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Abstract

Background: More than 200,000 new cases of leprosy were reported by 105 countries in 2011. The disease is a public health
problem in Brazil, particularly within high-burden pockets in the Amazon region where leprosy is hyperendemic among
children.

Methodology: We applied geographic information systems and spatial analysis to determine the spatio-temporal pattern of
leprosy cases in a hyperendemic municipality of the Brazilian Amazon region (Castanhal). Moreover, we performed active
surveillance to collect clinical, epidemiological and serological data of the household contacts of people affected by leprosy
and school children in the general population. The occurrence of subclinical infection and overt disease among the
evaluated individuals was correlated with the spatio-temporal pattern of leprosy.

Principal Findings: The pattern of leprosy cases showed significant spatio-temporal heterogeneity (p,0.01). Considering
499 mapped cases, we found spatial clusters of high and low detection rates and spatial autocorrelation of individual cases
at fine spatio-temporal scales. The relative risk of contracting leprosy in one specific cluster with a high detection rate is
almost four times the risk in the areas of low detection rate (RR = 3.86; 95% CI = 2.26–6.59; p,0.0001). Eight new cases were
detected among 302 evaluated household contacts: two living in areas of clusters of high detection rate and six in
hyperendemic census tracts. Of 188 examined students, 134 (71.3%) lived in hyperendemic areas, 120 (63.8%) were dwelling
less than 100 meters of at least one reported leprosy case, 125 (66.5%) showed immunological evidence (positive anti-PGL-I
IgM titer) of subclinical infection, and 9 (4.8%) were diagnosed with leprosy (8 within 200 meters of a case living in the same
area).

Conclusions/Significance: Spatial analysis provided a better understanding of the high rate of early childhood leprosy
transmission in this region. These findings can be applied to guide leprosy control programs to target intervention to high
risk areas.
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Introduction

Leprosy is a chronic granulomatous infectious disease caused by

the obligate intracellular organism Mycobacterium leprae that affects

mainly the skin and peripheral nerves, which can lead to severe

physical disabilities and deformities if not diagnosed and

appropriately treated with multidrug therapy (MDT) in its early

stages. Evidences suggest that M. leprae can spread from person to

person through nasal and oral droplets and this is considered to be

the main route of transmission, especially among household

contacts of untreated multibacillary (MB) patients. M. leprae

multiplies very slowly (12–14 days) and the mean incubation

period of the disease is about three to five years, but symptoms can

take as long as 30 years to appear. Early detection and properly

MDT treatment are the key elements of leprosy control strategy

[1].

Although leprosy has been successfully suppressed in developed

countries, 219,075 new cases in 105 countries were detected in

2011, as reported to the World Health Organization (WHO), with

India, Brazil and Indonesia contributing 83% of all new cases [2].

Brazil, with 33,955 new cases detected in 2011 (according to the

official numbers of the Brazilian Ministry of Health), has one of the
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highest annual case detection rates in the world (17.65/100,000

people), and the prevalence rate has yet to be reduced below the

threshold of 1/10,000 people – the level at which leprosy would be

considered ‘‘eliminated’’ as a public health problem [2].

The spatial distribution of leprosy in Brazil is heterogeneous: the

more socioeconomically developed states in the south have

achieved the elimination target, though high-disease burden

pockets still remain in North, Central-West and Northeast Brazil

[3]. These high-burden areas encompass 1,173 municipalities

(21% of all Brazilian municipalities), approximately 17% of the

total national population and 53.5% of all Brazilian leprosy cases

detected between 2005 and 2007 [4]. Most of the areas with

spatial clusters of cases are in the Brazilian Amazon, long

recognized as a highly endemic leprosy area [3–6].

More than 7.5 million people live in the state of Pará, located in

the Amazon region. This state is hyperendemic for leprosy both

among the general population (51.1/100,000 people) and among

children ,15 years old (18.3/100,000 people). These annual

detection rates are much higher than the Brazilian averages of

17.6 and 5.2 per 100,000, respectively, in 2011 [7]. Moreover,

these rates can be considered an underestimation of the real

situation in Pará because only 42% of the population is covered by

the primary health care service, responsible for leprosy control

implementation and active case finding [8].

