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Abstract Host—pathogen interactions provide a fascinating example of two or
more active genomes directly exerting mutual influence upon each other. These
encounters can lead to multiple outcomes from symbiotic homeostasis to mutual
annihilation, undergo multiple cycles of latency and lysogeny, and lead to
coevolution of the interacting genomes. Such systems pose numerous challenges
but also some advantages to modeling, especially in terms of functional, mathe-
matical genome representations. The main challenges for the modeling process
start with the conceptual definition of a genome for instance in the case of host-
integrated viral genomes. Furthermore, hardly understood influences of the activity
of either genome on the other(s) via direct and indirect mechanisms amplify the
needs for a coherent description of genome activity. Finally, genetic and local
environmental heterogeneities in both the host’s cellular and the pathogen popu-
lations need to be considered in multiscale modeling efforts. We will review here
two prominent examples of host—pathogen interactions at the genome level, dis-
cuss the current modeling efforts and their shortcomings, and explore novel ideas
of representing active genomes which promise being particularly adapted to
dealing with the modeling challenges posed by host—pathogen interactions.
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1 A Systems Biology Challenge: Multiscale Integration

After having generated high hopes and even more massif parallel data, systems
biology is clearly on the verge of entering into a new phase to fulfill on the initial
promise of revolutionizing not only the way we do biology but also our under-
standing of biologic phenomena (Tisoncik and Katze 2010). Success of this new
phase will depend on solving some fundamental problems which so far have not,
or only superficially been addressed, and will require more than ever a concerted
and integrated effort spanning the entire spectrum of exact sciences.

The central problem we need to address is the integration of data and insights
over multiple scales as to be able to make meaningful predictions about how
complex traits and phenotypes emerge from assemblies of objects and the
molecular mechanisms linking these objects on the one hand, and on the other, to
be able to decompose phenotypes rapidly to understand the defining dynamics and
their molecular basis. The former, inference-based analysis thereby actually
encompasses also evolutionary questions, as most of the biologic systems we try to
understand and describe are remarkably robust despite stochasticity being present,
if not integral part of the mechanisms at multiple levels. The latter challenge of
decomposition is still the main bottleneck on the road of designing therapeutical
and vaccination strategies in biomedical research.

Decomposition and inference across time and space scales define the ulti-
mate paradigm of systems biology research in as much as, if achieved and
abstracted, the combination of both would lead to meaningful mapping
functions from the object space to the phenotype space (®) and back

() (Fig. 1).

The problem of integration over multiple scales is not unique to biology but
also a major issue in physics and chemistry or social and economic sciences (Lesne
and Lagiies 2012). The problem, however, is particularly hard in biology, as the
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Fig. 1 Systems Biology Life Cycle: Decomposition of complex traits and phenotypes to
understand the systems dynamics and the defining molecular objects and the mechanisms by
which they interact; inference to make meaningful predictions as to how different objects interact
to give rise to phenotypes and traits. Both processes will heavily rely on the identification and
analysis of different biologic networks at different scales. The integration of information, objects,
and their dynamics across scales represents the main challenge of systems biology today.
Successful integration is the sine qua non requirement to identify and formulate the mapping
functions ¢ and f from object space to phenotype space and back. Having a full set of these
transforming functions would elevate the need to measure all objects and describe all possible
phenotypes, and thus represent understanding of the system

integration has to be bi- rather than unidirectional. Consider a dune, thus a physical
object—the dune’s physical properties depend entirely on the physical properties
of the sand-corn. Using renormalization techniques, it is possible to mathemati-
cally describe a dune and investigate its properties under changing conditions
(wind, humidity), without considering each sand-corn individually with simple
equations such as the original Bagnold formula (Bagnold 1936). In biology, the
physical properties of the molecular assembly such as a chromatin fiber will not
only depend on the physical properties of the histones and the DNA, but in
addition the histones and thus their the physicochemical properties have evolved
under selective pressure acting on the chromatin fiber and its function (Benecke
2003, 2006; Bécavin et al. 2010). This symmetry established by the retrograde
action of evolution is something which currently can not be captured by techniques
such as renormalization (Lesne 1998, 2011), but will need to be accounted for in
multiscale integration efforts. We have defined the term function-dependent self-
scaling for models which describe for instance chromatin structure as a function of
activity at the scale relevant to this activity (Lavelle and Benecke 2006).
Multiscale integration in biology is a fundamental problem for which currently
little ideas exist how it could be solved. There are a few other problems of similar
fundamental nature such as the role of stochasticity in biologic mechanisms and
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how robustness of these mechanisms across changing environmental and
systems-internal conditions can be maintained (Kaern et al. 2005). Interestingly,
stochasticity here might be a solution more than a problem in many respects, but
again a formal framework to describe, quantify, and predict such mechanisms is
lacking. In what will follow, we will discuss some recent insights into functional
genome representations to add a novel layer of investigation to the problem of
gene expression regulation, chromatin structural dynamics, and genome structure—
function relationships. These representations are thought to be particularly useful
to compare genomes from closely related species and more importantly to provide
new ideas of how to treat the case of two or more genomes operating together in a
single cell such as is the case in infectious settings (Aderem et al. 2011; Tisoncik
et al. 2009). To this end, we will first discuss two recent examples of successful
network structure inference and dynamics analysis in systems virology, analyze
the implications these results have for our thinking of genome function, and finally
provide some ideas how to further investigate these systems using functional
genome representations as a first step for a multiscale modeling effort.

