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Oxalate decarboxylase, a bicupin enzyme coordinating two essential manganese ions per subunit, cat-
alyzes the decomposition of oxalate into carbon dioxide and formate in the presence of oxygen. Current
efforts to elucidate its catalytic mechanism are focused on EPR studies of the Mn. We report on a new
immobilization strategy linking the enzyme's N-terminal His6-tag to a Zn-loaded immobilized metal
affinity resin. Activity is lowered somewhat due to the expected crowding effect. High-field EPR spectra
of free and immobilized enzyme show that the resin affects the coordination environment of the active
site Mn ions only minimally. The immobilized preparation was used to study the effect of varying pH on
the same sample. Repeated freeze-thaw cycles lead to break down of the resin beads and some enzyme
loss from the sample. However, the EPR signal increases due to higher packing efficiency on the sample
column.

& 2015 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Oxalate Decarboxylase (OxDC) isolated from Bacillus subtilis is a
member of the cupin superfamily of proteins, characterized by a
series of conserved residues that form β-barrels supporting the
binding of a range of metal-cofactors [1–3]. OxDC coordinates a
manganese ion in each of its two cupin folds [4–6]. It catalyzes the
heterolytic cleavage of the typically unreactive carbon–carbon
bond of oxalic acid, yielding formate and carbon dioxide in the
presence of dioxygen as a co-catalyst [7,8]. The enzyme also ex-
hibits a minute oxidase activity (0.2% of all turnovers), producing
another equivalent of carbon dioxide and hydrogen peroxide in the
place of formate. The ability of the enzyme to carry out two che-
mically distinct catalytic reactions has garnered much interest in
understanding its mechanistic pathway.

X-ray crystallography on OxDC points to the N-terminal man-
ganese as the active site where bound product was observed and a
flexible amino acid loop, SENS161-164, opens a solvent channel to
the Mn ion that appears to be absent at the C-terminal binding site
[5]. OxDC crystallizes as a hexamer, showing face-stacked dimers
of trimers [4,5]. Less is known about the C-terminal Mn ion which
is essential for catalysis, with proposals for it ranging from being a
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second active site [9] to merely serving a structural role [5]. Recent
EPR (electron paramagnetic resonance) spin trapping experiments
suggest that the C-terminal Mn might be the site of oxygen
binding requiring a long range electron transfer between the N-
and C-terminal sites to facilitate catalysis [10].

EPR has been used successfully to probe radical intermediates
during turnover and observing different coordination environ-
ments of the two Mn ions [6,10–15]. The resting state oxidation
number of the Mn ions is predominantly þ2 [7,15,16]. High-field
multi-frequency EPR provided evidence for pH dependent con-
formational changes as seen by changes in the Mn coordination
environment [15]. Tabares et al. found two pH-dependent forms of
the N-terminal Mn(II), site A (low pH) and B (high pH), and five
different pH-dependent forms of the C-terminal Mn(II), sites H
(high pH, 47.0), M (medium pH, 4.5–6.5), X (second intermediate
pH range 5.5–7.5), plus L and L2 (low pH), below 4.5. More recent
DFT and EPR studies on WT OxDC and the site-directed mutant
W132F by Campomanes et al. confirmed the assignments made by
Tabares et al. at high pH [11]. EPR experiments require large
amounts of highly concentrated and pure enzyme in order to give
the high signal-to-noise ratio needed for revealing subtle spec-
troscopic effects. An efficient Escherichia coli overexpression sys-
tem yields high quality enzyme in good yields, yet more com-
prehensive data sets such as full pH or redox scans are still bottle-
necked by enzyme production. This prompted us to develop a
strategy for increasing the protein concentration through
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immobilization on a metal affinity chromatography (IMAC) resin
which also allows to reuse the same sample for multiple
experiments.

IMAC resins are commonly used in protein purification using
poly(His) tags on either the N- or C-terminus of the protein [17]. A
variety of metals may be utilized for this purpose, primarily from
the first transition metal series. Due to their Lewis acidity these
metals will coordinate to the nitrogens of the His tag leading to
chelation of the metal center by one or more histidines [18]. Other
immobilization strategies using covalent linkages have also been
used for proteins [19,20] and efforts have been reported before on
immobilizing oxalate degrading enzymes for the purposes of
clinical sensing and bioremediation of oxalate [21–23]. In parti-
cular, OxDC has been immobilized on Eupergits C and the effects
of pH and temperature on the kinetic parameters tested [24].
Immobilization on Eupergits C leads to multiple attachment sites
on the protein with various side chains of the protein amino acids.
Lin et al. reported increased temperature stability of the im-
mobilized protein from 55 °C to up to 70 °C, similar pH dependent
activity profiles, a 27% decrease in kcat, and a 37% increase in KM

compared to the free enzyme. The decrease in catalytic efficiency
was attributed to the structural deformation of the protein due to
adsorption on the resin.