Leprosy in children is strongly correlated with recent disease

and active foci of transmission in the community, particularly

within families living in the same household, reflecting the

inefficiency of local control programs for the timely detection of

new cases and prompt MDT treatment, which would break the

continuous spread of the disease [9]. Furthermore, the prevalence

of undiagnosed leprosy in the general population has been

estimated to be much more in highly endemic areas, ranging

from two to eight times higher than the registered prevalence [10–

13]. A recent cross-sectional study of 1,592 randomly selected

school children from 8 hyperendemic municipalities in Pará

revealed that 4% were diagnosed with leprosy based on clinical

signs and symptoms [14]. By means of an ELISA test to determine

the serological titer of IgM anti-PGL-I (the M. leprae-specific

phenolic glycolipid-I antigen), 48.8% of the students were positive,

indicating immunological evidence of subclinical infection. Indeed,

it was estimated that there may be as many as 80,000 undiagnosed

leprosy cases among Pará students [14]. Moreover, it was

demonstrated that 2.6% of the household contacts of those people

affected by leprosy during the last 5 years in Pará also have leprosy

and that 39% of them have a subclinical infection of M. leprae [15].

Individuals who have a positive antibody titer to PGL-I have an

estimated 8.6-fold higher risk of developing leprosy than those who

are seronegative [16].This scenario of a high hidden prevalence

and of subclinical infection urges new studies and innovative

interventional approaches.

Geographic information system (GIS) technology and spatial

analysis have been applied to identify the distribution of leprosy at

national, regional and local levels [4,17–19]. These new analytical

tools are used to monitor epidemiological indicators over time, to

identify risk factors and clusters of high endemicity and to indicate

where additional resources should be targeted. The findings

obtained by these methods are useful to increase the effectiveness

of control programs, targeting areas of higher risk [20], which is

particularly important in regions where available public health

resources are scarce. GIS technology can also help to monitor the

extent of MDT coverage and, as in the case of other classical

tropical diseases or diseases of poverty, could play a major role in

vaccine-efficacy or chemoprophylaxis trials [21].

In a previous cross-sectional study performed in June 2010 [15],

we described the prevalence of undiagnosed leprosy and of

subclinical infection with M. leprae among household contacts and

school children in the municipality of Castanhal, located in the

Brazilian Amazon region. In the present study, we applied spatial

analysis techniques to identify the distribution of leprosy in this

hyperendemic municipality. We describe the spatio-temporal

distribution of reported cases and its correlation with the

occurrence of new cases or subclinical infection among household

contacts and school children of public schools.

Materials and Methods

Ethics statement
This study conforms to the Declaration of Helsinki and was

approved by the Institute of Health Sciences Research Ethics

Committee from the Federal University of Pará (protocol number

197/07 CEP-ICS/UFPA). All data analyzed were anonymized.

Study area
Our study was performed in Castanhal (1.29uS; 47.92uW),

located 68 kilometers NE of Belém, the capital of the Brazilian

State of Pará. The population size was 173,149 inhabitants in

2010, with 88.5% living in the urban area [22]. According to the

municipal Secretary of Health, there were 633 newly detected

leprosy cases from January 2004 to February 2010 and 132 in

2012 (24.2% among children ,15 years old). The annual case-

detection rate in the general population was 73.7/100,000

inhabitants in 2012 (roughly four times the rate for Brazil as a

whole); such a rate ranks the municipality as hyperendemic

according to the parameters designated by the Brazilian Ministry

of Health ($40/100,000) and significantly higher than Pará’s

average (51.1/100,000) [7].

The residences of people affected by leprosy in the urban area of

Castanhal and reported during the period of 2004 to February

2010 were georeferenced to produce detailed maps of the leprosy

distribution. Additionally, spatial statistical methods were applied

Author Summary

Leprosy can lead to physical disabilities and deformities if
not diagnosed and treated early. Even today, the disease
affects more than 200,000 people per year, particularly the
poorest people from developing countries, such as India,
Brazil and Indonesia. Cases among children ,15 years old
have been used as an important indicator of recent
transmission in the community. Recently, geographic
information systems and spatial analysis have become
important tools for epidemiology, helping to understand
the transmission dynamics of several diseases. In this work,
we determined the spatial and temporal distribution of
leprosy in a hyperendemic municipality of the Brazilian
Amazon region. In association with clinical, epidemiolog-
ical and serological data of household contacts and school
children in the general population, we further correlated
the occurrence of subclinical infection and overt disease
with the distribution of reported cases. We identified
heterogeneity in the distribution of leprosy, with signifi-
cant clusters of high and low detection rates. Our analysis
revealed that children with leprosy or those harboring
subclinical infection were in close proximity to spatial and
temporal clusters of leprosy cases. These findings can be
applied to guide leprosy control programs to target
intervention more systematically to areas where the risk
of leprosy is high.

