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SUMMARY

Dityrosine (DiY), via the cross-linking of tyrosine residues, is a marker of protein
oxidation, which increases with aging. Amyloid-b (Ab) forms DiY in vitro and DiY-
cross-linkedAb is found in the brains of patientswith Alzheimer disease.Metal- or
UV- catalyzed oxidation of Ab42 results in an increase in DiY cross-links. UsingDiY
as amarker of oxidation, we compare the self-assembly propensity and DiY cross-
link formation for a non-assembly competent variant of Ab42 (vAb) with wild-
typeAb42.Oxidation results in the formation of trappedwild-type Ab assemblies
with increased DiY cross-links that are unable to elongate further. Assembly-
incompetent vAb and trapped Ab assemblies are non-toxic to neuroblastoma
cells at all stages of self-assembly, in contrast to oligomeric, non-cross-linked
Ab. These findings point to a mechanism of toxicity that necessitates dynamic
self-assembly whereby trapped Ab assemblies and assembly-incompetent
variant Ab are unable to result in cell death.

INTRODUCTION

Alzheimer disease (AD) is the most common form of dementia, and it is characterized by the deposition of

amyloid-b (Ab) and Tau in extracellular plaques and intracellular neurofibrillary tangles, respectively. The

amyloid cascade hypothesis implicates the pathological accumulation of Ab and its aggregation from

monomers into oligomers and fibrils, as a key event in the development of AD (Hardy and Higgins,

1992). Many pieces of evidence have subsequently shown that the oligomeric form of Ab is the most toxic

species, resulting in a reformulated amyloid cascade hypothesis in which Ab oligomers are proposed to be

central to AD pathogenesis (Selkoe and Hardy, 2016). Indeed, accumulated evidence shows that Ab olig-

omers disrupt cellular function in cultured cells and animal models (Marshall et al., 2016; Lambert et al.,

1998; Lacor et al., 2007; Zhang et al., 2014; Selkoe and Hardy, 2016). Numerous studies have searched

for the elusive ‘‘toxic’’ species and tried to characterize its structure. For example, 12mers, *56 KDa, and

hexamers have all been implicated as specific structural species that interact with particular receptors

(e.g., NDMA) leading to downstream cell death (Lesne et al., 2006; Reed et al., 2011).

Oxidative stress has been proposed as a key mechanism that mediates Ab toxicity (Butterfield and Halli-

well, 2019; Butterfield et al., 2013) and, it is potentially one of the earliest sources of damage in human

AD (Nunomura et al., 2001). Furthermore, using a cellular model, we have shown that oxidative stress is

one of the earliest events induced by Ab oligomers (Maina et al., 2018). One of the ways that oxidative stress

causes cellular damage is through protein oxidation. The most common consequences of protein oxida-

tion include amino acid side-chain modification, protein fragmentation, and protein cross-linking (e.g.,

via dityrosine [DiY] bond formation) (Lund et al., 2011). DiY cross-linking is mediated via carbon-carbon

bonding between two proximal tyrosines, resulting in a stable, non-reversible covalent bond (Gross and

Sizer, 1959). DiY cross-linking is known to provide elasticity, strength, and stability to proteins and has

been shown to form within proteins involved with neurodegenerative diseases (e.g., Ab and a-synuclein)

(Galeazzi et al., 1999; Souza et al., 2000). Indeed, we have previously shown the colocalization of DiY

with Ab in plaques and a-synuclein in Lewy bodies in human AD and Parkinson disease brain tissue, respec-

tively (Al-Hilaly et al., 2013, 2016). In addition to DiY, other modifications such as oxidation of histidine,
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lysine, and methionine35 (met35) have been shown to occur in Ab (Kowalik-Jankowska et al., 2004; Ali et al.,

2005; Palmblad et al., 2002; Friedemann et al., 2015), whereas hydroxylated phenylalanine has been sug-

gested to form cross-links alongside DiY (Zhang et al., 2019). This indicates the potential relevance of these

modifications in disease pathogenesis or as markers of disease progression in AD.