2 SIV Infection in Natural Hosts

The definition of an effective HIV vaccine has only made modest progress despite
prodigious efforts, as HIV successfully evades efficient and durable recognition by
the human immune system (Ross et al. 2010; Belisle et al. 2011). Similarly, AIDS
resistance in SIV natural host primates has been formerly believed to be caused by
a lack of innate and adaptive immune recognition. This view is currently changing
as four independent systems biology driven efforts have investigated in a com-
parative manner, the transcriptome dynamics in PBMCs and CD4+ cells of natural
hosts for SIV as compared to Asian/New World primates that develop AIDS
following SIV infection. Indeed, natural hosts just as AIDS progressor species
display a rapid and strong innate immune response to SIV infection, and display all
signs of successful immune activation (IA). The changes in the gene expression
profiles are not only remarkably concordant between different natural hosts such as
African Green Monkeys (Chlorocebus sabaeus) and Sooty Mangabeys (Cerc-
ocebus atys), but also comparable in composition and strength to Rhesus Maca-
ques (Macaca mulatta) and Pigtail macaques (Macaca nemestrina), the latter two
being both AIDS progressors (Jacquelin et al. 2009; Bosinger et al. 2009; Favre
et al. 2009; Lederer et al. 2009; Rotger et al. 2011). By systematic comparison of
the gene networks indicative of IA between AIDS progressors and non-progressors
not only common themes were identified, but also remarkable differences as to the
duration of the innate immune response to SIV have been observed (Fig. 2).
Indeed, IA in natural hosts ceases after the acute infection stage, typically after 2—4
weeks, whereas the gene networks driving the IA in AIDS progressors are still
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Fig. 2 Immune Activation in a Natural Host versus an AIDS Progressor—the West Coast
Model. PBMCs from six African Green Monkeys (SIV Natural Host, Chlorocebus sabaeus, here:
“C.S.”) and six Rhesus Macaques (AIDS Progressor, Macaca mulatta, here: “M.M.”) were
analyzed pre- and post-SIV infection at the indicated time points using transcriptome profiling
and the activity of the Interferon « signaling pathway was inferred using ontology enrichment
analysis (L = predicted inactive, B = predicted active, both at p < 10E—3) (Jacquelin et al. 2009).
Two significant differences are observable: (i) C.S. control IA during the chronic phase of
infection as opposed to M.M., (ii) C.S. seems more rapid in activating innate immunity than
M.M. (Jacquelin et al. 2009). Similar differences are found in CD4+ cells from lymph nodes
(Jacquelin et al. 2009), as well as other, independent studies involving a similar collection of data
and different combinations of natural hosts and AIDS progressors (Bosinger et al. 2009; Favre
et al. 2009; Lederer et al. 2009; Rotger et al. 2011). The recently proposed West Coast Model
(Benecke et al. 2012) postulates that control of IA in natural hosts is a function of a mechanism
reminiscent of kinetic proofreading (Hopfield 1974). Thereby, the capacity to control IA requires
1A to cross threshold # before time 7. In the case of AIDS progressors, # is only reached after time
7, and thus the attenuation signal is not generated (a surfer missing the right moment to get on the
board)

found active after the acute phase, and remain so until onset of symptoms of
immunodeficiency (Bosinger et al. 2011, 2012; Manches and Bhardwaj 2009; Mir
et al. 2011; Brenchley et al. 2010; Harris et al. 2010). Thus, it is the control of
chronic TA, rather than absence thereof, which protects natural hosts from
developing AIDS.
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2.1 Control of Chronic Immune Activation in Natural Hosts

How can control, or absence of control in progressors, respectively, be thought to
occur? Different hypotheses have been put forward, some of which can be dis-
regarded or are unlikely to provide conclusive answers. SIV natural hosts do not
display significantly altered infection or viral amplification rates and viral set-point
titers. Moreover, chronically infected natural hosts maintain comparably high viral
titers and can propagate virus. Viral particles isolated from natural hosts can be
used to infect other animals (Jacquelin et al. 2009; Bosinger et al. 2009; Favre
et al. 2009; Lederer et al. 2009; Estes et al. 2008). Thus, control of IA is neither
directly connected to viral load nor is viral pathogenicity significantly altered
during the course of infection.

The current hypothesis of how IA is attenuated in natural hosts is the presence
of active signaling cascades which, upon a yet unidentified signal either attenuate
IA in natural hosts or keep IA active in AIDS progressors. A logic table sum-
marizes the four possible hypotheses depending on whether activators or repres-
sors of attenuation or activation are considered (Table 1) (Bosinger et al. 2011;
Harris et al. 2010). Currently, a specific search is underway in the different time
resolved transcriptome profiles to identify such activators or repressors of either
immune attenuation or IA, and which are differentially expressed/regulated in
progressors and non-progressors. It will be of general, beyond the HIV field,
interest to identify and characterize such activators and repressors which can
promote or control chronic IA with obvious impacts for organ transplantation and
autoimmune disorders (Rotger et al. 2011; Bosinger et al. 2011; Harris et al. 2010;
Ye and Maniatis 2011; Lepelley et al. 2011).

The current generally accepted ideas on the control of IA in natural hosts, thus,
postulate a necessary regulatory event (whether positive or negative) specific to
either progressors or non-progressors. Thus, a dedicated signaling cascade com-
posed of at least a sensor for a specific attenuation/activation signal, a transcrip-
tional regulator, and a relay unit linking the sensor to the effector. Not only the
molecules that are required specifically in either class of species, but also the
nature of the specific signal pose a challenge in terms of evolution as an entire
signaling pathway is required. Recall also that the signal for instance does not
likely originate from the virus. Facing these dilemmas, we have recently formu-
lated an alternate hypothesis for the absence of chronic IA in natural hosts which is
based on a dynamic interpretation of the earliest innate sensing events following
viral infection (Benecke et al. 2012). For the time being, this hypothesis is only
modestly carried by direct experimental observations, as the time resolution with
which early signaling events are usually studied is at least an order of magnitude
above what would be required to directly assess the merits of the proposition. On
the other hand, if this hypothesis, which appeals through its simplicity, would turn
out to lead to the identification of a novel mechanism controlling long-term IA
through early events, it would also define novel possible avenues for HIV vaccine
development.
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Table 1 Logic table for current hypotheses regarding control of IA in natural hosts