Spatial Analysis of Leprosy Transmission in Amazon
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to identify patterns and possible risk factors associated with M.

leprae infection.

Sampling design and methods
Leprosy is a compulsory notifiable disease in Brazil; thus, all

patients that are detected through clinic-based passive demand,

active surveillance and so on have their clinical data and addresses

registered in the national notifiable diseases information system

(SINAN). A random sample of 90 subjects from 11 urban

neighborhoods, identified as leprosy cases from 2004 to February

2010, were electronically selected. These individuals were visited

at their homes by a team of health care professionals with

experience in treating leprosy patients. Their household contacts

were clinically assessed for signs and symptoms of leprosy, and a

sample of peripheral blood from each person was collected to

identify the prevalence of IgM antibodies against PGL-I [15].

The residential addresses and demographic and epidemiological

variables (age, gender, year of notification and operational

classification of all cases notified during the defined period) were

collected from SINAN. The exact location of each residence in the

urban area was then georeferenced using a handheld GPS

receptor (Garmin eTrex H, Olathe, KS, USA). However, not all

addresses were mapped with a GPS because many areas of

Castanhal are difficult to reach and unsafe. Those that could not

be reached were geocoded using the Brazilian national address file

for statistical purposes (http://www.censo2010.ibge.gov.br/cnefe/

) provided by the Brazilian Institute of Geography and Statistics

(IBGE); this database comprises all regular street addresses and its

respective census tract identification around the country. In

association with a high-resolution satellite imagery base map

(World Imagery, ESRI, Redlands, CA, USA), we identified the

street location inside the specific census tract. This alternative

mapping method can result in a loss of positional accuracy of up to

100 meters but allows matching a street address with its respective

census tract (the spatial unit of analysis). IBGE was also the source

for the base map of the 163 urban census tracts for this city and for

the last Brazilian demographic census conducted in 2010.

Combining information from SINAN, IBGE and field-work

mapping, it was possible to draw point pattern and kernel case

density maps, calculate the number of cases and the annual case

detection rate per census tract and identify areas with the highest

risk of leprosy. Clinical, epidemiological and serological data from

the evaluated household contacts and school children were

obtained. The subjects were clinically assessed by an experienced

leprologist to detect new cases, and their antibody titers of IgM

anti-PGL-I were determined by ELISA as described previously

[15]. We established an ELISA optical density of 0.295 as the

cutoff for being considered seropositive. The subjects were also

interviewed to identify their demographic and socio-economic

characteristics. Detailed information about sampling and eligibility

criteria can be found in Barreto et al. [15]. All maps were produced

with the spatial reference SIRGAS 2000 UTM Zone 23S using

ArcGIS 10 (ESRI, Redlands, CA, USA).

Data management and analysis
We performed spatial analyses by either grouping leprosy cases

per census tract or using the georeferenced position. To minimize the

effects of small numbers statistical instability, in addition to the

calculation of the raw annual detection rate per census tract, we also

calculated a spatially empirical Bayes (SEB) detection rate (based on

a queen spatial weight matrix) to smooth the differences between

contiguous areas, thereby increasing the stability of the data [23].

Global Moran’s I spatial autocorrelation [24] was used to investigate

the spatial clustering of the raw annual detection rate per census

tract. The statistical significance was evaluated by comparing the

observed values with the expected values under the complete spatial

randomness assumption based on 999 Monte Carlo permutations

for a significance level of 0.001. A Global Moran’s I correlogram, a

global index of spatial autocorrelation, was calculated to identify the

range within which autocorrelation is significant and the distance at

which it is highest. Local Moran’s I [24], as a local indicator of spatial

association (LISA), was applied to identify the position of significant

clusters of higher and lower detection rates.