Herein, we report on the use of the encoded His6-tag to im-
mobilize OxDC on a Zn-IMAC resin primarily for use in EPR studies
requiring high enzyme concentrations. Zinc was chosen because it
is diamagnetic. Precedence for the use of immobilized proteins
and model systems for EPR studies exist in the literature [19,25–
29]. We report on the catalytic activity, X-band and high-field EPR
of the immobilized enzyme, as well as the use of a flow-system to
allow for in situ changes of the buffer environment, and discuss
the effects of immobilization.
2. Material and methods

2.1. Chemicals

The following chemicals were purchased from Fisher Scientific
(Pittsburg PA, ACS Grade) and used as received without further
purification: phosphoric acid, glacial acetic acid, sodium chloride,
sodium phosphate, sodium acetate, sodium hydroxide, and tris
(hydroxymethyl)aminomethane (Tris). Zinc sulfate was purchased
from Sigma Aldrich (St. Louis, MO). Uncharged Profinity IMAC re-
sin was purchased from Bio-Rad Laboratories (Hercules, CA). All
solutions were prepared utilizing 18 MΩ∙cm de-ionized water
generated by a Thermo Scientific Barnstead Nanopure model 7134.

2.2. Expression and purification of OxDC

Expression and purification of recombinant His6-tagged B.
subtilis wild-type OxDC was carried out following previously
published procedures [5–7,10,30]. To remove dissolved metals
from the preparation, Chelex 100 resin (Bio-Rad, Hercules CA) was
added to the enzyme after the serial dialysis steps. The solution
was shaken for approximately 1 h following removal of the resin.
The enzyme solution was then concentrated using Amicon Cen-
triprep YM-30 centrifugal filter units (EMD Millipore, Billerica,
MA). Concentrated enzyme samples (approximately 35–
40 mg/mL) were stored as 200 μL aliquots in Eppendorf tubes at
�80 °C until used for experiments.

2.3. Zn-IMAC preparation

IMAC columns were custom designed out of Kel-F to serve as
cryogenic EPR sample containers (4�5 mm ID�OD, 5.46 cm
length for X-band and 6.1�7.3 mm ID�OD, 3.3 cm length for
high-field). A disk of polypropylene filter paper (5 μm particle size,
Typar 3609L, Midwest Filtration LLC) with a diameter equal to the
ID was fit tightly into the bottom of each column. Resin prepara-
tion was carried out following the Profinity™ IMAC Resin Manual.
250 mL of uncharged Resin (50/50 v/v resin and solvent was added
to the column, washed for 15 min with 1% acetic acid, 0.12 M
phosphoric acid for cleaning, followed by 10 column volumes of DI
water. Further washing for another 15 min with 2 M NaCl removed
ionic contaminants followed by rinsing with 10 column volumes of
DI water. 10 column volumes of binding buffer (50 mM sodium
phosphate, 0.3 mM NaCl at pH 8.0) was then flowed through the
column, followed by 10 column volumes of 50 mM sodium acetate,
0.3 M NaCl, pH 4.0 to prepare for metal binding. Zn(II) ions were
loaded onto the column by applying 5 column volumes of 0.3 M
ZnSO4, followed by 5 column volumes of 50 mM sodium acetate,
0.3 M NaCl, pH 4.0 and 10 column volumes of DI water to rinse.
Finally, the column was equilibrated with starting buffer (50 mM
Tris–HCl, 500 mM NaCl).

WT OxDC was loaded onto the column by passing 400 mL of
40 mg/ml free enzyme solution through the column. The flow-
through solution was collected and passed through the column at
least three times to capture as much His6-tagged OxDC as possible.
The column was then re-equilibrated with starting buffer, leaving
it ready for use.