To learn more about the importance of DiY cross-linking in AD specifically, several studies have investi-

gated the impact of DiY bond formation on Ab aggregation and toxicity, mostly using metal-catalyzed

oxidation (e.g., Cu2+/H2O2) (MCO) and peroxidase-catalyzed oxidation. Some studies have shown that

DiY cross-linking of both Ab40 and Ab42 results in the generation of toxic Ab assemblies with reduced as-

sembly speed (Barnham et al., 2004; Smith et al., 2006; Kok et al., 2013; O’malley et al., 2014, 2016; Sitkie-

wicz et al., 2014). Others have implicated DiY in the inhibition of Ab40 assembly, especially in highly oxida-

tive environments (Gu et al., 2018) and it has been demonstrated to be associated with the formation of

non-amyloidogenic Ab42 aggregates when catalyzed with a high concentration of Cu2+ (Smith et al.,

2007). However, whether DiY cross-linking is a driver, facilitator, or inhibitor of Ab self-assembly remains

unclear. Moreover, given that Ab self-assembly is rapid, the time point of the cross-linking during the as-

sembly process may influence the nature of the cross-linked Ab assemblies. Here, using MCO and UV-

induced oxidation to induce DiY cross-linking, we show that the oxidation process results in the stabiliza-

tion of Ab42 assemblies and either prevents or very significantly slows further elongation. To specifically

compare the influence of DiY cross-linking on Ab assembly, we compared the effect of oxidation on a

non-assembly competent variant Ab (vAb) (Marshall et al., 2016) and revealed that oxidation and DiY

cross-linking does not induce or promote its assembly. We show that in the absence of H2O2, CuCl2 at a

concentration similar to the concentration found around Ab plaques (~400 mM) (Lovell et al., 1998) is suffi-

cient to facilitate the DiY cross-linking and formation of Ab42 oligomers into a long-lived oligomer popu-

lation. A cell live/dead assay revealed that, unlike the self-assembling non-cross-linked Ab, oxidized DiY

containing Ab42 is non-toxic to neuron-like cells. Our results suggest that under certain conditions

in vitro, oxidation can result in trapping of intermediate species, which cannot elongate further and that

are non-toxic to neuroblastoma cells. Together with the observation that non-assembly-competent variant

Ab is non-toxic, this reinforces the importance of a continual self-assembly process in mechanisms of Ab

toxicity.
RESULTS

In Vitro Metal-Catalyzed Oxidation Results in the Formation of Dityrosine in Wild-Type and

vAb Peptides

To investigate the influence of oxidation on Ab assembly, we compared the effect of MCO using CuCl2 and

H2O2 on wild-type Ab42 and variant Ab42 (henceforth called Ab and vAb, respectively) (see Transparent

Methods in Information for Authors for more details).

DiY serves as a usefulmeasureof the levels of oxidation andwas used here to follow oxidation effects. Other side

chains can be oxidized such as Met35, which can be detected using matrix-assisted laser desorption ionization

mass spectrometry (Friedemann et al., 2015). We have previously detected DiY cross-links in Ab and a-synuclein

using a combinationof techniques and shown that DiY can reliably be detected using fluorescence spectroscopy

(Al-Hilaly et al., 2013, 2016). Here, rapid formation of DiY was detected for Ab and vAb samples that were incu-

bated with both CuCl2 and H2O2 (Ab/CuCl2/H2O2 and vAb/CuCl2/H2O2, henceforth called MCO), indicated by

the observation of a fluorescence peak at 410 nm after only 5 min. In contrast, samples incubated with CuCl2
alone or with buffer-only showed no peak at 410 nm (Figure 1A). Detection of tyrosine with an excitation/emis-

sion of 280/305 nm (following quenching using EDTA) showed that the formation of DiY was matched by a

decrease in tyrosine fluorescence in both the Ab and vAbMCO reactions comparedwith the samples incubated

