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Abstract

Background

Accurately predicting the survival rate of breast cancer patients is a major issue for cancer

researchers. Machine learning (ML) has attracted much attention with the hope that it could

provide accurate results, but its modeling methods and prediction performance remain con-

troversial. The aim of this systematic review is to identify and critically appraise current stud-

ies regarding the application of ML in predicting the 5-year survival rate of breast cancer.

Methods

In accordance with the PRISMA guidelines, two researchers independently searched the

PubMed (including MEDLINE), Embase, and Web of Science Core databases from incep-

tion to November 30, 2020. The search terms included breast neoplasms, survival, machine

learning, and specific algorithm names. The included studies related to the use of ML to

build a breast cancer survival prediction model and model performance that can be mea-

sured with the value of said verification results. The excluded studies in which the modeling

process were not explained clearly and had incomplete information. The extracted informa-

tion included literature information, database information, data preparation and modeling

process information, model construction and performance evaluation information, and can-

didate predictor information.

Results

Thirty-one studies that met the inclusion criteria were included, most of which were pub-

lished after 2013. The most frequently used ML methods were decision trees (19 studies,

61.3%), artificial neural networks (18 studies, 58.1%), support vector machines (16 studies,

51.6%), and ensemble learning (10 studies, 32.3%). The median sample size was 37256

(range 200 to 659820) patients, and the median predictor was 16 (range 3 to 625). The

accuracy of 29 studies ranged from 0.510 to 0.971. The sensitivity of 25 studies ranged from

0.037 to 1. The specificity of 24 studies ranged from 0.008 to 0.993. The AUC of 20 studies

ranged from 0.500 to 0.972. The precision of 6 studies ranged from 0.549 to 1. All of the

models were internally validated, and only one was externally validated.
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Conclusions

Overall, compared with traditional statistical methods, the performance of ML models does

not necessarily show any improvement, and this area of research still faces limitations

related to a lack of data preprocessing steps, the excessive differences of sample feature

selection, and issues related to validation. Further optimization of the performance of the

proposed model is also needed in the future, which requires more standardization and sub-

sequent validation.

Introduction

Breast cancer is the most common cancer among women in 154 countries and the main cause

of cancer-related death in 103 countries. In 2018, there were approximately 2.1 million new

cases of breast cancer in women, accounting for 24.2% of the total cases, and the mortality rate

was approximately 15.0% [1].

Survival is defined as the period of time a patient survives after disease diagnosis.The 5-year

threshold is important to standardize reporting and to identify survivability. Labelling a

patient record as survived or not survived takes at least 5 years, therefore, some previous stud-

ies used a 5-year threshold to identify the cohort’s survivability [2]. Breast cancer is a complex

disease, and although its survival rates in recent years have increased gradually, its 5-year sur-

vival rate is considerably different between individuals [3]. Predicting breast cancer survival

accurately could help doctors make better decisions regarding medical treatment intervention

planning, prevent excessive treatment, thereby reducing economic costs [4, 5], more effectively

include and exclude patients in a randomized trial [6], and develop palliative care and hospice

care systems [7, 8]. Therefore, predicting survival has become a major issue in current research

on breast cancer.

With the surge of medical data as well as the rapid development of information technol-

ogy and artificial intelligence, the application of big data analysis technology in the con-

struction of survival prediction model has become a current research hotspot. Traditional

prediction models based on prior hypothesized knowledge often consider the relationship

between dependent variables; in contrast, ML has the potential of learning data models

automatically, does not require any implicit assumptions and is able to handle interdepen-

dence and nonlinear relationships between variables [9]. It has natural strengths in dealing

with the very large number of complex higher-order interactions of medical data. Therefore

ML tools have a high potential for application in routine medical practice as leading tools in

health informatics.

A growing number of ML studies have been applied to diagnosis [10–13], disease risk pre-

diction [14], recurrence prediction [15], and symptom prediction [16–19]. Furthermore,

although the number of survival predictions increases gradually, the database set, modeling

process, methodological quality, performance metrics, and modeling of related candidate pre-

dictors exhibit large differences [20].