2.4. Electron paramagnetic resonance studies

Experiments were performed on a Bruker ELEXSYS E580 CW/
Pulsed or a Bruker ELEXSYS-II E500 CW X-band equipped with an
Oxford ESR900 helium flow cryostat using a Dual Mode Cavity
(Bruker ER 4116DM). The bottom 10 mm of the sample column is
carefully placed in the center of the resonator each time an ex-
periment is performed. To do this reproducibly, the collar sealing
the Kel-F rod that holds the sample column is never removed from
it during a series of experiments. Since the collar attaches to the
resonator's sample stack the sample itself is always held at the
same vertical position. Correct sample placement is also visually
inspected through the resonator window. Experimental conditions
were typically: 100 kHz modulation frequency, 10 G modulation
amplitude, 0.63 mW microwave power, and temperature set to
5 K. High-field/frequency measurements were carried out on a
variable frequency/field broadband transmission spectrometer
[31] at 406.4 GHz in a field ranging from 13.9 T to 14.9 T, 50 kHz
modulation frequency, 1 or 25 G modulation amplitude and 0.2 or
2 mT/s sweep rates for high-resolution narrow sweeps and low-
resolution wide sweeps, respectively, in a temperature range be-
tween 3 and 20 K. Simulated spectra were generated using the
EasySpin toolbox in MATLAB [32].

2.5. Enzyme kinetic assay

The Michaelis–Menten parameters of the decarboxylase activ-
ity of free and resin-bound OxDC were determined through an
end-point assay measuring the production of formate, as pre-
viously described [5,7,11]. 125 μL of protein-loaded IMAC resin
(washed and centrifuged before re-suspension to remove any un-
bound enzyme) was mixed with 875 μL of starting buffer and
constantly agitated to prevent sedimentation. Reactions were in-
itiated in a 25 °C water bath by adding 10 μL of the slurry (or
1.5 μL of free WT OxDC for the control reaction) to 99 μL buffered
oxalate solutions (acetate buffer at either pH 4.2 or pH 5.5). Low
pH is expected to diminish the protein binding capacity of the
resin because of increasing protonation of histidine (pKaE6). Ex-
periments were therefore carried out at two pH values, 4.2 and 5.5.
Similar reactions were conducted at both pH values using free WT
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OxDC as the control.

2.6. Microscopy

50–100 mL of resin slurry were placed on a microscope slide
and covered with a glass coverslip. A Zeiss PrimoVert microscope
with various magnification levels ranging from 4 to 40� was used
to observe the resin beads before and after freeze-thaw cycles.
Fig. 1. Free (black trace) and Immobilized (red trace) WT-OxDC at 5 K. Instru-
mental parameters: 100 kHz modulation frequency, 10 G modulation amplitude,
0.63 mW microwave power.
3. Results and discussion

3.1. Catalytic performance of the immobilized enzyme

Based on assays of the flow-through after protein loading, be-
tween 10 and 20 mg of enzyme was retained per mL of IMAC resin
slurry. This number varied from experiment to experiment and is
consistent with expectations based on the manufacturer's manual.
Enzyme activity was measured at pH 4.0 and 5.5 and all kinetic
parameters are reported in Table 1 (see Supplemental information,
Fig. S1 for the experimental data). The data shows no effect of
immobilization on the KM values suggesting that the active site
binding pocket is not directly affected by the resin. However, at
both pH points an approximate 4-fold decrease in catalytic effi-
ciency, kcat/KM., was observed. This is likely due to steric crowding
caused by immobilization as it becomes more difficult for the
substrate to diffuse to active sites of OxDC. After 10 freeze-thaw
cycles it can be seen that there is another approximate 4-fold
decrease in activity with no effective change in KM at pH 4.2. This
may be explained in part by the partial loss of enzyme from the
column after repeated freeze-thaw cycles. A loss in activity upon
immobilization of OxDC on Eupergit C was also reported by Lin
et al. [24]. It is exciting to see that different immobilization stra-
tegies lead to active enzyme. Immobilization of OxDC may lead to
future applications in medical technology to detect and/or remove
oxalate in vivo [33].

3.2. EPR experiments

EPR spectra were taken on immobilized as well as free OxDC in
frozen solution at 5 K. The effective enzyme concentration was
similar in both cases which led to similar EPR intensities.

Low-temperature X-band EPR spectra of OxDC show a strong
transition near gE2 and a weaker one near gE4, both of which
are split by hyperfine interaction with the 55Mn nucleus with a
coupling strength of approximately 90 G [7,12]. The gE4 signal
has been interpreted in the past as either a half-field signal of the
main gE2 center [12] or a second Mn(II) species with much
higher zero field splitting [7]. The fact that its relative intensity
compared to the main gE2 sextet is variable for different pre-
parations argues for the latter interpretation [12]. In fact, it might
well be due to the xy1 transition [34] of a C-terminal Mn(II) site
with a fine structure parameter |D| of the order of 4 GHz [15].

The two spectra in Fig. 1 look very similar. All EPR peaks seen in
Table 1
Michaelis–Menten kinetics of free and immobilized OxDC (pH in parentheses).