with CuCl2 alone or buffer only (Figure 1B). DiY fluorescence intensity continued to increase for the MCO reac-

tions up to 2 h but did not increase further after 5 days (Figure 1C). However, by 5 days, small peaks could be

observed for samples incubated with CuCl2 alone (Figure 1D), although the DiY signal remained negligible

for buffer-only samples after 5 days incubation in the dark. Standard curve estimation of DiY content (Figure S1)

revealed that 2 hMCOof Ab and vAb induced about 5 mMand ~12 mMDiY, respectively. As each DiY is contrib-

uted to by twomolecules of Ab, the percentage of Abmolecules where Tyr is cross-linked is approximately 20%

for Ab and 48% for vAb. Incubation of Abwith CuCl2 alone for 2 h induced ~1 mMDiY, which further increased to

~2 mM at 5 days, which equates to approximately 4% of Ab molecules participating in cross-links. Ab and vAb

samples incubatedwithCuCl2 showed a decrease in tyrosine fluorescence after only 5min (Figure 1B), indicating

that the CuCl2 rapidly induces conformational changes (Roberts et al., 2012) in both Ab and vAb. This appears to
2 iScience 23, 101537, October 23, 2020



Figure 1. DiY Formation in Ab and vAb via Metal-Catalyzed Oxidation

(A–D) Freshly prepared Ab and vAb (50 mM) were incubated at 37�C, without CuCl2, with CuCl2 (400 mM), or CuCl2 in

combination with H2O2. Fluorescence spectra were collected 5 min post-incubation using fluorescent excitation

wavelength of 320 nm and emission collected between 340 and 600 nm, with DiY peak signal observed between 400 and

420 nm (A). Fluorescence spectra were also collected at 5 min using an excitation wavelength of 280 nm and emission

collected between 290 and 500, with peak tyrosine signal observed at 305 nm (B). Fluorescence spectra were collected

again at 2 h (C) and then 5 days (D) to follow DiY formation over time. A minimum of three independent experiments was

repeated to ensure the reproducibility of the findings.
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be independent of DiY cross-linking, which only starts appearing ~2 h post-incubation. Overall, this suggests

that the incubation of both Ab and vAb with CuCl2 alone or in combination with H2O2 results in the formation

of DiY cross-links. DiY formation in the different samples occurs after different lengths of time depending on

the oxidation conditions, which may impact Ab assembly properties.
Metal-Catalyzed Oxidation Influences the Assembly of Wild-Type Ab, but Does Not Affect

the Structure and Aggregation Propensity of Variant Ab

We have previously shown that DiY forms in both Ab42 oligomers and fibrils (Al-Hilaly et al., 2013). Thiofla-

vin T (Th-T) fluorescence assay was used to investigate whether DiY formation correlates with changes in the

Ab assembly (see Transparent Methods). As expected, the assembly-incompetent vAb incubated in buffer

shows no increase in Th-T fluorescence with time (Marshall et al., 2016). Wild-type Ab gave the expected Th-

T spectra showing a sigmoidal curve (Figure 2A) and the Th-T fluorescence increased further when Ab was

assembled in the presence of the metal chelator EDTA, which suggests some impact of trace metals on

assembly properties (Figure S2). However, the Ab and vAb MCO reactions showed no Th-T fluorescence

signal increase over the time frame of 50 h, indicating that either no self-assembly had taken place or

that the assembly is significantly slow enough that the threshold of Th-T detection had not been reached.

Wild-type Ab incubated with CuCl2 shows a small fluorescence signal for DiY at ~ 2 h (Figure 1C) and Th-T

spectrum showed a short lag phase (approximately up to 2 h) followed by a plateau at a low fluorescence

signal. This appears to suggest that the Ab assemblies formed become stabilized without further elonga-

tion (Figure 2A). vAb incubated with CuCl2 showed no increase in Th-T fluorescence, consistent with the

absence of assembly under these conditions.