Immune attenuation Immune activation

N.H. A.P. N.H. A.P.
Activator + - - +
Repressor - + + -

N.H. Natural Host, A.P. AIDS Progressor, + present, — absent

2.2 Kinetic Proofreading as a Possible Mechanism
Jor IA Control

Kinetic proofreading is a potent mechanism known in molecular discrimination
(Hopfield 1974). Kinetic proofreading is a process in which, through expenditure
of additional energy, ligand recognition is split into two or more individual events
in order to increase specificity and discriminatory capacity between closely related
ligands or interaction partners with modestly different free energies of binding. In
a first step, usually coupled to a conformational change in the receptor achieved
through the hydrolysis of ATP, a candidate ligand is bound and presented to an
independent interaction surface. Only if this second, independent interaction
occurs rapidly enough, the recognition is conclusive, otherwise the ligand is
released as the receptor snaps back into its original conformation. This mechanism
has been studied in great detail theoretically and shown to drastically increase
recognition of a bonafide ligand over analog molecules with very similar free
energies. The error thereby is reduced beyond the thermodynamic bound—
sometimes referred to as the specificity paradox upon which Hopfield based his
predictions that ribosomes match codons and amino-acid-loaded tRNA anticodons
using a kinetic proofreading mechanism. This has later been proved experimen-
tally also for the way that aminoacyl tRNA synthetase operates (Hopfield 1974;
Hopfield et al. 1976). Furthermore, and more relevant to this discussion, T-cell
receptors use kinetic proofreading to enhance discrimination of bonafide ligands
from closely related molecules to ensure correct signaling (McKeithan 1995).
Finally, some evidence suggests that kinetic proofreading could also be found at
the basis of RIG-I or TLR mediated recognition of foreign in innate immunity (Loo
and Gale 2011; Liu and Gale 2010; Suthar et al. 2010).

For the sake of argument, let us assume that a strong and immediate innate
immune response is not only a first line of defense to gain the required time for
setting the stage for adaptive immunity, but that it is also a mechanism to
proofread the adaptive immune response. In this scenario, some of the mechanisms
of innate immunity would be required to be activated in order to maintain sus-
tained, general IA beyond acute infection. Absence of innate proofreading would
then lead to total inactivation of immune function. However, also the exact
opposite effect might be at work—innate proofreading is required to attenuate
continued IA. We believe that this latter scenario is more likely, and better reflects
the general observations made about immunity. A typical pathogen will trigger
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(many) different innate sensors simultaneously. The multitude of signals acts
synergistically to mount the immediate innate IA which in turns triggers adaptive
immunity. Maintaining this early response over prolonged periods of time, as
observed in AIDS progressors, does not add any advantage to the system, however,
is costly in terms of energy expenditure and precludes specific activation of
downstream processes. If one of the different innate sensing mechanisms serves as
proofreading mechanism, it makes more sense to propose that the proofreading is
meant to attenuate the early innate response rather than sustaining or driving it as
the latter would be redundant with the other mechanisms. In other words, the
proofreading would simply signal that innate IA has been successfully triggered
and thus needs to be attenuated in the near future in order to set the stage for
adaptive immunity, avoid exhaustion of resources, and redundant signaling
without added benefit.

Therefore, an innate sensing mechanism that triggers attenuation of IA would
represent a simple feedforward control which does not require any additional
specific signaling pathways or additional signals in order to be functional (see
Goodman et al. 2011) for an interesting example of a feedforward mechanism in
viral replication). This appears to be one strong argument in favor of the existence
for such a dual purpose innate sensing that acts in one of those two aspects
reminiscent of kinetic proofreading.

The second interesting argument can be formulated in favor of this hypothesis
which is the dynamics of proofreading. As discussed above, through the addition
of irreversible (energy consuming) steps prior to and integral part of faithful
recognition a delay function is implemented. In other words, every one of the
independent irreversible prerecognition steps needs time to complete; and thus the
increase in specificity of recognition is not only ‘bought’ through energy con-
sumption but also accompanied with varying delays between the initial encounter
and positive recognition, which are a function of the number of successive pre-
recognition steps and physical proximity. In this context, the time delay creates a
lag-time for the attenuation signal of innate activation which would prevent early
shutdown. In other words, not relying on a specific signaling pathway for atten-
uation creates the problem that innate IA and its attenuation are triggered at the
same time leading to conflicting signals. If, however, the attenuation signal is
lagging behind because of its increased specificity, a functional feedforward
repression is implemented (Benecke et al. 2012).

Finally, the dynamics of such a proofreading mechanism could potentially also
explain the differences observed between natural hosts and AIDS progressors
following SIV infection. As a matter of fact, a kinetic proofreading mechanism
defines two boundaries on time. First, discussed above, there is a lower bound for
the recognition process defined by the delay in time over the one or several
irreversible steps. But also a second, upper bound, on time is explicitly part of the
mechanism. If the recognition step n is too slow compared to the step n — 1 the
process aborts as unsuccessful. Hence, the execution time for step » is bounded by
a function of the off-rate of n — 1. Practically speaking, the hypothesis presented
here suggests that there exists a window of time during which recognition has to
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occur in order to trigger attenuation of innate IA. This window of time starts with
the earliest prerecognition event at #, (infection) and continues up to some upper
limit T which has to be sufficiently close that robust (a significant fraction of a
large number of events) recognition can occur. If this recognition occurs to late,
the attenuation signal can no longer be released and IA continues chronically. This
is a strong hypothesis which should be verifiable experimentally. Indeed, there
even seems evidence in the existing transcriptome profiles for early dynamics
playing a key role in the attenuation of IA in natural hosts, and why immune
attenuation does not occur in AIDS progressors (Fig. 2). Indeed, it appears that
innate IA occurs more rapidly in the natural host AGM as compared to Rhesus
Macaques if the ontology-based inference of the activity of the interferon «
pathway is accepted as a proxy (Jacquelin et al. 2009). The lower schematic
illustrated the two main differences in the activation and attenuation kinetics
between the AGMs (green) and the Macaques (red) and also schematizes the
window of opportunity (black) for a feedforward attenuation mechanism remi-
niscent of kinetic proofreading. The threshold # needs to be crossed by the early
recognition events before t expires (see above) and too slow IA in the case of
AIDS progressors (red), albeit sufficient in amplitude to cross 5, fails to do so
within the window of opportunity set by the proofreading mechanisms’ upper and
lower bounds on time. Note that, we assume here that the lower bound is defined
by the first encounter with viral particles/components thereof or immediately after,
thus is identical for the two species in this experiment, and that the upper bound is
a function of the intrinsic lifetime of prerecognition complexes assumed to be
identical in both cases as well. Thus, the only variable in the system is the speed
with which IA occurs in both species. This can be viewed as analog to the situation
of a surfer. If pathogen encounter and innate recognition as foreign is considered a
wave at the beach, then IA could be seen as a surfer getting up on his surfboard. If
the surfer fails to mount during the window of opportunity (defined by the width of
the wave-back, thus intrinsic to the wave), the surfer will sink; thus, the term west
coast model used (see Benecke et al. 2012 for a detailed discussion on this
argument). Relevance of this model stems from the following observations: SIV-
infected NHPs and HIV-infected human AIDS progressors mount their innate
immune response too slow or rather too late leading to a non-attenuation and thus
chronic IA. This unresolved innate IA wears down the system and leads conse-
quently to decline in CD4+ T-cells, the hallmark of AIDS (Pandrea et al. 2011).
Natural hosts for SIV on the other hand, such as sooty mangabeys, African green
monkeys, and mandrills display timely responses to infection leading to successful
IA and concomitant IA attenuation and, due to absence of specific humoral
responses long-term tolerance of the virus (Jacquelin et al. 2009; Bosinger et al.
2009; Favre et al. 2009; Lederer et al. 2009; Rotger et al. 2011).