Free OxDC (4.2) Immobilized OxDC (4.2) Free OxDC (

Enzyme concentration [μM] 7. 2 0. 2± 19. 1 0. 4± 7. 2 0. 2±
Vmax [mM/s] 1. 13 0. 09± 1. 08 0. 05± 0. 076 0. 0±
Vmax [U/mg] 215 17± 77 4± 14. 4 0. 9±
KM [mM] 12 3± 16 2± 7 1±
kcat [s�1] 158 13± 56 3± 10. 6 0. 7±
kcat/KM [s�1 M�1] 13000 3000± 3600 500± 1600 300±
the free enzyme are reproduced in the spectrum of the im-
mobilized sample with small variations in relative intensity. Since
X-band EPR of Mn(II) is difficult to simulate for medium to large
fine structure parameters, we used high-field EPR for further
comparison. We interpret our spectra in terms of prior assign-
ments made using high-field EPR on OxDC as a function of pH
[15,16]. The corresponding EPR parameters are listed in Table 2.
These experiments were initially performed at 3 K, the lowest
temperature the helium flow cryostat was able to support, in order
to focus on the transitions between the higher spin manifold,
mS¼�5/22�3/2 which are more sensitive to the magnitude of
the fine structure than the central sextet transitions [15]. Fig. 2
demonstrates that the signals are comparable in shape and extent
and clearly originate from the same species of Mn(II) with an
approximate DE�1.1 GHz.

Similar agreement between free and immobilized enzyme was
obtained in high-field EPR spectra performed with the sample
poised at low pH giving rise to species A in the N-terminal site (see
Supplemental information, Fig. S2). Fig. 3 shows the pH depen-
dence of the central sextet of lines originating from the
mS¼�1/22þ1/2 transitions taken at 20 K in high-resolution
mode (modulation amplitude of 1 G). These signals reflect pri-
marily species with small fine structure splitting |D|o1.5 GHz, i.e.,
the N-terminal Mn(II) [15]. In the case of the immobilized enzyme
spectra were taken on the same sample, repeatedly frozen and
thawed. The pH change was achieved by flushing the sample with
buffer of the desired pH. For free enzyme small aliquots of base
(potassium hydroxide) were added to the sample and the resulting
pH measured between successive experiments. This leads to a
small dilution effect for the free sample while the EPR intensity of
the immobilized sample should potentially be free of dilution ef-
fects, although see below for intensity effects.

At high pH a single sextet pattern is observed and is identified
5.5) Immobilized OxDC (5.5) Immobilized OxDC after 10 freeze-thaw cycles
(4.2)

19. 1 0. 4± 10 1±
05 0. 054 0. 007± 0. 12 0. 03±

3. 9 0. 5± 16. 0 4. 0±
8 3± 15 7±
2. 8 0. 3± 12 3±
400 100± 800 400±
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as site B of the N-terminal Mn. At lower pH, low field shoulders
appear in both data sets and may be interpreted as either of the
two intermediate pH sites of the C-terminal Mn(II), M or X, ob-
served by Tabares et al. [15]. As the pH is further lowered in the
range of 4–6, the presence of a new species becomes evident due
to the decrease in the zero-field splitting, specifically one or both
of the mid pH C-terminal species that become prominent in the
pH5 to pH6 range [15]. Simulations of these sites have been in-
cluded in Fig. 3.

Upon closer inspection, the immobilized enzyme (Fig. 3, right
Table 2
Site specific zero field splitting parameters of Mn(II) sites in WT-OxDC [15].

Site Species pH range g (iso) A (MHz) D (MHz) E (MHz)

N-term A 4–6 2.00088 252 �1350 230
N-term B 7–9 2.00077 253 �1110 300
C-term H 7–9 2.00080 250 10730 1700
C-term X 5.5–7 2.00080 251 1400 340
C-term M 4.5–6.5 2.00080 251 �1500 450
C-term L 4–4.5 2.00086 251 4170 720
C-term L2 4 2.00078 252 5060 250

Fig. 2. 406.4 GHz HF-EPR at 3 K of free enzyme at pH 8.42 (red) and immobilized at
pH 8.50 (black). The simulation (blue) is based on parameters of site B by Tabares
et al. [15] Instrumental parameters: 50 kHz modulation frequency, 25 G modula-
tion amplitude, 2 mT/s sweep rate. Simulation parameters: g¼2.00077,
A¼253 MHz, D¼�1100 MHz, E¼300 MHz.