This article aims to systematically and comprehensively review the published literature

regarding the use of ML algorithms for model development and validation of breast can-

cer survival prediction. The primary outcome indicator is the accuracy of the different

models in predicting 5-year (60 months or 1825 days) survival rate for breast cancer with

the goal of providing a better theoretical basis for the application of ML in survival

prediction.
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Methods

Trial registration

This research was registered in the International Prospective Register of Systematic Reviews

(PROSPERO) in November 2020 (CRD42020219154). https://www.crd.york.ac.uk/

PROSPERO/#recordDetails.

Search strategy

This research was conducted in accordance with the Preferred Reporting Items for Systematic

Reviews and Meta-Analysis (PRISMA) guidelines [20] (see S1 Table). Two researchers (Jiaxin

Li and Jianyu Dong) independently searched PubMed (including MEDLINE) (1966~present),

Embase (1980~present), and Web of Science Core Collection (1900~present) databases from

inception to November 30, 2020. EndNote X9 software was used to remove duplicate litera-

ture. Detailed search strategies are listed in the (see S2 Table).

Inclusion and exclusion criteria

The inclusion criteria were as follows: (1) published peer-reviewed literature; (2) research on

the clinical diagnosis of breast cancer patients; (3) research related to the use of ML algorithms

to build a survival prediction model; (4) prediction models established through the internal or

external validation; (5) model performance that can be measured with the value of said verifi-

cation results; and (6) studies published in English.

The exclusion criteria were as follows: (1) studies in which the training, learning, and/or

validation process were not explained clearly or distinguished from each other; (2) duplicate

studies; (3) literature reviews; (4) non-human (e.g., animals) studies; (5) case reports; (6) expert

experience reports; and (7) unavailable full text or incomplete abstract information such that

effective information cannot be extracted.

Data extraction

Two researchers (Jiaxin Li and Jianyu Dong) independently screened and cross-checked the

documents to extract information. If there were differences in the process, then a third party

was consulted (Ying Fu). MS office Excel 2019 software was used for basic information litera-

ture screening. First, the titles and abstracts were screened to exclude unrelated literature;

then, the full texts of articles were read to determine their eligibility for inclusion. The Check-

list for critical Appraisal and data extraction for systematic Reviews of prediction Modelling

Studies (CHARMS) was also used for data extraction [21], the extracted data include the

following:

• Basic literature information: first author, year, country of research, published type, disease

characters, and predicted outcome;

• Basic data information: data source, data type, number of centers, and number of samples;

• Data preparation and modeling process information: missing data described, missing data

processing described, preprocessing algorithms and preprocessing described, feature selec-

tion algorithms and feature selection described, class imbalance (Alive + Dead), number of

candidate predictors used, ML algorithms, model presentation, and software or environment

used;
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• Model construction and performance evaluation information: internal validation, external

validation, model evaluation metrics, calibration metrics, hyperparameter tuning, and dis-

crimination and classification metrics; and

• Candidate predictor information: number of candidate predictors, candidate predictors,

process for ranking of candidate predictors, and rank of candidate predictors.

Assessment of the risk of bias

Two researchers used the prediction model risk of bias assessment tool (PROBAST) [22].

PROBAST is mainly used in research and development validation or to update multivariate

predictor diagnosis or prognosis prediction models. The tool includes 20 signaling questions

across 4 domains (participants, predictors, outcome, and analysis), and each question is

answered as low risk of bias assessment, high risk of bias assessment, or unclear.

Results

Search results

By searching three medical databases, a total of 8193 studies were identified. After removing

duplicates studies. there were leaving 2829 studies and 2656 studies were eliminated based on

the screening of titles and abstracts. A comprehensive review of the full text of the remaining

173 studies was conducted, and 142 were excluded for the following reasons: the type of litera-

ture did not meet the criteria, i.e., conference abstracts, books, and review literature (n = 9);

the predictive outcome was not 5-year survival but recurrence, survival status, benign and

malignant tumor diagnosis, or treatment symptoms (n = 91); the full text was unavailable

(n = 6); the data were incomplete (n = 14); the study was not published in English (n = 1); or

the study included animal research (n = 1). A total of 31 studies met the inclusion criteria [2,

23–52]. The literature screening process is shown in Fig 1.