Additionally, a Kulldorff’s spatial scan statistic [24,25] was

applied to detect the most likely cluster of cases per census tract

considering the population at risk per area. The main goal of this

analysis was to identify a collection of adjacent census tracts that

were least consistent with the hypothesis of constant risk. This

method defines circles, with radii ranging from the smallest

distance between two tracts to one-half of the width of the study

area. The method identifies a region formed by all tracts with

respective centroids that fall within the circle and tests the null

hypothesis of constant risk versus the specific alternative that the

risks within and outside this region are different [19,24].

Leprosy transmission has been described as following a pattern

called ‘‘stone-in-the-pond principle’’, whereby not only the

household contacts of a leprosy case have an increased risk of

infection but also the neighbors and the neighbors of neighbors are

at higher risk when compared to the general population, with risk

inversely decreasing with increasing distance [18,26,27]. Given

that association among cases is considered to be a fine-scale

process, we used areas with radii of 50, 100 and 200 meters

around each of the cases detected during the study period to

identify the spatial proximity of leprosy cases and students

examined during the school-based surveillance.

Furthermore, a multi-distance global spatial cluster analysis

(Ripley’s global k-function) [28] was used to identify the spatial

clusters of individual leprosy cases considering a range of distance

from 50 m to 3,000 m, with distance lags of 50 m. This method

considers all combinations of pairs of points and compares the

number of observed pairs with the number expected at all distances,

assuming a random distribution and taking into account the density

of points, borders of the study area and sample size [29,30].

A local Knox test [31] to detect the spatio-temporal interaction

of individual cases considering space lags of 50, 100 and

200 meters and time lags from 1 to 5 years was also applied.

This method tests for possible interaction between the distance

and time separating individual cases based on the number of case

pairs found within a particular time-space window [32]. In our

study we chose the space and time lags described above based on

the average leprosy incubation period (3 to 5 years) and distances

at which most of the houses of contacts are located [33]. The

expected values of the test under a null hypothesis of random case

occurrence (in space and time) were estimated by performing 999

Monte Carlo simulations.

Nonspatial statistics, such as Chi-squared (x2) [34] and Mann-

Whitney U tests [35], were applied to compare the proportion of

seropositivity and the titers of IgM anti-PGL-I, respectively, among

household contacts and school children according to the different

levels of proximity to leprosy cases or hyperendemic areas. The

relative risk of leprosy as a ratio of the probability of developing the

disease based on exposure was also calculated for specific areas of

the city according to the level of endemicity and compared to the

risk in the general population (262 contingency table) [36].

The following software were used for the statistical analyses:

Opengeoda 1.0 (GeoDa Center for Geospatial Analysis and

Computation, Tempe, AZ, USA) to calculate the spatial weight

matrix, spatially empirical Bayes detection rate per census tract

Spatial Analysis of Leprosy Transmission in Amazon
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and Local Moran’s I (LISA); Clusterseer 2.3 (Biomedware, Ann

Arbor, MI, USA) to perform the global Moran’s I test, Kulldorff’s

spatial scan statistics and Knox space-time clustering test; Point

Pattern Analysis (PPA) (San Diego State University, San Diego,

CA, USA) to obtain the Global Moran’s I correlograms; ArcGIS

to calculate Ripley’s K-function and BioEstat 5.0 (Sociedade Civil

Mamirauá, Amazonas, Brazil) to perform the nonspatial statistics.

Results

Spatial analysis
According to the SINAN database, of the 633 newly detected

leprosy cases in Castanhal between January 2004 and February

2010, 570 (90.0%) lived in the urban area and 46 (7.3%) in rural

areas; residential addresses were unavailable (missing information)

Figure 1. Population density and spatial distribution of leprosy in Castanhal. (A) Population density per km2 in the urban census tracts. (B)
Raw number of leprosy cases per census tract. (C) Number of cases normalized by the population of each census tract per year (annual raw case
detection rate per 100,000 people), classifying areas according to their level of endemicity, from low to hyperendemic, according to official
parameters. (D) Spatially empirical Bayes smoothed detection rate (based on a queen spatial weight matrix) to smooth the differences between
contiguous areas.
doi:10.1371/journal.pntd.0002665.g001
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for 17 (2.7%), and these were not included in the analysis. Of those

living in the urban area, 499 (87.5%) were mapped, half of them

directly in the field using GPS and half via remote geocoding. The

other 71 urban cases were not georeferenced due to inconsistent

information regarding their residential addresses. Seventy-one

percent of all cases were classified as MB.