We have previously shown that our Ab preparation method results in the generation of monomers that

assemble into oligomers detected by the oligomer-specific antibody, NU-1 (Lambert et al., 2007), before

forming fibrils and amyloid plaques (Marshall et al., 2016) (see Transparent Methods). As expected, dot

blotting with the NU-1 antibody revealed the presence of oligomers at 2 h in buffer-incubated Ab samples,

which disappeared over time (Figure 2B). In contrast, the buffer-incubated vAb reactions showed no NU-1

reactivity, indicating the absence of oligomer formation as previously reported (Figure 1F) (Marshall et al.,

2016). Ab oligomers were only minimally detected in the Ab MCO reaction at 5 min, which disappeared

over time (Figures 2B and 2C). No NU-1 reactivity was observed for vAb MCO reaction at any of the time

points measured. Interestingly, the Ab incubated with CuCl2 formed more oligomers early on, which

persisted throughout the time studied. The data are consistent with the possibility that slower oxidation

by CuCl2 facilitates Ab oligomer formation and stabilization. The formation of DiY cross-linking correlates

with this time point when Ab is found in a NU-1 affinity conformation (Figures 2B and 2C).

Circular dichroism (CD) and transmission electron microscopy (TEM) were used to study the secondary

structure and apparent morphologies of the resulting assemblies after 5 days incubation (see Transparent

Methods). Spectra from vAb under all three conditions showed a trough at 198 nm consistent with random
iScience 23, 101537, October 23, 2020 3



Figure 2. Metal-Catalyzed Oxidation Results in the Formation of Stabilized Ab Assemblies

(A–E) Th-T fluorescence was monitored for the freshly prepared Ab and vAb (50 mM) incubated at 37�C, without CuCl2, with CuCl2 (400 mM), or CuCl2 in

combination with H2O2 (A). Dot blotting using NU-1 antibody identified Ab oligomers in the Ab samples, but not in vAb reactions (B). Quantification of dot

blotting signal over time reveals that the oligomers in the CuCl2-oxidized Ab remain stable for 5 days, unlike in the other reactions in which very low NU-1

affinity signal was observed (C). CD at 5 days showed a high b-sheet content in the unoxidized Ab sample, with reduced signal for CuCl2 Ab, and CuCl2/

H2O2Ab. All vAb samples showed spectra consistent with random coil conformation (D). TEM imaging at 5 days revealed a network of fibers in the unoxidized

Ab, whereas the CuCl2 Ab showed clumped assemblies with very little fiber density and the CuCl2/H2O2 sample revealed amorphous-like assemblies.

Unoxidized vAb showed no assemblies, whereas both oxidized vAb reactions showed amorphous-like aggregates (E). A minimum of three independent

experiments was repeated to ensure the reproducibility of the findings. Scale bars, 500 nm. Error bars are expressed as GSEM.
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coil conformation. Ab in buffer showed a minimum at 218 nm consistent with an expected b-sheet confor-

mation, typical of fibrillar Ab (Figure 2D). Ab CuCl2 shows a broad but weak minimum at 218 nm, but the

signal from Ab MCO reaction is too weak for assignment of secondary structure. This may be consistent

with loss of protein from solution, which may arise from the formation of small, amorphous oligomers.

Electron micrographs showed an extensive fibril network for buffer-incubated Ab, whereas CuCl2-oxidized

Ab showed clumped assemblies with a significantly reduced fiber density, and the MCO Ab sample re-

vealed amorphous structures with very few or no fibers (Figure 2E). Buffer-incubated vAb sample showed

very few assemblies of any kind. The vAb MCO and CuCl2 reactions exhibited a few amorphous-like

clumped assemblies. The CD and TEM data suggest that the MCO-catalyzed oxidation of Ab prevents

the formation of b-sheet-rich amyloid fibrils, whereas CuCl2-catalyzed oxidation generates oligomeric