Fig 1. PRISMA flowchart.

https://doi.org/10.1371/journal.pone.0250370.g001
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Assessment of the risk of bias

Among the 31 studies, 9 had a high risk of bias [2, 25, 27, 28, 43, 44, 46, 48, 50], 17 had a mod-

erate risk of bias [24, 26, 29–35, 39, 41, 42, 45, 47, 49, 51, 52], and 5 ad a low risk of bias [23,

36–38, 40], as shown in Table 1.

Primary characteristics of the literature

The primary characteristics of the 31 studies are shown in Table 2. Most of the 31 studies were

published from 2013 to 2020, and the statistics regarding the publication year and number of

studies are shown in Fig 2. Among them, 22 studies were located in Asia [24, 25, 27–35, 37, 38,

40, 41, 43, 46–48, 50–52], 5 in North America [2, 23, 42, 44, 49], 2 in Oceania [26, 45], 1 in

Europe [36], and 1 in Africa [39]. The primary prediction outcome was the 5-year survival of

breast cancer patients. The predicted disease types were all breast cancer rather than one par-

ticular subtype (e.g., triple-negative breast cancer). All included studies focused on the

Table 1. Risk of bias and applicability assessment grading of 31 studies as per the PROBAST criteria.

Research Participant bias Predictor bias Outcome bias Analysis bias Overall bias rating Overall applicability rating

Delen, 2005 [2] Low Low Low High High Low

Bellaachia, 2006 [23] Low Low Low Low Low Low

Endo, 2007 [24] Low Low Low Moderate Moderate Low

Khan, 2008 [25] Low Low Low High High Low

Thongkam, 2008 [26] Low Low Low Moderate Moderate Low

Choi, 2009 [27] Low Low Low High High Low

Liu, 2009 [28] Low Low Low High High Low

Wang, 2013 [29] Low Low Low Moderate Moderate Low

Kim, 2013 [30] Low Low Low Moderate Moderate Low

Park, 2013 [31] Low Low Low Moderate Moderate Low

Shin, 2014 [32] Low Low Low Moderate Moderate Low

Wang, 2015 [33] Low Low Low Moderate Moderate Low

Wang, 2014 [34] Low Low Low Moderate Moderate Low

Chao, 2014 [35] Low Low Low Moderate Moderate Low

Garcı́a-Laencina, 2015 [36] Low Low Low Low Low Low

Lotfnezhad Afshar, 2015 [37] Low Low Low Low Low Low

Khalkhali, 2016 [38] Low Low Low Low Low Low

Shawky, 2016 [39] Low Low Low Moderate Moderate Low

Sun, 2018 [40] Low Low Low Low Low Low

Sun, 2018 [41] Low Low Low Moderate Moderate Low

Zhao, 2018 [42] Low Low Low Moderate Moderate Low

Fu, 2018 [43] Low Low High High High High

Lu, 2019 [44] Low Low Low High High Low

Abdikenov, 2019 [45] Low Low Low Moderate Moderate Low

Kalafi, 2019 [46] Low Low Low High High Low

Shouket, 2019 [47] Low Low Low Moderate Moderate Low

Ganggayah, 2019 [48] Low Low Low High High Low

Simsek, 2020 [49] Low Low Low Moderate Moderate Low

Salehi, 2020 [50] Low Low Low High High Low

Tang, 2020 [51] Low Moderate Low Moderate Moderate Moderate

Hussain, 2020 [52] Low Low Low Moderate Moderate Low

https://doi.org/10.1371/journal.pone.0250370.t001
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development of survival prediction models using ML algorithms rather than validating the

existing models on independent data. Primary characteristics are shown in Tables 2 and 3.

Primary database information

Eighteen studies used the SEER database [2, 23–25, 27–32, 34, 37, 39, 44, 45, 49, 50, 52], 2 stud-

ies used the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC)

[40, 42], 1 study used The Cancer Genome Atlas (TCGA) [41], 1 study used Haberman’s Can-

cer Survival Dataset [51], and 9 studies used hospital registry data [26, 33, 35, 36, 38, 43, 46–

48]. The databases of 22 studies were public [2, 23–25, 27–32, 34, 37, 39–42, 44, 45, 49–52],

and the databases of 9 studies were private [26, 33, 35, 36, 38, 43, 46–48]. The median sample

size used for modeling was 37256 (range 200 to 659802) patients. Seven studies had a sample

size of less than 1000 patients [26, 33, 36, 38, 41, 47, 51] (see S3 Table).