Comparative transcriptome profiling between an SIV infected natural host
(here: C. sabaeus) and a progressor (here: M. mulatta) shows evidence of a lag-
time of IFN« (as proxy for innate IA) signaling in progressors (Jacquelin et al.
2009) (Fig. 2). Note that, this delay of about a week might, however, be due to
phenomena not necessarily related to the kinetics of IA, as the amplification
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kinetics of the two adapted SIV viruses might be different, or for instance, we do
not know whether or not the effective doses might be different between the two
species. Still, it seems unlikely that such before mentioned effects would entail
such profound changes in the IA kinetics, and thus this experimental finding might
be regarded as a potential support of the proposition of kinetic autoattenuation of
IA in natural hosts. It will be of outmost interest to better characterize the acti-
vation dynamics across the entire spectrum of known natural hosts and progressors
in order to contrast possible differences in the activation kinetics with human
subjects (or more likely ex vivo cellular models) representing the different
observed classes [progressor, long-term non-progressor (LTNP), elite controller
(EC)] as especially the LTNPs would be candidates of having acquired a similar
attenuation mechanism as natural hosts. In this context, particular attention should
also be given to the investigation of co-infection schemes with different pathogens
(Schreiber et al. 2011). This would then also lead to the proposition that, similarly
as to non-human primates, it is not the absence of an effective adaptive immune
response to HIV itself but the failure to control the innate immune response which
is the main driver of AIDS.

2.3 The Importance of Timing Across Scales

In conclusion, the proposition of mechanisms similar to kinetic proofreading for
the coupling between innate and adaptive immunity is appealing as it combines
simplicity with fidelity. Thereby, innate IA, with its obvious role of identifying
foreign from self, would in the same time serve as a guard against inappropriate
initiation of adaptive immunity by automatically attenuating the primary response.
In order for this model to work, however, one needs to evoke the concept of a
fading capacity to attenuate IA, and postulate that the attenuation threshold # is
never reached in AIDS progressors in time 7 (Fig. 2). Conclusive insights on the
model presented for the coupling between innate and adaptive immunity, and the
propositions regarding SIV and possibly HIV infection will require the successful
translation of molecular profiles such as the transcriptome profiles obtained in the
four cited studies into a dynamic view of the host’s cellular immunity. This might
sound simpler than it indeed is for several reasons such as experimental limitations
imposed by the model systems or the technologies at hand for monitoring
molecular events and their proxies (mRNA, signal cascade activation, metabolic
activity), but mainly as one will need to overcome the problem of integration over
multiple scales from the dynamics of single molecular events (in the micro- to
millisecond range) to events at the organ level occurring on the scale of hours to
days (please refer to the remarks made in Sect. 1). After having discussed briefly
the second example of the importance of the network dynamics in immune
responses from respiratory virus infections in Sect. 3, we will develop some ideas
of how this general problem might be partially solvable for the particular cases
discussed here (Sect. 4).
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3 Network Dynamics in Respiratory Virus Infections

Other chapters of this volume discuss in great detail the case of different respi-
ratory viruses and their interactions with their native hosts. We will, therefore,
discuss here only a single finding from recent work on a meta-analysis of host
transcriptome responses to a compendium of essentially Flu and SARS infection
scenarios. As will be seen below, the observation made by Chang et al. (2012)
pertains to host response dynamics, similarly as the studies discussed with respect
to SIV and the innate IA in different hosts. Distinctively, the respiratory virus
example does not compare different hosts for the same of differently adapted
viruses, but rather different viruses (or pathogenic states) in a single host.

3.1 Meta-analysis of Mouse Transcriptome Responses
to Respiratory Viruses

The threat of a highly lethal viral pandemic remains a major threat; the recent
SARS-CoV 2003 and the H5SN1 pandemics testify to the uncontrolled potential of
emergence of respiratory viruses with possibly devastating characteristics remi-
niscent of the 1918 Spanish Flu (Donnelly et al. 2003; Beigel et al. 2005).
Accordingly, major efforts are directed toward an understanding of the viral
determinants of pathogenicity and their possible horizontal drift on the one hand
and possible restriction factors or key modulators of pathogenicity on the side of
the host on the other.

Deriving robust and unique molecular fingerprints for physiopathologic phe-
notypes from massive parallel experimental data is not only of extraordinary value
for the understanding of pathogenicity but also a serious challenge given the
current absence of systematic procedures (Ein-Dor et al. 2005). Biologic vari-
ability and insufficient sampling of the relevant state-space at present preclude
formal approaches to molecular signature definition. A molecular signature is best
defined using the isolation principle (Gregorius 2006) as the minimum number of
biologic observables required to (i) discriminate the studied phenotype from some
(ideally: any) other existing phenotype (external isolation), (ii) differentiate suf-
ficiently between replicate analyses of the same phenotype thereby capturing
biologic variation (internal cohesiveness), (iii) be robust against technical and
biologic variability, and (iv) be of biologic relevance by representing the under-
lying more complex phenotype in its principal characteristics.

