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Abstract.

BACKGROUND: Mobile rehabilitation systems for patients with gait disorder are being developed. Safety functions to prevent
patients from falling are considered during product development; however, few studies have been conducted on systems that
have been prevalidated for healthy adults prior to application to patients.

OBJECTIVE: This study analyzed the characteristics of lower extremity muscles and foot pressure in healthy adults during
unbalanced walking with differences in the speed of left and right speed using a two-belt treadmill.

METHODS: Twenty subjects performed gait motions with a difference in the weight support conditions (0% and 30%) and the
left and right lower limb speeds (1-3 km/h). Each subject’s muscular activities and foot pressure signals were collected. The gait
patterns of the faster side exhibit similar characteristics to the paralyzed leg, and the slower side is similar to the non-paralyzed
leg.

RESULTS: Weight-supporting healthy subjects showed asymmetric gait patterns, similar to hemiplegic patients, because of the
difference in the speed of the left and right side.

CONCLUSIONS: The quantitative results can be used to develop a training protocol for two-belt treadmills with differently
controlled left and right speeds for gait rehabilitation in hemiplegic patients.
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1. Introduction

Many people suffer from paralysis due to various reasons such as stroke or spinal cord injury. Patients
with hemiplegia require many types of repetitive rehabilitation training to perform daily activities. These
therapies can be physically demanding on the therapist. According to Bork et al. [1], physical therapists
often have muscular skeletal diseases. Especially gait rehabilitation, which is nearly the last step of
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rehabilitation, requires considerable labor. To reduce the labors of the physical therapist, many cutting-
edge technologies have attempted to use a gait rehabilitation training system. Many gait rehabilitation
systems have been developed for paralysis patients using robots. These have numerous advantages such
as cost effectiveness and motivating patients [2—4]. The robot gait rehabilitation systems must help
support patients’ body weight to help with balance and prevent falls as well as strengthen muscles for
walking [5]. Robot gait rehabilitation systems can be roughly divided into four sections for different
symptoms: treadmill base, foot plate base, stationery robotic base, and mobile robotic base [6]. Among
other applications, mobile robotic base gait rehabilitation systems are used for both the nearly last
step of gait rehabilitation and for daily life assistance by inducing natural walking [7-9]. To function
independently in everyday life, safety is the most important issue. For safety reasons, healthy people
without gait disability are often used for evaluating systems before allowing patients to use them. However,
these experiments are insufficient because there are many physical differences between healthy people
and paralysis patients. It is important to reduce this testing gap for developing and growing systems.

Wentink et al. [10] attempted to induce hemiplegic gait in healthy people by restraint motion of
joint angle. Choi and Park [11] used heavy clothes to imitate abnormal gait. There is a time difference
between the paralyzed and non-paralyzed legs in the stance and swing phases of hemiplegic gait, which
is rarely observed in healthy subjects. In addition, measurements of the EMG on skin like surface is
difficult because the subjects wore some clothes for restraints. To develop a two-belt treadmill for gait
rehabilitation protocol in hemiplegic patients, studies on the biomechanical analysis of asymmetrical gait
in healthy adults are insufficient.

This study aimed to analyze the characteristics of lower extremity muscle and foot pressure in healthy
adults for unbalanced walking with left and right speed difference using a two-belt treadmill. We assumed
that an asymmetric gait can be imitated by a difference in the left and right side velocities of two-belt
treadmill.

2. Experimental method
2.1. PFarticipants

Twenty healthy young male adults (25.35 &+ 3.93 years, 175.5 + 4.54 cm, 73.1 4 5.83 kg) participated
in this experiment. None of them had any experiences of lower limb injuries. The experiments were
approved by Institutional Review Boards at the respective institutions and by all participants. Each subject
provided written informed consent prior to participation (JBNU 2016-02-003).

2.2. Procedures

A two-belt treadmill with different velocities for the right and left leg was used to induce abnormal
gait. The experiments were divided into six cases, as summarized in Table 1. The body weight support
rates were given at 0% and 30% of each subject’s weight. Each case was conducted in 3 min.

