Ultrasound-Raffinate. LWT 2015, 61, 98–104. [CrossRef]

233. Viganó, J.; Brumer, I.Z.; Braga, P.A.D.C.; Da Silva, J.K.; Maróstica Júnior, M.R.; Reyes Reyes, F.G.; Martínez, J. Pressurized Liquids
Extraction as an Alternative Process to Readily Obtain Bioactive Compounds from Passion Fruit Rinds. Food Bioprod. Process.
2016, 100, 382–390. [CrossRef]

234. Machado, A.P.D.F.; Pasquel-Reátegui, J.L.; Barbero, G.F.; Martínez, J. Pressurized Liquid Extraction of Bioactive Compounds from
Blackberry (Rubus fruticosus L.) Residues: A Comparison with Conventional Methods. Food Res. Int. 2015, 77, 675–683. [CrossRef]

235. Golmakani, E.; Mohammadi, A.; Ahmadzadeh Sani, T.; Kamali, H. Phenolic and flavonoid content and antioxidants capacity of
pressurized liquid extraction and perculation method from roots of Scutellaria pinnatifida A. Hamilt. subsp alpina (Bornm) Rech. F.
J. Supercrit. Fluids 2014, 95, 318–324. [CrossRef]

236. Monrad, J.K.; Howard, L.R.; King, J.W.; Srinivas, K.; Mauromoustakos, A. Subcritical Solvent Extraction of Procyanidins from
Dried Red Grape Pomace. J. Agric. Food Chem. 2010, 58, 4014–4021. [CrossRef] [PubMed]

237. Mustafa, A.; Turner, C. Pressurized Liquid Extraction as a Green Approach in Food and Herbal Plants Extraction: A Review. Anal.
Chim. Acta 2011, 703, 8–18. [CrossRef] [PubMed]

238. Wijngaard, H.; Hossain, M.B.; Rai, D.K.; Brunton, N. Techniques to Extract Bioactive Compounds from Food By-Products of Plant
Origin. Food Res. Int. 2012, 46, 505–513. [CrossRef]

http://doi.org/10.1016/j.indcrop.2015.06.032
http://doi.org/10.1016/j.indcrop.2016.10.050
http://doi.org/10.1016/j.ultsonch.2012.07.005
http://www.ncbi.nlm.nih.gov/pubmed/22884112
http://doi.org/10.1016/j.foodchem.2011.01.136
http://doi.org/10.3390/antiox10091469
http://www.ncbi.nlm.nih.gov/pubmed/34573101
http://doi.org/10.1016/j.indcrop.2018.08.004
http://doi.org/10.1016/j.lwt.2015.01.026
http://doi.org/10.1016/j.foodchem.2007.11.031
http://www.ncbi.nlm.nih.gov/pubmed/26059155
http://doi.org/10.1016/j.jclepro.2014.02.011
http://doi.org/10.1007/s11947-009-0263-2
http://doi.org/10.1021/jf030510n
http://doi.org/10.1016/j.supflu.2009.01.001
http://doi.org/10.1016/j.jclepro.2017.05.043
http://doi.org/10.1016/j.supflu.2014.02.009
http://doi.org/10.1016/j.supflu.2013.12.019
http://doi.org/10.1016/j.foodchem.2013.12.050
http://doi.org/10.1016/j.seppur.2015.12.007
http://doi.org/10.1016/j.supflu.2014.02.016
http://doi.org/10.1016/j.supflu.2014.12.007
http://doi.org/10.1016/j.lwt.2014.11.027
http://doi.org/10.1016/j.fbp.2016.08.011
http://doi.org/10.1016/j.foodres.2014.12.042
http://doi.org/10.1016/j.supflu.2014.09.020
http://doi.org/10.1021/jf9028283
http://www.ncbi.nlm.nih.gov/pubmed/20020688
http://doi.org/10.1016/j.aca.2011.07.018
http://www.ncbi.nlm.nih.gov/pubmed/21843670
http://doi.org/10.1016/j.foodres.2011.09.027


Foods 2021, 10, 3152 33 of 33

239. Santana, Á.L.; Queirós, L.D.; Martínez, J.; Macedo, G.A. Pressurized Liquid- and Supercritical Fluid Extraction of Crude and
Waste Seeds of Guarana (Paullinia cupana): Obtaining of Bioactive Compounds and Mathematical Modeling. Food Bioprod. Process.
2019, 117, 194–202. [CrossRef]

240. Marques, L.L.M.; Panizzon, G.P.; Aguiar, B.A.A.; Simionato, A.S.; Cardozo-Filho, L.; Andrade, G.; De Oliveira, A.G.; Guedes, T.A.;
De Mello, J.C.P. Guaraná (Paullinia cupana) Seeds: Selective Supercritical Extraction of Phenolic Compounds. Food Chem. 2016,
212, 703–711. [CrossRef]

241. Pereira, D.T.V.; Tarone, A.G.; Cazarin, C.B.B.; Barbero, G.F.; Martínez, J. Pressurized Liquid Extraction of Bioactive Compounds
from Grape Marc. J. Food Eng. 2019, 240, 105–113. [CrossRef]

242. Pronyk, C.; Mazza, G. Design and Scale-up of Pressurized Fluid Extractors for Food and Bioproducts. J. Food Eng. 2009, 95,
215–226. [CrossRef]
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