In order to advance in the definition of the hallmarks of lethal infection by
respiratory viruses, Chang et al. compiled a compendium of published individual
transcriptome studies on mouse lungs in order to identify gene signatures which
abbey by the definitions set forth above. The compendium of microarray data from
the 12 analyzed studies was composed of a total of 733 individual transcriptome
profiles, roughly equally distributed over the three physiopathological groups
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(‘high’, ‘medium’, and ‘low’ pathogenicity) and their corresponding controls. Four
different methods of meta-analysis stemming from two different philosophical
approaches were used and compared in their absolute and relative performance.
Processed data were either converted to logratios to identify genes that show
opposite regulation in HPI and LPI, or directly submitted to meta-analysis by
direct comparisons. In previous studies, both targeted and genome-wide approa-
ches have been used to identify particular host pathways deregulated during
infection. In parallel, a direct comparison of gene expression in ‘high’ and ‘low’
pathogenicity groups was performed. Statistically significantly differentially
expressed genes were compiled to result in a characteristic gene signature when
comparing the initial ‘high’ and ‘low’ groups. The fundamental difference between
the three earlier, logratio based methods, and the latter direct comparison signature
is the implicit choice of reference gene expression levels as well as the subsequent
classifier used to choose signature genes. While the former methods will select for
those genes that are uniquely/oppositely regulated in ‘high’ versus ‘low’ patho-
genicity settings, the latter will select for genes that are statistically significantly
differentially expressed between both conditions. The logratio meta-analysis
derived signatures could be, in accordance with Sonnenschein et al. (2011),
referred to as ‘digital’ and the direct comparison signature which comprises both
gene IDs and gene expression values as ‘analog’. All of the pathogenicity signa-
tures were then compared among each other and characterized individually toward
the objective to characterize responses that were present across high-pathogenic
infections (HPI) and low-pathogenic infections (LPI).

The analog pathogenicity signature (aPS), correctly classified test data from the
comparison of infection with one of two swine-origin influenza virus A strains,
pandemic HIN1 (CA/04), or a mouse-adapted lethal variant (MA1 CA/04)
(Bradel-Tretheway et al. 2011) not comprised in the initial compendium used for
the competitive meta-analyses. In-depth analysis of the aPS revealed, furthermore,
that biologic conditions classified as intermediate between HPI and LPI often
belonged in the case of MPI data to late time points after infection, and for HPI
data to early time points, leading to an analog immune response model for
respiratory virus infection. The aPS derived by comparative meta-analysis of this
respiratory virus infection compendium can be, thus, used to correctly classify host
transcriptome responses according to clinical pathogenicity. The reason why the
aPS outperforms the alternate digital pathogenicity signatures derived through the
other three meta-analysis methods is explained by the striking observation of an
analog that is continuous and correlated, host gene expression response to path-
ogenicity. Gene expression of this continuos response can be either positively or
negatively correlated with pathogenicity, the latter being only recently recognized
to exist (Kash et al. 1918; Cilloniz et al. 2010). This finding has not only technical
implications for molecular signature definition strategies, but also for the under-
standing of the physiopathology of respiratory virus infection: continuous
responses of gene networks to pathogenicity rather than different or oppositely
regulated networks specific to ‘high’ or ‘low’ pathogenicity dominate the
immunologic response of the host to viral infection which has major implications
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for medical targeting of these networks. On the other hand, the observation of
analog immune responses lends hope to the successful identification and boosting of
host innate and adaptive immune mechanisms against high pathogenicity infections.

3.2 Dynamic Interpretation of Gene Expression
and Pathogenicity Correlation

Important in this context is the possibility that infectious outcome might be
encoded by the activation dynamics of host response gene regulation. In other
words, one might have a hard time to find genes specifically responding to HPI or
LPI, but rather only different activation dynamics for genes regulated in either
case. Figure 3 illustrates the possible underlying mechanisms for such an
observation.

Comparative meta-analysis of the host transcriptome dynamics following
infection with high- or low-pathogenic respiratory viruses identified a gene
signature characteristic of the pathogenicity of the virus (Chang et al. 2012).
Highly pathogenic viruses such as influenza A subtype H5N1, reconstructed
1918 influenza A virus, and SARS-CoV thus illicit the same immune
reaction than low- and medium-pathogenic viruses, however, to a higher
degree. The observed strong correlations with pathogenicity could originate
from two different, dynamic regimes of the underlying network (Fig. 3).

In conclusion, the meta-analysis of transcriptome profiles from respiratory virus
infections reveals again critical dynamics of innate immunity at time-scales below
currently investigated scales. The possibility of similar mechanisms at work when
comparing the case of SIV infection in natural hosts (Sect. 2) and respiratory virus
infections in mice (Fig. 3 right), possibly even further strengthens the general idea
of time dynamics being of critical importance to host—pathogen interactions. In the
following section, we will ask how such dynamics can be better inferred and
analyzed using novel genome representations.

4 Integration Over Time-Scales Using Probability
Landscapes Over Genome Sequences

In what follows, we will discuss a recent proposition for a mathematical
description of a genome and associated activities. We will first argue for the need
of such a structure, then discuss the general outline of the recently proposed
structure, and finally discuss how this structure might help to further the concepts
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Fig. 3 Two alternate dynamic interpretations of the observed strong correlation between gene
expression activity and pathogenicity (Chang et al. 2012). The uncovered positive and negative
correlations between mRNA levels produced from a signature set of genes relevant to respiratory
virus infection in mice with the corresponding pathogenicity of the virus (viruses or conditions
were attributed to one of three discrete categories ‘high’, ‘medium’, and ‘low’, center) have two
possible mechanistic origins. First, as initially proposed by Chang et al. (2012), while variable in
time, a given gene at any given moment will be expressed as a function of viral pathogenicity
(left). Second, it is also possible that all the signature genes will share similar expression values
independent of the pathogenicity of the virus, in this case, however, at different moments in time
(right). These regimes are not necessarily exclusive. Note that with the current resolution of the
existing data a direct inference of which of the two regimes actually at work is impossible. Note
also that the identification of which of the two mechanisms is at work would lead to strong,
testable hypotheses, and provide directions for future experiments aiming at dissecting the gene
regulatory network(s) relevant to the viral pathogenicity. The identification of the key regulator(s)
driving the effective network and its dynamics were greatly facilitated if one could make a
prediction as to the turnover of these regulators (which can be estimated from the time-series data
for all genes). Note finally that the regime described on the right—disparity in activation (and
symmetrically repression, not illustrated)—resembles the observations made in the case of
comparative SIV infection in natural hosts versus AIDS progressors (Sect. 2, Fig. 2, opening the
exciting possibility of a similar, if not identical, phenomenon taking place in both scenarios)

discussed in the two examples above (Sects. 2, 3) by providing a basis for the
decomposition and inference over multiple time-scales (Sect. 1).