2.3. Two-belt type treadmill and harness

The GAT SYSTEM Pro treadmill (Cybermedia Inc., Korea) was used to control the velocity separately
on the left and right side. The velocity can be adjusted in increments of 0.1 km/h through a display
embedded in the treadmill. The range of the velocity was 0—8 km/h. The treadmill comprised a BLDC
(Brushless direct current) motor (1.5 kW) and BLDC driver (750 W). The velocity feedback was used for
precise control even at low velocities. The bodyweight support was a harness system (BIODEX, USA)
that utilized a load cell to control bodyweight support rate by kg.
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Table 1
Experimental cases of body weight support rate and left limb and
right limb speed using two-belt treadmill

Case Leftvelocity Right velocity Body weight support rate

1 2 km/h 1 km/h 0%
2 3 km/h 1 km/h 0%
3 3 km/h 2 km/h 0%
4 2 km/h 1 km/h 30%
5 3 km/h 1 km/h 30%
6 3 km/h 2 km/h 30%

2.4. Measurements

The foot pressure and surface EMG data were collected for evaluation during asymmetrical walking.
We used the data after 1 min to reduce interference.

2.4.1. Foot pressure

The foot pressure was measured with the Pedar-X system (Novel Gmbh, Germany). The 99 sensors
embedded in the insole collected the foot pressure data, and Bluetooth communication was used. The
raw data were divided according to nine sections of foot (Hallux, Toe, 1st Metatarsal, 2nd Metatarsal,
3rd Metatarsal, Medial Arch, Lateral Arch, Medial calcaneus, and Lateral calcaneus) and then roughly
represented in two cases (1st: medal and lateral, 2nd: Anterior Posterior). Foot pressure data for the nine
sections were analyzed by dividing the anterior, posterior, medial, and lateral side of sole.

2.4.2. Surface EMG

The surface EMG was measured with a wireless type sensor, Noraxon Telemyo 2400T (NORAXON
Inc., Scottsdale, AZ, USA). The bandpass filter (cut-off frequency: 10-250 Hz) was used for EMG
signals, and the sampling rate was 1000 Hz. The EMG data were normalized with root mean square
(RMS). The EMG data of each velocity with 30% bodyweight support were normalized based on 0%
bodyweight support by each subject. The EMG data were measured in ten locations of the left and right
lower limb muscles (Rectus femoris, RF; Biceps femoris, BF; Vastus Lateralis, VL; Tibialis anterior, TA;
Lateral gastrocnemius, Lat.Gas).

2.5. Statistical analysis

The statistical analysis of foot pressure and EMG data was performed with SPSS 18.0ver. All outcome
variables were confirmed to be normally distributed by the Kolmogorov-Smirnov test. The paired t-test
used for comparing foot pressure and EMG between 0% and 30% of bodyweight supports. To determine
the correlation between each muscle and each section of foot pressure, Pearson’s correlational coefficient
was used. Every significance level (p value) was 0.05.
3. Results