Figure 1 illustrates the population density and spatial distribu-

tion of leprosy cases in the urban area of Castanhal and classifies

the census tracts according to the level of endemicity, from low to

hyperendemic, following the official parameters for the annual

detection rate. The smoothed detection rate (Figure 1D) produced

a more refined map of leprosy compared to the raw rate

(Figure 1C), decreasing the differences between the contiguous

census tracts. A correlogram of the global Moran’s I test showing

the significant (p,0.01) spatial autocorrelation of the census tracts

with the high or low raw detection rate of leprosy per 100,000

people is shown in Figure S1. Taking into account the location of

the census tract centroids, the most significant (p,0.01) clustering

distance was between 1 and 2 km (peaking at 1.5 km).

The kernel density estimation indicated large differences in the

number of cases in different areas, ranging from 0 to 191 per

square kilometer (Figure 2A). The highest case densities overlap

the census tracts with high population densities, as shown in

Figure 1A. Spatial statistics (LISA) detected a significant local

spatial association (i.e., association between similar values) between

the census tracts with high detection rates (high-high) and between

areas with low detection rates (low-low) (Figure 2B). Kulldorff’s

spatial scan statistics also indicated the most likely cluster of

leprosy cases in a specific area of the city (Figure 2C). Both

statistics showed similarity in the clustering results in one of the

areas but not in the others. Table 1 presents more detailed data

regarding the specific regions represented in Figures 1 and 2,

including the number of census tracts, population, mean

individuals per house and relative risk of leprosy compared to

the general population.

Based on our analyses, approximately 88,000 people, 57% of

the total urban population of Castanhal, lived in census tracts

classified as hyperendemic for leprosy based on the raw detection

rate. The population density per square kilometer in areas of

clustered high detection rates (Figure 2C, detected by Kulldorff’s

spatial scan statistics) was more than 2-fold higher than in areas

with lower detection rates, and the risk of contracting leprosy in

that cluster was almost four times the rate in the low-low areas

indicated by LISA (RR = 3.86; 95% CI = 2.26–6.59; p,0.0001).

Figure 2. Clusters of leprosy in Castanhal. (A) The spatial distribution of individual leprosy cases overlying the respective Kernel density
estimation layer, representing areas with a high and low density of cases per km2. (B) LISA test (local Moran’s I) characterizing areas with a statistically
significant (p,0.05) positive spatial association according to the raw detection rate. The areas marked as high-high indicate a high rate in an area
surrounded by high values of the weighted average rate of the neighboring areas, and low-low represents areas with a lower rate surrounded by
lower values. (C) The most likely cluster of leprosy detected by the Kulldorff’s spatial scan statistics (p,0.01).
doi:10.1371/journal.pntd.0002665.g002

Spatial Analysis of Leprosy Transmission in Amazon

PLOS Neglected Tropical Diseases | www.plosntds.org 5 February 2014 | Volume 8 | Issue 2 | e2665



Using a Mann-Whitney test, we also observed that the household

density (number of individuals per house) was significantly higher

(p,0.0001) in those residences with individuals affected by leprosy

(mean = 5.0; SD = 2.6) than the city average (mean = 3.8;

SD = 3.2). Hyperendemic census tract (raw detection rate) showed

the highest relative risk (RR = 3.69; 95% CI = 2.91–4.67) when

compared to the other urban areas of the city, whereas in the low-

low areas (LISA test) we observed a decrease of 54% in the risk

(RR = 0.46; 95% CI = 0.28–0.74). The Spatial Bayesian Smooth-

ing of detection rates increased the number of census tracts

classified as hyperendemic from 93 to 114. Using the raw and

smoothed rates, we calculated the number of people whom we

need to follow to detect one new case of leprosy in a cohort, and

we found that the number of those individuals nearly triples when

the smoothed rate was used instead of the raw detection rate

(Table 1).