4.1 Requirements for a Mathematical Structure
Jor the Object Genome

Today, genome biology is essentially based on (linear) statistical approaches. This
is somewhat surprising as the amount of available information and experimental
data is not, nor likely will ever be in the near future, sufficient to derive proper
statistics on the object ‘genome’. The large number of different biologic conditions
will not be exploitable and the space of biologic conditions hence will remain
extremely sparsely sampled. Furthermore, it will almost nowhere reach sufficient
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density (e.g. recordings of many independent biologic replicates) to allow proper
statistics. Moreover, simultaneous observation of all relevant determinants at all
relevant scales over time is not possible, the experimental data will remain
independent observations. Statistics on those will not enable to construct causal
links rather than correlations between them. Furthermore, standard statistics is
inappropriate for the questions posed since biologic processes are not generic, and
arguments of parsimony, typicality, and natural chance of occurrence fail. Finally,
statistical descriptions per se do not provide causal relationships, and hence do not
provide comprehension of the underlying mechanisms. There are no obvious
computational remedies to these limitations due to the evolutionary (and possibly
other) feedback from the level of the higher, emergent scale down to the molecular
scale as discussed in Sect. 1 (Moore 1990; Israeli and Goldenfeld 2006).

The object genome (which includes all of its possible activities) is likely to
be ‘computationally irreducible’ (Moore 1990), meaning that if we aim at
computing the behavior generated by genomic information, we have to
perform as many operations as there are time steps, elements, and interac-
tions. There is, hence, little possible reduction of the complexity of the
biologic system genome by computational methods unless a unified, math-
ematical self-consistent structure can be formulated. Time will be one
important but not necessarily privileged dimension of such a structure.

4.2 An Emerging Proposition for a Mathematical
Genome Structure

In order to go beyond statistical approaches and, thus, to reach a level of under-
standing of genomes which is sufficient for meaningful inference of regulatory
processes the current concept of a letter-based alphabet for genome coding needs
to be revisited. Comprehension, or at least the possibility of inference of networks
and their dynamics over multiple scales is likely a prerequisite to targeting mul-
tifactorial diseases such as cancer, genetic disorders, or pathogen-induced malig-
nancies. The examples discussed above illustrate well the limitations of current
methodologies at hand. Let us, thus, first recapitulate the main features which need
to be captured by mathematical (or functional) genome representation: a genome
(i) codes for a number of molecular machines that catalyze elementary bio-
chemical reactions, and (ii) has evolved to orchestrate the molecular machines in a
manner that whatever form the organism takes in response to external or internal
stimuli the organism remains alive (Benecke 2006). This seemingly trivial concept
that any transitions from one functional (active) form of the genome/organism to
another can only happen at the condition that any intermediate represents a viable
genome/organism needs to be exploited as it is the strongest constraint on the
system. The true ‘miracle’ does not lie within the elementary machines but within
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the fact that they self-organize across different time and space scales into a
functional form whether it be at an embryonic or an adult state (Smet-Nocca et al.
2010). It is the rules of interaction (direct or indirect) that are at the essence of the
genome. These rules of interaction are coded in the genome at its sequence level,
but also on the level of its structural and spatial dynamics (for instance: activity-
dependent subnuclear localization, or localization-dependent activity). Thereby,
any elementary information in the genome (such as a single nucleotide) has a role
(even seemingly negligible) of coding for any part of the functional forms of the
genome at different time and space scales (Benecke 2006). The functional forms of
a genome are thus expressed through nonzero contributions (weights) from indi-
vidual elements which interact within a highly constrained, hence rigid structure.
Note that from a computational viewpoint, an active genome is presumably a
universal Turing machine (Benecke 2006). Recently, an initial proposition for a
mathematical representation has been made where nucleotide frequencies as well
as measurements on the activity of any part of the genome under defined biologic
conditions are simultaneously expressed as probability distributions (Lesne and
Benecke 2008a, b). This mathematical structure allows, which yet also has some
questionable properties, see below, allows to introduce concepts from algebraic
geometry for data analysis and modeling. We thereby use three independent
paradigm shifts which lead to a modified approach to the inference problem in
functional genomics (Benecke 2008).

4.3 Probability Landscapes

A genome is currently represented as a string composed of a four to six (DNA
methylation, gaps) letter alphabet. Most approaches consist of identifying meaningful
‘words’ within this text, often by trying to identify over-represented subsequences that
coincide with measurable quantities or changing quantities such as a gene, the amount
of RNA transcribed from a gene, or the presence of a gene regulatory factor or
particular chromatin modifications associated with the studied process in a given
biologic condition. The genomic sequences obtained over the past decade reveal a low
complexity of the genomic sequence, especially in non-coding regions, and conse-
quently high-fidelity statistical inference of functional elements is essentially limited
to protein coding sequences which account for only ~ 2 % of the total human
genomic sequence. Paradoxically, even what was considered to be a well-defined
concept, the notion of a gene, is being challenged by the recent discovery of short
and long, untranslated RNA sequences (microRNAs, ncRNAs), and the discovery of
increasingly complex patterns of alternate promoter and splice-site usage. The
concept of probability landscapes replaces the one-dimensional view of a genome by
a stacked structure over genome positions, where the stack contains the represen-
tation of all biologic objects and events relative to the position n along the genome
(Fig. 4). This mathematical structure gives at the same time the framework to
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Fig. 4 Probability landscapes, which include as reference set the probabilistic representation of
the genomic sequence obtained from several to many individuals, can be used to discover and
analyze longitudinal correlations efficiently among the initially heterogeneous and unrelatable
descriptions and genome-wide measurements. The structure consists of probability density
distributions stacked on any genome position n defining the vertical extension. Horizontally,
along the one-dimensional genome, a layer is generated for every biologic condition and every
experimental measure. In this schematic representation, the probability distributions for two
measures of activity of two different viruses over a five base genome is illustrated (Lesne and
Benecke 2008). These profiles than can be integrated vertically (schematized on the right) using
appropriate formalisms. A large collection of such geometric and algebraic ways to generate what
is here referred to as joint profile exist (Lesne and Benecke 2008)