3.1. Foot pressure results

The total foot pressure (Table 2, Fig. 1) was higher on the faster side than on the slower side. When
comparing pressure in one foot, the anterior was higher than posterior section on the faster side. In
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Table 2
Foot pressure results of each case
LT LT RT RT LT LT RT RT
medial lateral medial lateral anterior posterior anterior posterior
2 km-1 km
30%
Average 47.26  38.28 236.09 35.31 47.29 36.00 28.06 45.05
SD 6.97 4.55 4.77 5.55 8.48 5.25 5.61 6.03
0%
Average 48.34  46.26 4174  41.73 50.04 43.61 35.12 50.01
SD 5.07 7.18 6.18 6.28 9.64 4.54 8.57 6.23
3 km-2 km
30%
Average  50.39 4399 4183 4234 53.53 38.46 39.39 45.52
SD 6.26 5.04 5.47 5.98 6.73 5.29 7.99 6.15
0%
Average 5296 5192  46.66  46.68 57.48 46.00 43.79 50.28
SD 6.79 7.40 7.83 7.25 8.31 4.27 11.04 6.90
3 km-1 km
30%
Average  50.50 4390  38.08  35.98 55.38 36.16 28.90 46.92
SD 7.36 5.57 4.36 6.91 7.88 5.84 6.47 6.67
0%
Average 5446 5142 4247 4147 59.89 43.87 33.93 5191
SD 6.20 7.59 6.04 6.76 8.88 5.52 9.11 6.49
1 km-2 km
30%
Average  39.08  30.18 4540 41.11 26.98 43.09 46.53 38.63
SD 4.60 5.09 6.29 5.74 5.85 4.65 8.10 5.83
0%
Average 42.82  40.12  47.67 4582 35.12 49.07 50.20 42.19
SD 4.67 7.76 6.17 6.82 7.57 5.58 8.62 6.61
1 km-3 km
30%
Average  39.53  32.18  49.66  46.81 27.26 45.68 56.07 38.08
SD 5.35 5.52 7.65 6.09 5.47 5.24 9.51 5.81
0%
Average 43.13  40.15 5348  50.01 33.81 51.06 59.15 42.06
SD 4.78 7.73 7.39 7.16 6.65 5.27 9.34 5.61
2 km-3 km
30%
Average 43.75  37.10 47.05 4834 38.03 42.59 53.96 40.03
SD 6.18 5.67 6.11 5.70 6.30 6.90 7.67 6.71
0%
Average 47.56  45.07 52.12  51.39 42.39 50.91 57.12 44.95
SD 5.99 8.15 7.16 6.94 8.06 5.16 10.06 5.72

contrast, the posterior was higher than the anterior section on the slower side. Both sides of the posterior
section were statistically significant (p < 0.05). However, there was no statistical significance between the
anterior section of fast and slow sides. The medial and lateral sides of foot pressure were highly correlated
(p < 0.01) on the lateral side for both the fast and slow feet; however, there was is no correlation on
the medial sides. In cases with 30% bodyweight support, the lateral section of the faster side, medial
and lateral sections of slower side have high correlation with 0% bodyweight support (p < 0.001). The
posterior section of the faster side, anterior and posterior sides of slower side also had a correlation (p <
0.05) according to bodyweight support.
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Fig. 1. Foot pressure results.

3.2. Surface EMG results

The EMG results (Table 3, Fig. 2) showed muscle activities of normalized EMG data of 30% body
weight support in each muscle based on 0% body weight support. The RF and Lat.Gas muscles were
more activated in the faster side than the slower side. In contrast, the BF muscle was more activated in the
faster side. The TA muscle of the faster side and VL muscle of the slower side were correlated (p < 0.05).
There also had statically significances according to bodyweight support in VL, TA, and BF muscles of
both sides (p < 0.01).

4. Discussion

Perry [12] and Hesse et al. [13] reported that hemiplegic patients have shorter stance phase and long
swing phase on the sides of legs in paralysis. However, in non-paralysis, there are longer stance phase
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Table 3
EMG results of each case