Fig. 3. pH dependence of the 406.4 GHz HF-EPR at 20 K spectra of free enzyme (left pane
Instrumental parameters: 50 kHz modulation frequency, 1 G modulation amplitude, 0.2
panel) shows a slightly different trend compared to the free ver-
sion. The intermediate site(s) become prominent at lower pH va-
lues compared to the free enzyme indicating a slightly different pH
speciation. At present it is not clear what if any catalytic sig-
nificance these intermediate pH sites have or whether their ob-
servation depends on the direction in which the pH is being
changed (moving up as in our free enzyme sample, or moving
down as in the immobilized preparation).

Experiments were carried out to detect the high pH C-terminal
site H (see Supplemental information, Fig. S3). Its |D| of approxi-
mately 10.7 GHz is so large because it corresponds to a less sym-
metric pentacoordinated Mn(II) similar to what has been seen in
MnSOD [35]. It is observed in both the free and immobilized en-
zyme preparation.

Taken overall, both X-band and high-field EPR demonstrate
that immobilization of OxDC has only minor spectral con-
sequences paving the way for the use of immobilized enzyme to
gather large EPR data sets where pH, redox potential, partial
oxygen pressure, etc., are varied for the same sample over a large
parameter range.

3.3. Freeze-thaw effects

In principle, immobilization allows to reuse the same sample
while changing the external conditions for the protein. However,
protein retention may become an issue upon repeated wash cycles
because His6-tag binding to the resin is an equilibrium. The me-
chanical integrity of the polystyrene resin beads may also be
compromised upon repeated freeze-thaw cycles with unwanted
side effects. We performed control experiments where loaded
resin was subjected to repeated freeze-thaw-wash cycles while
monitoring the low temperature EPR signals and taking aliquots to
observe any damage to the beads under a microscope. Between
each freeze thaw cycle, 10 column volumes of starting buffer was
flowed through the column. The flow-through was saved and
analyzed for protein released utilizing the Bradford assay. The
amount of protein remaining on the column was calculated and is
reported in Table 3 (Fig. S4).

The sample experiences a steady decrease of protein upon re-
peated freeze-thaw-wash cycles. Surprisingly, the EPR intensity is
increasing throughout this sequence. We checked that Mn(II) itself
is not retained on the resin, excluding the possibility of denatured
protein leaving its Mn behind (Fig. S5). Since the X-band EPR
spectrum is not significantly changed upon subsequent freeze-
thaw cycles, we can exclude changes in Mn coordination induced
by the process.

Fig. 4 shows representative micrographs of the resin before and
l), immobilized (right panel). Simulations for sites M and X are shown at the bottom.
mT/s sweep rate.
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after freezing.
Fresh IMAC Profinity resin kept at 4 °C consists of spherical

polymeric UNOsphere beads of various sizes between 51 and
63 mm. In Fig. 4A and C, micrographs of the resin beads are shown
under 20� , and 4� magnification. Prior to freezing the beads
exhibit a consistent spherical shape. After several cycles, the beads
show significant fracturing as seen in Fig. 4B (black arrows) and
4D. Many of the large beads are broken into smaller, misshapen
pieces, and could potentially lead to higher surface area and
tighter packing on the column. These smaller pieces may settle at
the bottom of the column extending into the sensitive part of our
rectangular TE102 resonator (approximately the central 10 mm),
affording higher protein density. This breakage is expected due to
the brittleness of the polystyrene beads. The changes in resin
morphology may also explain the gradual loss of enzyme over the
course of various freeze-thaw cycles since very small fragments
may not be retained by the 5 μm filter. A small increase in the EPR
intensity may also be explained by the magnetic dilution that
comes with lower enzyme concentration due to losses after mul-
tiple freeze-thaw-flush cycles.

Our experiments on OxDC have demonstrated that the
Table 3
Total protein on IMAC resin after initial loading and
subsequent freeze-thaw cycles.

Freeze-thaw cycles IMAC-bound OxDC (mg)

0 13.7
1 10.9
2 9.9
3 8.9
4 8.4
5 7.7
6 7.0

Fig. 4. Comparison of fresh, unfrozen, Zn-loaded resin observed under 20� (A) and 4�
observed under 20� (B) and 4� magnification (D).
N-terminal His6-tag can be used to immobilize OxDC while pre-
serving catalytic activity. The advantage of this method is that no
further chemical step is needed for immobilization. Similar effec-
tive enzyme concentrations as with free enzyme in solution are
obtained. The solid support allows use of a flow column where
enzyme can be reused multiple times in a given experiment while
external conditions such as pH are varied. The method is not re-
commended for quantitative EPR at cryogenic temperatures be-
cause repeated freeze-thaw-wash cycles lead to fracturing of resin
beads, loss of enzyme from the column, and EPR signal enhance-
ment due to denser packing of the fractured beads. We are cur-
rently exploring alternative immobilization techniques for quan-
titative EPR [36].
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