Data preparation and modeling

In total, 31 studies conducted data preprocessing, among which 20 described missing value

information and reported missing value processing strategies, including deleting directly, mul-

tiple imputation, and nearest neighbor algorithm [2, 25–29, 33, 36–40, 42–44, 46, 48–50, 52].

Eight studies detailed the feature selection process and reported the feature selection method,

including a literature review and clinical availability, logistic regression, information gain ratio

measurement, threshold-based preselection method and clustering, genetic algorithm, least

absolute shrinkage and selectionator operator, and minimal redundancy maximal relevance

[28, 29, 33, 40, 41, 43, 48, 49]. One study focused on the processing of outliers, and the algo-

rithms used included the C-support vector classification filter, Adaboost, boosting, Adaboost

SVM, and boosting SVM [26].

For the class imbalance, 24 studies showed class imbalance in the samples of the final model

construction [2, 23, 24, 26, 28–37, 40–45, 47–50], and 7 of them dealt with this problem [28,

29, 34, 37, 42, 47, 49]. The methods included undersampling, bagging algorithm, SMOTE,

PSO, K-means, KNN, and bagging. However, 2 studies used the method of randomly selecting

the same number of samples from most classes as that from a few classes to balance the sample

size of the two classes before modeling [39, 46], and 5 studies did not provide class imbalance

data information [25, 27, 38, 51, 52].

For model presentation, 6 studies were presented as formulas [23, 29, 35, 36, 39, 44], 5 as

graphs [24, 38, 47, 48, 52], and 16 as a combination of formulas and graphs [2, 25, 27, 30–32,

34, 40–43, 45, 46, 49–51]. Models were not presented in 4 studies [26, 28, 33, 37].

For the algorithms used in model construction, 5 studies used only one ML algorithm to

build the model [25, 28, 33, 38, 50], and 26 studies used two or more ML algorithms and

Fig 2. Number of studies published each year.

https://doi.org/10.1371/journal.pone.0250370.g002
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Table 3. Primary characteristics and categories of the 31 studies.

Characteristics Categories Number

(n)

Percentage

(%)

Place of research Asia 22 71.0

North America 5 16.1

Oceania 2 6.5

Europe 1 3.2

Africa 1 3.2

Published type Journal article 27 87.1

Conference paper 3 9.6

Information paper 1 3.2

Source of data SEER 18 58.1

Molecular Taxonomy of Breast Cancer

International Consortium

2 6.5

The Cancer Genome Atlas 1 3.2

Haberman’s Cancer Survival Dataset 1 3.2

Hospital Registration Data 9 29.0

Type of data Public 22 71.0

Private 9 29.0

Number of centers Single center 22 71.0

Multiple centers 9 29.0

Sample size <1000 7 22.6

1000~10000 7 22.6

>10000 17 54.8

Missing data and processing

described

Yes 20 64.5

No 11 35.3

Preprocessing described Yes 31 100.0

No 0 0.0

Feature selection described Yes 8 25.8

No 23 74.2

Class imbalance processing Yes 24 77.4

No 2 6.5

Unknown 5 16.1

Number of candidate predictors <10 4 12.9

10~100 25 80.6

>100 2 6.5

Number of ML algorithms 1 5 16.1

>1 26 83.9

Type of ML algorithms DT 19 61.3

ANN 18 58.1

SVM 16 51.6

LR 12 38.7

Bayesian classification algorithms 6 19.4

KNN 3 9.7

Semi-supervised learning 3 9.7

Ensemble learning 10 32.3

DNN 3 9.7

(Continued)
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compared them [2, 23, 24, 26, 27, 29–32, 34–37, 39–49, 51, 52]. Common ML algorithms

included DT (19 studies) [2, 23–26, 28, 29, 32, 34–38, 43, 46–48, 51, 52]; ANN(18 studies) [2,