Ab assemblies with some b-sheet conformation. Taken together, the results from Th-T, dot blotting, CD,

and TEM revealed that the rapid DiY cross-linking of Ab induced through MCO correlates with the associ-

ation and trapping of Ab as intermediates and inhibits their further assembly, whereas CuCl2 facilitates the

formation and DiY cross-linking of Ab oligomers into a long-lived oligomer population. In contrast, none of

the conditions induced any assembly of vAb into amyloid fibrils. Instead, the MCO and CuCl2 reactions re-

sulted in association and trapping of vAb into amorphous assemblies that show no evidence of b-sheet

conformation.
Photo-oxidation Induces Dityrosine Cross-Linking in Wild-Type Ab and vAb Peptides

The aforementioned results suggest that copper contributes to DiY formation. However, previous studies

have suggested that metals influence the assembly of Ab (Barritt and Viles, 2015; Gu et al., 2018; Smith

et al., 2006, 2007), and this is supported by the increased assembly of Ab in the presence of EDTA
4 iScience 23, 101537, October 23, 2020



Figure 3. DiY Formation in Ab and vAb via UV Photo-oxidation

(A–C) Freshly prepared Ab and vAb (50 mM) were incubated under UV. Fluorescence spectra were collected 5 min post-

incubation using fluorescent excitation wavelength of 320 nm and emission collected between 340 and 600 nm, with DiY

peak signal observed between 400 and 420 nm after 5 min of incubation (A), which increased following 2 h of incubation

(B). Fluorescence intensity at 410 nm against time showed that incubation of the 2 h UV-exposed Ab and vAb samples in

the dark resulted in further increase in DiY formation in the absence of the UV (C). The Ab and vAb samples that were not

exposed to UV showed no DiY signal. A minimum of three independent experiments was repeated to ensure the

reproducibility of the findings.
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(Figure S2). Therefore, to avoid the complication of using metals, which may influence assembly, UV photo-

oxidation was used to oxidize Ab and vAb (Figure 3) (see Transparent Methods). UV oxidation of amino

acids is limited to direct damage to Trp, Tyr, His, Cys Figure 7and cystine, but Met can be oxidized indi-

rectly, usually in the presence of a sensitizer (Pattison et al., 2012). As before, the measurement of DiY for-

mation was used to follow oxidation. Fluorescence spectra showed a small peak at 410 nm for both Ab and

vAb after only 5 min incubation in UV. However, the intensity was lower than under MCO conditions (Fig-

ure 3A). After 2 h of UV exposure, a significant increase in intensity at 410 nm was observed (Figure 3B).

Calculation of DiY content using the standard curve shown in Figure S1 suggested that approximately

12% of Ab and 14% of vAb molecules were involved in DiY, which is lower than following MCO treatment.

After 2 h of UV exposure, samples were stored in the dark but despite this the intensity continued to in-

crease for 120 h following incubation (18% DiY) (Figure 3C). These results show that UV photo-oxidation

can induce DiY cross-linking for Ab and vAb peptides. The results are compared with peptides incubated

without UV exposure for reference. Oxidation of other residues by the UV irradiation can not be ruled out,

but here we focus on DiY to monitor the level of oxidation.
Photo-oxidization Influences the Assembly of Wild-Type Ab, but Does Not Impact on the

Structure and Assembly of vAb

Th-T fluorescence was used to monitor the assembly of Ab and vAb following UV photo-oxidation for 2 h.

The results are compared with peptides incubated without UV exposure for reference. A small increase in

Th-T fluorescence was observed for Ab+UV after a lag phase of 25 h, which may represent a slow assembly

of the Ab assemblies that escaped the less-efficient UV oxidation, whereas vAb + UV showed no fluores-

cence intensity (Figure 4A). NU-1 dot blots showed no reactivity to vAb + UV (Figure 4B). The Ab+UV sam-

ple showed lower level NU-1 reactivity at 2 h compared with the Ab control (Figure 4B), and reactivity dis-

appeared after 5 days post-UV incubation in the cross-linked Ab+UV sample, even though a small quantity

of oligomers could still be detected in the control Ab sample (Figure 4B). CD showed spectra consistent