Spatial analysis and leprosy in household contacts
A total of 302 household contacts were evaluated during

previous visits to 88 residences of people affected by leprosy [15].

Sixty-three examined contacts (20.9%) lived in areas of clustered

high detection rates of leprosy based on LISA and Kulldorff’s

spatial scan statistics. However, there were no significant

differences in the serological titer of IgM anti-PGL-I (p = 0.481)

or in the percentage of seropositivity (p = 0.471). Of the 8 new

cases detected among household contacts, 2 lived in areas of

clusters of high detection rate and 6 in hyperendemic census tracts

outside the clusters.

Spatial analysis and leprosy in children
Approximately 10% of the cases from 2004 to 2010 in

Castanhal involved children ,15 years old. Of the 499 mapped

cases, 44 were children, with 36 (82%) living in hyperendemic

areas of the city. Four public schools (two elementary and two high

schools) located in different peripheral neighborhoods were also

visited to evaluate a randomly selected sample of students (n = 188)

for the clinical signs and symptoms of leprosy and also for

subclinical infection by serological assessment of anti-PGL-I titer

by ELISA assay. All four schools visited were in the hyperendemic

census tracts: 134 of 188 (71.3%) examined students lived in

hyperendemic areas (Figure 3); 41 (21.8%) were residing within

50 meters of at least one leprosy case; and 120 (63.8%) and 178

(94.7%) were dwelling less than 100 or 200 meters, respectively,

from a known case. We did not observe significant differences in

the levels of IgM anti-PGL-I (p = 0.894) or in the seropositivity

between these three levels of proximity (p = 0.455). One hundred

and twenty five students (66.5%) were seropositive; 9 (4.8%) were

diagnosed with leprosy (8 within 200 meters of a case, 7 within

100 meters and 2 within 50 meters). Additionally, when the

students diagnosed with leprosy were visited at home, 3 more cases

were detected among their relatives, and 7 tested positive for anti-

PGL-I.

Multi-distance point pattern analysis (Ripley’s k-function)

identified a significant clustering of reported individual cases,

starting at a distance of 50 meters (Figure S2). To assure that the

remotely mapped leprosy cases (geocoded) did not affect the results

of the point pattern analysis as a function of the potential loss of

accuracy of this method (up to 100 m), we also performed a multi-

distance point pattern analysis (Ripley’s global k-function) consid-

ering only the cases mapped using GPS directly in the field,

revealing the same significant pattern of spatial clustering.

Additionally, using the Gi*(d) test, we observed no significant

clustering pattern in the underlying population considering the
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variables: total population per census tract, mean people per house

and density of people per square kilometer.

Using the Knox test, we determine that the reported cases were

also clustered in space and time and, as expected, frequently

among household contacts, as was observed in 21 houses in which

more than one case (2 or 3) shared the same residence. Table 2

displays the results of the Knox space-time clustering analysis for

the leprosy cases based on different space-time lags. We identified

up to 406 of 499 (81.3%) mapped cases that were near other cases

in both space and time, summarizing 663 space-time links in 63

clusters. Figure 4 is an expanded view of a specific region identified

as a cluster of leprosy and surrounding area, showing the space-

time links among cases (100 meters over a 3 year period) and the

spatial relationship with a surveyed school and seropositive

students. All 6 school children (3.2%) with no clinical manifesta-

tions of leprosy who tested strongly positive for anti-PGL-I (ELISA

optical density .1.000), similar to that observed in multibacillary

patients, were dwelling within 100 meters of at least one leprosy

case, consistent with the uncovered and upcoming spatio-temporal

associations.

Discussion

The pattern of leprosy cases reported from 2004 to 2010 in

Castanhal showed significant spatio-temporal heterogeneity, and

we found spatial clusters of high and low detection rates in the

urban area. Using spatial global tests, we were also able to

determine that the spatial autocorrelation of both the raw

detection rate at the census tract level and of individual cases

occurred at fine temporal and spatial scales. According to an

analysis of the spatial pattern of serological data obtained by

testing students, we ascertained that children with a high

serological titer of anti-PGL-I were in close proximity to spatial-

temporal clusters of leprosy cases. These findings can be applied to

guide leprosy control programs to target intervention to locations

with the highest risk of leprosy. De Souza Dias and colleagues [20]

described the first application of GIS tools to direct active case-

finding campaigns at a fine geographic scale in Brazil [20] and

were able to target hot spots, resulting in the enhanced detection of

new cases in addition to realizing important cost reductions for

leprosy control activities.