23, 24, 26, 27, 30–33, 39, 42, 44, 46, 48–52]; SVM (16 studies) [30–32, 35–37, 39, 40, 42–48,

51]; LR (12 studies) [2, 24, 29, 34–36, 39, 40, 45, 48, 49, 52]; Bayesian classification (6 studies)

[23, 24, 26, 27, 37, 47], KNN (3 studies) [34, 36, 39]; semisupervised learning (3 studies) [30–

32]; ensemble learning including random forest, boosting, and random committee (10 studies)

[26, 40–48]; and deep neural network (3 studies) [40, 41, 45] (see S4 Table).

Information on model construction and performance evaluation

All 31 studies conducted internal validation, of which 27 used cross-validation [2, 23, 24, 26–

32, 34–36, 38–47, 49–52], and 4 used random splitting [25, 33, 37, 38]. External validation was

Table 3. (Continued)

Characteristics Categories Number

(n)

Percentage

(%)

Model presentation Formula 6 19.4

Graph 5 16.1

Formula and graph 16 51.6

No presentation 4 12.9

Calibration Yes 1 3.2

No 30 96.8

Internal validation Yes 31 100.0

No 0 0.0

External validation Yes 1 3.2

No 30 96.8

Hyperparameter selection Yes 9 29.0

No 22 71.0

Model evaluation metrics Accuracy 29 93.5

Sensitivity/Recall 25 80.6

Specificity 24 77.4

AUC 20 64.5

Precision/Positive predictive value 6 19.4

F1 score 5 16.1

Mcc 5 16.1

NPV 2 6.5

G-mean 2 6.5

C-index 1 3.2

Cutoff 1 3.2

Youden index 1 3.2

Retaining time 1 3.2

FPR 1 3.2

FDR 1 3.2

FNR 1 3.2

Type of candidate predictors Clinical data 29 93.5

Clinical data + molecular data 1 3.2

Clinical data + molecular data + pathological

images

1 3.2

Ranking of candidate

predictors

Yes 15 28.4

No 16 51.6

https://doi.org/10.1371/journal.pone.0250370.t003
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conducted in only one study [40], and model calibration was performed in only 1 study [48].

A total of 9 studies reported trying different hyperparameters on the model [31, 32, 34–36, 40,

43–45], but few studies reported details on hyperparameter tuning.

The common evaluation metrics of ML model classification and discrimination perfor-

mance were as follows: 29 studies evaluated the accuracy of the model [2, 23–31, 33–42, 44–

52], ranging from 0.510 to 0.971; 25 studies evaluated the sensitivity/recall [2, 23–25, 27–29,

31, 33, 34, 36–41, 43–46, 48–52], ranging from 0.037 to 1.000; 24 studies evaluated the specific-

ity [2, 23, 25, 27–29, 31, 33, 34, 36–41, 43–46, 48–52], ranging from 0.008 to 0.993; 20 studies

evaluated the AUC [26–34, 36, 39–43, 45, 47–49, 51], ranging from 0.500 to 0.972; 6 studies

evaluated the precision/positive predictive value [23, 40, 41, 46–48], ranging from 0.549 to 1; 5

studies evaluated the F1 score [43, 45–47, 51], ranging from 0.369 to 0.966; 5 studies evaluated

Mcc [40, 41, 46–48], ranging from 0 to 0.884; 2 studies evaluated the NPV [46, 47], ranging

from 0 to 1; and 2 studies evaluated the G-mean [29, 34], ranging from 0.334 to 0.959.

In studies that compared of two or more algorithms, ANN had the best performance in 6

studies [27, 34, 39, 46, 49, 52], DT had the best performance in 4 studies [2, 23, 26, 34], the

ensemble learning algorithm had the best performance in 4 studies [42, 43, 48, 51], semisuper-

vised learning had the best performance in 3 studies [30–32], DNN had the best performance

in 3 studies [40, 41, 45], SVM had the best performance in 2 studies [35, 37], LR had the best

performance in 2 studies [24, 29], KNN had the best performance in 1 study [36], and Naive

Bayes had the best performance in 1 study [47] (see S5 Table).