with random coil conformation for both vAb and Ab incubated under UV and a loss of signal that was

more evident for Ab than for vAb (Figure 4C). By TEM, Ab+UV and vAb+UV again showed small assemblies

at 2 h, which are still present alongside occasionally clumped amorphous-like assemblies after 5 days (Fig-

ures 4D and 4E). Similar to the results from MCO (Figure 2B), this suggests that the UV-induced DiY cross-

linking correlates with the stabilization of Ab and vAb in a trapped, assembly-incompetent species. Other

oxidation reactions may also be involved.
Co-incubation with Oxidized Ab Slows the Assembly of Freshly Prepared Ab

Our findings thus far suggest that oxidation results in the formation of DiY cross-links and results in stabi-

lized Ab assemblies that are prevented from further elongation into amyloid fibrils. To investigate this
iScience 23, 101537, October 23, 2020 5



Figure 4. UV-Induced DiY Cross-Linking of Early Ab Assemblies Correlates with Formation of Stabilized

Assemblies

(A) Th-T fluorescence spectrum shows the expected increase in fluorescence for assembling Ab, but Ab+UV Th-T

fluorescence was significantly reduced. vAb incubated in the absence or presence UV showed no Th-T fluorescence.

(B) Dot blotting using NU-1 antibody shows binding suggesting fewer oligomers in the oxidized Ab+UV than in the

unoxidized Ab sample. No binding of NU-1 was observed for Ab+UV 5 days post-UV exposure, but a small signal was

detected in the Ab-UV sample.

(C) CD at 5 days showed a high b-sheet content in the Ab sample, whereas the oxidized Ab+UV showed a loss of signal but

indicated some random coil. Oxidized and unoxidized vAb samples showed random coil conformation.

(D) TEM after 2 h and 5 days showed that the unoxidized Ab at 2 h formed oligomers, which transformed into a network of

fibers at 5 days. The oxidized Ab+UV samples formed small assemblies at 2 h, some of which developed into amorphous-

like assemblies at 5 days.

(E) vAb does not assemble into amyloid fibrils, but vAb+UV forms some amorphous aggregates after 5 days. A minimum

of three independent experiments was repeated to ensure the reproducibility of the findings. Scale bars, 500 nm.
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further, DiY cross-linking was induced in Ab using 2 h UV exposure, and the sample was then incubated with

an equal concentration of freshly prepared Ab (20 mM:20 mM) and compared with a 40 mM Ab sample not

exposed to UV (see Transparent Methods for further detail). Fluorescence spectroscopy confirms the pres-

ence of DiY in the 40 mMAb sample exposed to UV, and the signal reduced by half when the oxidized 40 mM

Ab was diluted to 20 mM (Figure 5A); 20 mM oxidized Ab added to 20 mM freshly prepared unoxidized Ab

(Ab+UV:Ab) revealed the presence of DiY signal (Figure 5A). Interestingly, the levels of DiY in the Ab+UV:Ab

mixture was higher than that of 20 mMoxidized Ab, suggesting that the presence of the UV-incubated Ab in

the environment results in the cross-linking of the freshly prepared Ab following the co-incubation. Th-T

fluorescence showed that the 40 mM Ab sample showed a shorter lag phase and higher Th-T signal

compared with the 20 mM Ab sample confirming the expected concentration-dependent effect. The

20 mM and 40 mM oxidized Ab samples showed no Th-T fluorescence intensity, similar to previous obser-

vations. When the Ab mixtures were incubated together (Ab+UV:Ab 1:1), the mixture showed a longer

lag phase (+20 h) but reached a similar Th-T intensity signal to the 20 mM unoxidized sample at 50 h.
6 iScience 23, 101537, October 23, 2020



Figure 5. Co-incubation with Photo-oxidized, DiY-Cross-Linked Ab Assemblies Slows the Aggregation of Freshly

Prepared Ab

(A) DiY fluorescence was measured for freshly prepared Ab (40 and 20 mM) and Ab+UV:Ab (20 mM: 20 mM) mixture

immediately after co-incubation of freshly prepared Ab with DiY-cross-linked Ab. DiY signal was not detected in

unoxidized freshly prepared 40 and 20 mM Ab but was induced in 2 h UV-oxidized (Ab+UV) samples and in the mixture.