LT LT LT LT LTLat. RT RT RT RT  RT Lat.
RF VLO TA BF Gas RF VLO TA BF Gas

2 km-1 km
30%
Average 1.65 0.75 039 043 1.28 1.26 069 039 0.73 1.12
SD 094 033 0.08 0.27 0.94 093 033 0.09 0.51 0.99
3 km-2 km
30%
Average 135 0.70 038 0.38 1.06 1.06 059 040 0.59 0.94
SD 079 032 0.08 0.18 0.74 0.73 027 0.10 0.36 0.71
3 km-1 km
30%
Average 145 0.72 033 032 1.08 1.06 061 0.37 0.69 0.97
SD 086 035 0.07 0.15 0.75 074 028 0.10 0.52 0.88
1 km-2 km
30%
Average 131 071 039 0.68 1.04 141 062 037 0.39 1.19
SD 079 028 0.13 0.57 0.89 076 030 0.08 0.22 0.82
1 km-3 km
30%
Average 125 0.71 040 0.75 1.00 140 070 035 0.36 1.20
SD 081 026 0.13 044 0.84 0.81 038 0.11 0.16 0.87
2 km-3 km
30%
Average 2.21 1.17 071 1.12 2.03 2.21 1.05 0.62 0.69 2.01
SD 1.51 049 0.18 0.72 1.75 1.56 054 0.15 0.33 1.46

and short swing phase on the sides of legs to compensate the abnormal walking. Adjusting the velocity
makes it possible to imitate the asymmetrical gait characteristics in a healthy subject. Because of the
velocity, the faster side of the leg has a short stance phase and a long swing phase, which is similar to the
gait characteristics in paralysis. However, there are longer stance phase and shorter swing phase in the
slower side than the faster side. This is exact opposite to that observed in the gait of hemiplegic patients,
who spend a longer time on the paralyzed leg [14,15].

The foot pressure was concentrated more on the rearfoot than the forefoot in the slower side. This means
that a pre-swing phase rarely occurs in the slower side of the leg. This is similar to the non-paralysis side
of legs in hemiplegic patients [14,15]. On the contrary, the faster side of foot pressure indicated exactly
opposite results to the slower side. The concentration on the rearfoot on the faster side is caused by the
toe-off phase; however, there is a difference in the hemiplegic patients’ gait patterns on the paralysis
side [14,15]. Because of the patients’ asymmetric patterns, the toe-off phase occurs. The asymmetry
between the anterior and posterior foot pressures is large when the velocity gap is large. In other words,
we expect that the degree of paralysis could be set by changing the velocity gap between two belts.
According to the bodyweight support, the pressure on the lateral section of the foot statically decreased in
both faster and slower sides. The decrease of pressure on the medial side of the foot pressure on slower
side was also affected. The pressures on the anterior and posterior sides of the foot significantly decreased
on both sides of the foot with bodyweight support, except on the anterior section of the faster side leg.
The dissymmetry existed even with bodyweight support.

The EMG results show that the RF and Lat.Gas muscles were more activated on the faster side than the
slower side. This is caused by the toe-off in pre-swing phase [15-17]. However, the TA and BF muscles
were more activated on the slower side than the faster side because the slower side required a longer
stance phase.
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Fig. 2. EMG results when the left side is faster than the right side.

5. Conclusion

In this study we attempted to imitate asymmetrical gait patterns using two-belt type treadmill to aid
in developing mobile a gait rehabilitation system with healthy subjects before using the system with

patients.
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We hypothesized that hemiplegic gait can be imitated using a speed difference between the left and
right sides and verified the hypothesis through the experiments. We observed that the gait pattern of the
slower side was similar to that of the non-paralyzed leg, and the gait pattern of the faster side to the
paralyzed leg in hemiplegic patients. However, the gait pattern of the faster side indicated differences
from the patients, because healthy people employ toe-off in pre-swing phase. In addition, we found that
that the greater the speed difference, the greater the asymmetry in the foot and muscles action. Therefore,
we can control the degree of paralysis by controlling this difference.

We also performed experiments with bodyweight support, which is a basic function of a gait rehabilita-
tion system. Despite the bodyweight support, asymmetry was still present in both pressure concentration
and muscles.

Despite its limitations, the proposed method improves the process of verifying novel gait rehabilitation
systems before being used by hemiplegic patients. In the future, we will apply this method to a mobile
robotic system, and we expect that we can set other asymmetrical gait patterns combined with velocity
control and bodyweight support rate between the left and right sides. The quantitative results of this study
can be used to develop a training protocol for two-belt treadmills with differently controlled speeds in the
left and right sides for gait rehabilitation for hemiplegic patients.
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