Candidate predictors

The median number of candidate predictors used was 16 (range: 3~625); 29 studies used only

clinical data [2, 23–39, 42–52], 1 study combined clinical data with molecular data for predic-

tion [40], and 1 study combined clinical data, molecular data and pathological image data for

prediction [41]. We ranked the frequency of the use of certain predictors from high to low.

The commonly used candidate predictors included age, stage of cancer, grade, tumor size,

race, marital status, number of nodes, histology, number of positive nodes, primary site code,

extension of tumor, behavior/behavior code, lymph node involvement, site-specific surgery

code, number of primaries, radiation, received radiation, estrogen receptor (ER) status, and

progesterone receptor (PR) status (see Table 4).

Fifteen studies ranked the degree to which the predictors contributed to the outcome [2, 23,

25, 27, 32, 33, 37, 38, 42, 43, 46, 48–50, 52]. Four studies reported sequencing methods, includ-

ing sensitivity analysis in networks [2, 27], DT information gain measurement [23, 25], sensi-

tivity scores in rules [38], and correlation coefficients [33] (see S6 Table).

Discussion

To the best of our knowledge, this is the first systematic review of the application of ML to

breast cancer survival prediction, and accurate 5-year survival predictions are very important

for further research. After a systematic analysis of 31 studies, we found that there is a need for

the standardization and validation of the different algorithms of models for predicting breast

cancer survival and for the exploration of the significance of applying the predictive model to

clinical practice.

Most studies based on authoritative databases use standardized and open-access tumor

information that is updated regularly, but the question of whether a model using public data-

bases could be used locally should be considered. In addition, some public databases that were

established earlier are problematic because clinical practices change over time, and the use of

historical data that are too old or a data collection time period that is too long to develop the
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model will result in the loss of clinical significance [53]. Therefore, researchers should consider

focusing more on data management to improve the speed of building models and consider

establishing online real-time prediction models. A small number of studies are based on local

hospital registration data, but private data require informed consent and ethics committee

approval before sharing as well as proper processing (such as anonymity completely). There-

fore, the use of private data prevents other scholars from verifying the results of the model and

comparing different models.

The number of samples included in this study is uneven. The minimum sample size is 200

patients, and 7 model samples include less than 1000 patients. ML algorithms are often applied

to the processing of multidimensional data, and the default application condition is large sam-

ple data [54, 55]. The use of too little data in the training model will often lead to overfitting of

the model and reduce the generalization ability. In addition, medical data typically contain a

large amount of data, outliers, noise redundancy, imbalance, deletion and irrelevant variables

[56]. The original dataset will thus cause poor performance of the subsequent prediction

model and will become a bottleneck in the process of data mining. Therefore, the process of

data preprocessing, including data reduction, data cleaning, data transformation and data inte-

gration, is crucial [57] and typically comprises 70~80% of the workload of data mining [58].

Table 4. Rank of the candidate predictors used in 31 studies.

Rank Candidate predictor Description Number

(n)

Percentage

(%)

1 Age Age at diagnosis 26 83.9

2 Stage of cancer Defined by size of cancer tumor and its spread 23 74.2

3 Grade Appearance of tumors and their differentiability 22 71.0

4 Tumor size Diameter of tumor 21 67.7

5 Race Recoded race of the patient. Ethnicity: White, Black,

Chinese, etc.

19 61.3

6 Marital status Patient’s marital status at the time of diagnosis:

Married, single, divorced, widowed, separated

19 61.3

7 Number of nodes Total nodes (positive/negative) examined 19 61.3

8 Histology The microscopic composition of cells and/or tissue

for a specific primary

18 58.1

9 Number of positive

nodes

When lymph nodes are involved in cancer, they are

called positive

18 58.1

10 Primary site code Presence of tumor at particular location in body.

Topographical classification of cancer

17 54.8

11 Extension of tumor Defines spread of tumor relative to breast 17 54.8

12 Behavior/behavior

code

In situ or malignant 15 48.4

13 Lymph node

involvement

None, minimal, significant, etc. 14 45.2

14 Site-specific surgery

code

Information on surgery during first course of therapy,

whether cancer-directed or not

13 41.9

15 Number of primaries Number of primary tumors 13 41.9

16 Radiation None, beam radiation, radioisotopes, refused,

recommended, etc.