The surprisingly high previously undiagnosed prevalence of

leprosy and of subclinical infection with M. leprae among school

children can be explained by the close proximity of these students’

homes to detected cases. It has been shown that, in addition to

household contacts, people living in the vicinity of a leprosy case

and their social contacts have a higher risk of infection [18,26,37].

In fact, because M. leprae is highly infective but has a low

pathogenicity, most people who harbor a subclinical infection will

never develop clinical signs and symptoms of leprosy; indeed, only

about 10% of all infected individuals eventually develop leprosy

symptoms [38]. Due to the slow doubling time (13 days) and long

incubation period prior to the onset of frank disease symptoms (3–

5 years or longer), it is likely that many hidden cases exist,

although serological responses to some protein antigens have been

shown to predict disease progression up to a year prior to diagnosis

[39–43]. It has been well-established that the titer of anti-PGL-I

IgM antibody is directly correlated to the bacillary index, and that

very high titers to PGL-I and certain protein antigens, such as

LID-1 and Ag85B (ML2028) indicate a greater risk of developing

disease [27,40,43]. The main challenge is to discover which

biomarkers of infection serve as the best predictors of who will

succumb to disease. Accordingly, performing targeted surveillance

on individuals living in high endemic areas and following

Figure 3. Spatial distribution of surveyed household contacts and school children. The spatial distribution of surveyed household contacts
and school children according to their level of antibodies compared to the level of endemicity of the different census tracts.
doi:10.1371/journal.pntd.0002665.g003
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Table 2. Knox space-time clustering analysis for leprosy cases.*

Space-time lag (meter-years) Number of space-time links Number of cases
p-value (999 Monte Carlo
simulations)

50 - 1 56 91 0.013

50 - 2 69 108 0.012

100 - 1 176 226 0.010

100 - 2 224 259 0.012

100 - 3 270 289 0.019

100 - 4 296 307 0.011

200 - 2 663 406 0.009

*Only statistically significant space-time lags are shown here (p,0.05). Total number of analyzed cases = 499.
doi:10.1371/journal.pntd.0002665.t002

Figure 4. Space-time links among cases and proximity to students. An expanded view of a specific region identified as a cluster of leprosy
(see Figure 2C, Kulldorff’s spatial scan statistics), showing the space-time links among cases and the spatial relationship with a surveyed school and
seropositive students.
doi:10.1371/journal.pntd.0002665.g004
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individuals with a high titer of anti-PGL-I is a strategy that must be

implemented to perform early diagnosis, prevent physical disabil-

ities and break the chain of transmission.

A number of serological surveys have shown that the rate of anti-

PGL-I seropositivity in endemic settings correlates well with leprosy

incidence in the community [44,45]. All of the surveyed schools in

this study were located in the hyperendemic census tracts of the city.

This finding explains the absence of significant differences in the

seroprevalence or in the titer of antibodies in the students based on a

geographic location, given that nearly all (95%) of them were living

within 200 meters of a detected leprosy case.

As observed for the students, there were no differences in the

titer of anti-PGL-I or seroprevalence among the household

contacts living inside or outside a cluster of cases. This is also

not surprising, given that, even outside a cluster, all household

contacts were living in very high or hyperendemic areas and that

the most likely source of M. leprae is a close contact that shares the

same house or room. Indeed, when 942 students and 58 teachers

from Castanhal were asked if they knew a person affected by

leprosy, 17.7% of the students and 53.4% of the teachers answered

in the affirmative. In addition to this proximity, those harboring a

subclinical infection could be a potential source of contamination

to others [46], rendering such frequent-, intensive- and close-

social-contact environments, such as households and schools, as

locations that are favorable for M. leprae transmission.