analyze data, to reconstruct missing information using rigidity-like and coherence
arguments, and to express inherently multiscale causal relationships that can be used
to explain genome function. Mathematical does not mean abstract, since on the
contrary any set of experimental data or concrete interactions are transformable into
the probability distributions (Lesne and Benecke 2008a). In turn, the probability
distributions used allow the inference of a more integrated knowledge without
having to prescribe all local properties and connected relationships. Rather than
considering individual states of an active genome, probabilities describe the rele-
vance of any object mappable to the genome (for instance: physical properties of
chromatin, or transcription factor binding) to these states (Lesne and Benecke
2008a). As any relevant information on all levels, features (objects such as genes,
regulatory sequences), and experimental data can be expressed as probabilities, a
unified representation is obtained. The ensemble of probability distributions at site
n constitute the stack and horizontally, thus over all positions #n;, a profile. Finally,
rather than focusing on objects and states (or their probabilities) the aim of this form
of representation is to be able to access the transformations between the probability
distributions that govern their mechanistic, biologic relations. The set of transfor-
mations thereby constitutes the mapping functions f and ® from Fig. 1 for the
phenotypes associated with genome activity provided sufficient data have been
integrated.
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Probability landscapes provide, thus, a unified structure consisting of
probabilities (P,), and associated quality estimates (Pp,),—in the form of func-
tional probability densities (probabilities of probabilities)—to integrate any type of
relevant genomic information into a coherent annotation. Most importantly,
genomic sequence itself, its annotation with empirically derived features such as
genes and regulatory sites, and any type of functional genomics data can be
described in this manner. The rationale of this probabilistic description is not
necessarily to account for an underlying stochasticity, though for some biologic
processes this is indeed relevant, but rather to provide an efficient way to formulate
partial knowledge and turn relative data of very heterogeneous nature and origin
into absolute values and a homogeneous representation of the initial observations.
Genome probability landscapes are systematic as any type of relevant information
can be correctly and sensibly projected upon the genome positions. This projection
has a single nucleotide resolution, producing a (at least locally) continuous profile.
The proposed framework is coherent, as any information is converted without
exception into the very same structure: probabilities with associated probability
densities for local quality estimation. While the proposed representation of
information is far from optimal in terms of compression, it provides a direct,
systematic, and coherent interface for analysis, thus rendering numerical calcu-
lation efficient. The systematic nature of genome probability landscapes and their
coherent structure allows easy exchange of information between different research
teams. The simple structure of the resulting data also makes the framework easily
portable between different computing environments as there is no real need for a
solid database structure to generate, store, and handle the information provided
that the same metrics are used to generate the profiles. Note that this aspect is a
little oversimplification, as using the same metrics is not trivial when all aspects of
quality control of the raw data, missing value imputations, and normalization have
to be considered. It also appears that the concept is future compatible, as any type
of relevant information can also be included in the very same manner into the
existing landscapes (we disregard here whether or not this information makes
previous data obsolete). This latter point is certainly of heightened interest giving
the speed at which technology is developing for instance with respect to ‘deep’/
next generation-sequencing (NGS) and digital PCR. A structure that thus can
meaningfully combine ‘old’ e.g., microarray type of data with ‘new’ NGS data
will reduce the requirement for rerunning the same biologic conditions with the
latest technology. Finally, the proposition to use probability landscapes for the
integration of such data is—as it is inspired by and organized along the DNA
sequence—a natural solution. Importantly, probability profiles can also accom-
modate the description of physical properties of DNA (for instance bending and
intrinsic curvature) and chromatin fiber (local elastic constants, compactness), as
well as the conformation of its nucleosomes and topologic constraints (conserved
linking number within a loop); all these features are expected to play a key role in
for instance transcriptional regulation (Widom 1998; Lesne and Victor 2006;
Lesne and Benecke 2008a). Even nuclear dynamics could possibly be expressed
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through the location, either central or peripheral of chromatin loci within the
nucleus (Spector 2003; Cabal et al. 2006).

4.3.1 P-Landscape Based Analysis

Genome probability landscapes essentially provide the first step into processing
any raw experimental data into a unified expression suitable for systematic gen-
ome-wide integration and analysis. To reduce unnecessary formal, mathematical,
and computational complexity, we have developed methods for collapsing subsets
of the landscapes whose basic step is an analysis of the stacks at a given genome
location n (Lesne and Benecke 2008b). In the toy example given in Fig. 4, one
might for instance want to ask whether it is necessary to consider the activity
profiles of Virus~ 1 and Virus~2 as distinct or whether it is more meaningful to
pool them. In other words, does the profile of Virus~1 when jointly considered
with the one of Virus~2 provide independent information which needs to be
considered or can the one be used to rather back the other? To answer, a measure
called Kullback-Leibler divergence (Kullback and Leibler 1951) can be employed
to measure the relative contribution of either activity profile to the joint profile.
Each individual profile’s weight to the combined measure is obtained using the
average presumed frequency of these subsets (rather subpopulations). This
amounts to one example of a vertical comparison which can be performed along
the genome. Then, a longitudinal integration of the local divergencies is performed
along genome regions of relevance (e.g. over the location associated to a given
gene) allowing to analyze the feature divergence profile of a biologic condition
over the entire genome or defined intervals. This genome-wide distance measure is
meaningful, unlike the individual feature profiles. If the conditioning by any
combination of individual or averaged profiles leads to a statistically significant
divergence (suggesting that the associated subpopulation is well delineated and has
a specific signature) the profile is kept as a separate entity. In contrast, if statistical
significance is not reached, the condition is considered non-pertinent to the bio-
logic question posed as it does not provide a measurable constraint on the value of
the joint profile and can be combined with any other statistically insignificant
conditions. This process, thus, integrates and thereby collapses part of the land-
scape to restrict to statistically divergent information (whether this is also biologic
meaningful information can not be determined at this stage). Two advantages arise
in this case: (i) the complexity of the structure is reduced in a controlled manner in
so far as it is irrelevant to the biologic question investigated, and (ii) the statistical
power of the joint probability profile is increased. As shown in Lesne and Benecke
(2008b), this procedure can be performed at any interesting scale or functional
level and thus the probability landscape over the genomic sequence can be reduced
in complexity until all remaining context-dependencies reach statistical signifi-
cance at which an optimum for computational complexity and statistical power is
reached. Different biologic conditions can thereby be defined with maximum
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flexibility using separate or overlapping subsets of subconditions in a hierarchical
manner. The Kullback-Leibler divergence-based method discussed in Lesne and
Benecke (2008b) represents, thus, a systematic and simple way of testing the
statistical limits of complexity reduction and hence explanatory power of the
integrative genomics data in their respective contexts. Note that since we are
comparing the distributions of the same random variable under different condi-
tions, it is only the distance (or divergence) between the two distributions that is
meaningful. A joint probability, such as mutual information, could not be envi-
sioned. This also holds for the case of two different variables because the joint
probability distribution is inaccessible. From a general perspective, our method
represents an application of concepts related to context trees to the probability
landscape idea. Context analysis and landscape collapse thereby operate in similar
manners to Markov chains with variable length for the analysis of time-series and
historic context (Biihlmann and Wyner 1999; Maubourguet et al. 2008). We also
note that the Kullback-Leibler divergence calculation provides measures that can
be used directly for clustering of probability profiles. Clustering of probability
profiles might help to establish and analyze relatedness among data otherwise not
compared directly.