11 35.5

17 Received radiation Whether the patient had been treated with

radiotherapy or not

8 25.8

18 Estrogen receptor (ER)

status

Breast cancers with this hormone receptor are called

“ER positive”

7 22.6

19 Progesterone receptor

(PR) status

Breast cancers with this hormone receptor are called

“PR positive”

7 22.6

https://doi.org/10.1371/journal.pone.0250370.t004
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However, many of the studies included in this systematic review did not take these key steps.

High-quality models depend on high-quality data. In future studies, researchers should not

only select appropriate algorithms and perform performance comparisons but also focus on

exploring methods for data cleaning and pretreatment and improving the quality and quantity

of the modeling data.

Initially, researchers used traditional ML for model construction and then gradually com-

bined and optimized multiple learning models with weak performance to produce ensemble

learning algorithms, which have high prediction accuracy and strong generalization ability

[59, 60]. However, the above two algorithms are shallow learning algorithms. Although these

algorithms play a role, they are often unable to effectively complete tasks such as high-dimen-

sional data processing and large computations when faced with massive data. Therefore,

driven by the background of big data cloud computing, deep learning algorithms have been

proposed and have gradually become hotspots in breast cancer prediction research. These

algorithms are better able to analyze data and model the complex relationship between prog-

nostic variables. The algorithms include factors that depend on time as well as those that inter-

act with other factors associated with prognosis in a nonlinear manner.

In complex modeling problems, there is generally no single algorithm that fits all problems.

Different techniques can be combined to produce the best performance, so researchers must

compare different ML algorithms or ML algorithms with traditional modeling algorithms. The

most commonly used algorithms in this systematic review are ANN, DT, SVM, LR and ensem-

ble learning. Among them, the performance of ANN and DT is better. However, overall, com-

pared with LR/Cox regression model, the performance of the ML algorithm does not

necessarily improve, similar to the results of previous studies [61–63].

Model validation is divided into internal and external validation, and internal validation is

performed using the dataset randomly obtained from the original dataset, which can be com-

pleted by dividing the sample validation. In this study, most of the included studies used cross-

validation and random splitting for internal validation, which makes it difficult to avoid over-

fitting, thus limiting the accuracy of the validation results [64]. External validation requires the

development of the queue based on the independence and validation of samples, which is the

gold standard of model performance [65, 66]. We found that only 1 study performed external

verification of the model. The lack of external validation in multicenter studies with large sam-

ples prevents one from determining whether a model is applicable in different scenarios,

which can prevent the use of the model, as well as its stability and universality. Thus, data

extrapolation should be performed with caution. The lack of practical application of the model

in clinical practice may affect the ability of clinicians to make treatment decisions and estimate

prognosis. Calibration compares the observed probability and predicted probability of the

occurrence of results, which is the key to model development [67]. Only 1 study performed

model calibration, and the actual availability of uncalibrated models is limited [68]. Therefore,

it is recommended that researchers consider this step and report modeling information in

detail.

Compared with the traditional statistical model, the ML algorithm has the black

box property. The interpretation and understanding of the model is a key problem [69].

Researchers have difficulties in knowing what happened in the process of prediction and the

resulting process, i.e., which variables had the greatest influence on survival and which sub-

groups of patients showed similar results. Answering these questions can help doctors choose

the appropriate treatment and can also eliminate the non-important factors of breast cancer to

reduce the time and cost of data collection and treatment. However, whether this problem

exists in most models, especially deep learning models, is unknown [70, 71]. The development

of this problem and the complex function of internal work are not easy to explain, leading to
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inappropriate evaluation and feedback to improve the output. In contrast, DT models have

excellent interpretability, but their performance still needs to be further optimized [51, 72].

Therefore, compared with focusing only on prediction performance, further understanding of

the underlying dynamics of the algorithm has become a research hotspot and led to an increas-

ing number of studies being performed [69].