Considering its total area, the Brazilian Amazon region has the

lowest population density (4.12 individuals/km2) in the country but

the highest number of people per household (3.97). This is a direct

result of poverty, which compels relatives and others to live together

for long periods of time, especially young married couples and their

children, typically under precarious sanitation conditions. Further-

more, the average household density was even higher in the

residences with a leprosy case (5.0), and, for purpose of comparison,

this population density per square kilometer within the cluster of

leprosy (9,536/km2 – Figure 2C) was as high as New York City

(10,429/km2 - http://www.census.gov). Within the context of the

wide recognition that high levels of crowding facilitate the

transmission of infectious disease [47], it is reasonable to suggest

that improvements in the socioeconomic status and living conditions

should be part of the overall leprosy control strategy.

The introduction of GIS to leprosy epidemiology brought new

insight to the concept of defining contacts based on relative

distance. The importance of performing periodic surveillance

among household contacts and including different classes of social

and neighboring contacts has been highlighted by several authors

[33,37,48]. Bakker and colleagues [18] observed increased

subclinical infection for contact groups living #75 meters of

anti-PGL-I-positive leprosy patients. Another report described that

92% of the dwellings of contacts were within a distance of

100 meters of the index patient [33]. For this study, we selected

radii of 50, 100 and 200 meters and observed significant space-

time clusters within all of these distances. Leprosy was also found

to exhibit a clustered spatio-temporal pattern in an analysis of

more than 11,000 cases for a period of 15 years in Bangladesh

[49], with most clusters having a duration of 1 or 2 years and one

cluster a 4-year time span. In our study, we observed significant

spatio-temporal clustering, even within a very fine geographic

scale, which is compatible with direct human-to-human transmis-

sion. Most of the students diagnosed with leprosy (8 of 9) lived in

close proximity to previously detected cases.

A spatially empirical Bayes smoothed case detection rate has

been used in leprosy studies to smooth the random variations in

small areas with few people (where small variations in the number

of cases results in dramatic changes in disease rates) and to

enhance the visualization of spatial patterns [17,50–52]. Smooth-

ing is also a way to estimate uncertain values for areas with no

registered cases, areas where disease is not necessarily absent but

may not have been detected due to operational limitations.

Smoothing produced a clearer map of leprosy in Castanhal but

increased the estimate of the number of people to be followed to

detect one case. We agree with Odoi and colleagues [23] that the

results obtained using spatial smoothing need to be treated with

caution because they can mask large differences between

neighboring regions.

Given that 71 (12.5%) cases in the urban area were not mapped

and analyzed in this study and considering the high prevalence of

undiagnosed cases in Castanhal, our data strongly supports the

notion that many more individuals than those presented here,

including many children ,15 years old, are currently infected with

M. leprae.

In the last decade, spatial analysis and GIS have become

important tools for understanding leprosy transmission dynamics in

resource-poor countries. Different spatial statistical methods have

been applied, including Kulldorff’s spatial scan statistics [53] and

global and local Moran’s I indices of spatial autocorrelation [54].

However, because all spatial statistics have advantages and

disadvantages, more than one method may be necessary to analyze

the data and to enable decision makers to determine the priority

areas for targeting control activities. Overlaying individual case

point maps over high-resolution satellite images from high-risk areas

(not shown here to protect the individual addresses) provides a clear

visualization of the leprosy problem and can help to optimize active

case-finding strategies and plan further clinical, epidemiological and

prophylactic studies. Additionally, combining clinical, epidemio-

logical, serological and spatial data provided a better understanding

of the transmission dynamics of leprosy at fine spatial scales and

indicated high rates of childhood leprosy transmission within

hyperendemic cities of the Brazilian Amazon region.

Supporting Information

Checklist S1 STROBE checklist.

(PDF)

Figure S1 Correlogram of global Moran’s I for the
detection rates of leprosy by census tract in the urban
area. Significant (p,0.01) spatial autocorrelation of the census

tracts with the high or low raw detection rate of leprosy per

100,000 people. Taking into account the location of the census

tract centroids, the most significant (p,0.01) clustering distance

was between 1 and 2 km (peaking at 1.5 km).

(TIF)

Figure S2 Multi-distance spatial cluster analysis (Rip-
ley’s k-function). There is significant clustering of individual

cases starting at a distance of 50 meters (p,0.01), indicating that

cases tend to be detected in close spatial proximity.

(TIF)
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