4.3.2 Expressing Time in P-Landscapes

As discussed earlier (Sect. 1), the successful integration of time over scales is one
of the current bottlenecks of a systems biology description aiming at a discovery
mechanism for mapping functions between objects and phenotypes. The two cited
examples from virology (Sects. 2, 3) underline the potentially crucial importance
of molecular dynamics and their coupling to macroscopic behavior. There are two
different possibilities to incorporate time into probability landscapes. First, explicit
integration using which will be based on directly using the different time points
from the kinetic, to stay within the perimeter of the examples from above, tran-
scriptome profiles to generate individual probability profiles now depend on time:
PE,VimS D (¢) (probability to observe activity of Virus 1 in the experimental condition
at site n and time f). It is then possible, generalizing the methodology developed
for single time P-landscapes to compare those using for instance the Kullback—
Leibler formalism, to align profiles from different biologic conditions (Virus~ 1
vs. Virus ~ 2) using mutual information optimization to determine a local or global
shift (compare Fig. 2), and finally fit a model of the evolution over time using a
stochastic operator.

Alternatively, time might be captured only abstractly, and thus indirectly.
Consider once more, the schematized behavior of the respiratory virus induced
host response signature from Fig. 3. Whatever the interpretation of the experi-
mentally measured result (center), thus whatever the underlying mechanism (rapid
or slow turnover of key regulator) in both scenarios a density (here: pathogenicity)
function over time is at the origin of the measured result. As discussed above,
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Fig. 5 Capturing time abstractly within the framework of probability landscapes (Lesne and
Benecke 2008a, b). Both proposed mechanism (rapid or slow turnover of key regulator) which
would lead to the remarkable correlation (and anti-correlation) between the expression levels of
key signature genes for respiratory virus infection as a function of the pathogenicity of the
analyzed virus lead to density distributions of gene activity with respect to time. These density
distributions are characteristic for the virus and can be expressed as probability profiles along the
host genome (here illustrated for a single genome position, which might be as discussed in
Sect. 3, either indeed a single nucleotide or a consecutive stretch of the genome associated to a
measured activity—simplest example would be the difference of resolution of NGS vs.
microarray based transcriptomics). The virus-dependent, time-abstracted profiles then can be
integrated into joint profiles using the same or similar formalisms as discussed in Sect. 4 and
Lesne and Benecke (2008b)

probability density distributions are at the basis of the P-profiles generated from
the to-be-annotated data. While so far only symmetric distributions have been
described and studied (Lesne and Benecke 2008a, b), the formalism does not
exclude the use of skewed, nontrivial distributions (Fig. 5). Furthermore, distance
or divergence measures for skewed distributions, or parts thereof, can be defined.
Thus instead of describing variability across individual measurements or different
genetic backgrounds, the Ppn part of the probability annotation would capture a
generalized evolution over time. In this manner, only a single profile would be
created for the entire time-series where the actual number of measured discrete
time points is replaced by a continuously modeled distribution. Those distributions
then can be studied in a fashion similarly as to what has been briefly discussed in
Sect. 4 and in more detail in Lesne and Benecke (2008b). Again, a number of
different ways to achieve such integration have been proposed (Selinger 2012).
Indeed, in the example of the respiratory virus infection (Sect. 3), the proposed
integration mechanism provides a means of discerning which one is the more
likely of the two possible mechanisms, and thus prioritize the experimentally
testable hypotheses.
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5 Concluding Remarks

Systems Biology is a rapidly evolving field with is receiving a great deal of
attention in the field of infectious disease research owing to the potential to pro-
vide a greater understanding of the pathogen-host interactions that control
infection phenotype and disease outcome. A key aspect of the systems approach is
the use of computational methods to collectively integrate high-throughput omics
and traditional virologic or histopathologic data into a systems-level view that
allows the identification of functional processes involved in pathogen-associated
disease and the further illumination of host targets representing key points of
control by pathogens.

Albeit having already made strong arguments in favor of a systemic analysis of
the pathogen, the host, and most importantly their joint, interdependent activity,
taking these analyses to the next level will require to overcome many current
conceptual, technical, statistical, and computational bottlenecks. A key aspect of a
higher level understanding, linking objects and mechanisms to organs and phe-
notypes, will be the integration of data on the one hand, and inference of network
structure and dynamics on the other, over multiple scales. This problem is far from
trivial, and ideas of how it can be overcome are still rare and in the early stage of
development.

The potentially defining role of the network dynamics of host—pathogen
interactions, as discussed on two recent examples, exemplifies the urgent need of
identifying solutions of how to handle time across scales. Based on a recent
proposition of a probability-theory derived approach for functional genome rep-
resentations a first glimpse of methodology that might turn out to handle at least
some of the problems arising through time disparity over scales was developed.
Obviously, this approach, and even more so generalizable ideas of overcoming
scales, will need many iterations of scientific thought and experimentation before
we will see major breakthroughs.
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