Regarding factors influencing breast cancer prognosis, screening appropriate predictors as

independent variables is an important step in model construction. In previous studies, predic-

tors mostly included patients’ demographic characteristics, medical history, treatment infor-

mation, and the clinicopathological characteristics of tumors at different disease stages. In this

systematic review, we summarize the most commonly used predictors similar to the results of

previous studies [4].

Age, disease stage, grade, tumor size, race, marital status, number of nodes, histology, num-

ber of positive nodes and primary site code have been entered into many predictive models as

predictors, given that these factors represent key risk factors for onset and survival in breast

cancer. These variables were also used in studies on decision-making analysis in relation to

breast cancer [73–75]. In the future, the possible mechanisms underlying the occurrence and

development of breast cancer could be further studied from these perspectives, which also sug-

gests that more suitable predictors for clinical practice can be identified. The ML predictive

models applied in this systematic review can be translated into tools for clinical treatment deci-

sion-making. Visualization of some of the outcomes will be implemented in the research data-

base and used by the clinicians at the hospital to analyze the survival of breast cancer patients.

With the development of molecular biology, some molecular indicators, such as gene

expression and mutation, have also become predictors. Compared with a single data-driven

prediction model, in recent years, researchers have incorporated multiple types of data into

prediction. The rapid increase in the number of features from different data sources and the

use of heterogeneous features have led to great challenges in survival prediction. With the

deepening of research on breast cancer, many new variables that are significantly related to

breast cancer prognosis have been gradually discovered [14, 76, 77], such as the level of anxiety

and depression. Thus, the above factors should be taken into account in the prediction. This

notion illustrates the true complexity of breast cancer as a disease, highlights the importance of

the mechanisms involved, and highlights some of the confusion among researchers in selecting

the most appropriate prediction model.

The number of candidate predictors and the correlation between them will affect model

performance. Therefore, feature selection becomes particularly important. Feature selection

identifies the most important variables in the dataset while maintaining classification quality.

A reduction in the number of predictors and the burden of data collection can reduce the fit-

ting and complexity of the model and help researchers interpret and understand the model.

However, many studies did not report the feature selection process, which may be related to

the ability of some classification models to deal with high-dimensional datasets (e.g., RF, SVM,

DT), or the features included in the models may have been selected based on prior research or

clinical importance [14, 78].

No quality assessment criteria have been established specifically for systematic reviews of

ML research. Existing guidelines, such as CHARMS [21] and TRIPOD [79], do not consider

the characteristics and related biases of ML models. There have been studies using improved

quality assessment criteria to adapt to ML system evaluation [62, 80, 81], but they have not

been widely accepted. Therefore, with the increasing application of ML in prediction and

other fields, it is recommended that guidelines be developed for reporting and evaluating ML

prediction model research in the medical field and to serve as a standard for publication to

improve the quality of related papers.
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Limitations

This study has some limitations. First, only English studies were included, so publication bias

may be present. Second, the excessive differences of the included studies limit the comparison

between studies and prohibits the use of meta-analysis [82, 83]. Finally, most of the included

studies did not report the key steps in model development and validation. In addition, the

information on predictive performance (such as true positive, false positive, true negative, and

false negative in the confusion matrix) was insufficient, and most of the studies only described

a single dimension of predictive performance. Therefore, it is recommended that comprehen-

sive methodological information, such as missing value processing, outlier value processing,

class imbalance processing, hyperparameter tuning, feature selection variable importance

ranking processing, model evaluation and validation, be reported in detail along with the

model performance, including detailed information on the suitability and acceptability of clas-

sification, discrimination and calibration measures.

Conclusion

ML has become a new methodology for breast cancer survival prediction, and there is still

much room for improvement and potential for further model construction. The existing pre-

diction models still face limitations related to a lack of data preprocessing steps, the excessive

differences of sample feature selection, and issues related to validation and promotion. The

model performance still needs to be further optimized, and other barriers should be addressed.

Researchers and medical workers should connect with reality, choose a model carefully, use

the model in clinical practice after verification, and use rigorous design and validation meth-

ods with a large sample of high-quality research data on the basis of previous findings. The

applicability and limitation of these models should be evaluated strictly to improve the degree

of accuracy for breast cancer survival prediction.
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