(B) Th-T fluorescence showed that the unoxidized 40 and 20 mM Ab assemble at different rates, which was significantly

delayed for Ab+UV:Ab-UV mixture and completely absent in the oxidized 40 and 20 mM Ab samples.

(C) TEM imaging at 4 days revealed the presence of fibrils in both unoxidized 40 and 20 mM Ab, which was significantly

reduced in the Ab+UV:Ab-UV mixture and absent in the oxidized 40 and 20 mM Ab samples. A minimum of three

independent experiments was repeated to ensure the reproducibility of the findings. Scale bars, 500 nm.
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However, this was very significantly lower than the 40 mM unoxidized Ab sample (Figure 5B). This suggests

inhibition of self-assembly in the Ab+UV:Ab-UV mixture. At 4 days, TEM imaging revealed the presence of

Ab fibrils in both 20 and 40 mM Ab samples, which were not detected in the photo-oxidized samples (Fig-

ure 5C). Only scant fibrils and smaller Ab assemblies could be detected in the Ab+UV:Ab mixture, further

confirming a reduced assembly in this mixture (Figure 5C). Taken together, this suggests that the incuba-

tion of freshly prepared Ab with photo-oxidized Ab results in an increase in DiY cross-linking and leads to

the stabilization of some Ab assemblies, resulting in the slower aggregation kinetics observed and preven-

tion of elongation. DiY-containing, oxidized Ab species may bind to Ab and inhibit further elongation.
Photo-oxidation of Pre-formed Ab Assemblies Slows Further Assembly of Ab Oligomers/

Protofibrils and Prolongs Their Half-Life

Our findings thus far strongly suggest that oxidation stabilizes and strongly slows the aggregation and

further elongation of Ab assemblies. However, it is not clear whether these could also alter the assembly

of preformed Ab assemblies. To investigate this, Ab (50 mM) was freshly prepared and allowed to assemble

for 24 h (henceforth called aAb). aAb samples were exposed for 2 h to UV to induce DiY cross-linking (aAb+-

UV) (Figure 6) (see Transparent Methods). Unlike samples that were not exposed to UV (aAb), the aAb+UV

samples showed an increasing intensity arising from DiY, which continued to increase even after incubation

in the dark following UV exposure (Figure 6A). Th-T fluorescence intensity showed that aAb continues to

assemble, reaching plateau after approximately 15 h (Figure 6B). However, DiY cross-linking induced by

UV correlates with the inhibition of further assembly of the aAb+UV for ~40 h, suggesting that the

photo-oxidation leads to the stabilization or trapping of aAb+UV (Figure 6B). A gradual increase in fluores-

cence is observed beyond 40 h, which may indicate delayed assembly. Dot blotting using NU-1 revealed a

similar level of oligomers in the oxidized and unoxidized aAb samples at the starting point (Figure 6C).

Interestingly, the oligomers in the oxidized aAb+UV sample persisted beyond 4 days, unlike the unoxidized

aAb sample, which showed a very low level of oligomers at the later time point (Figure 6C). TEM imaging

showed the presence of oligomeric assemblies and scant fibers in the oxidized aAb+UV sample, compared
iScience 23, 101537, October 23, 2020 7



Figure 6. Photo-oxidation of Pre-formed Ab (aAb) (24 h) Assemblies Slows Further Assembly of Ab Oligomers/

Protofibrils and Prolongs the Half-Life of the Oligomers

(A) DiY signal was detected in the oxidized aAb+UV sample, which continued over time. Unoxidized aAb samples showed

no DiY signal.

(B) Th-T fluorescence showed that the unoxidized aAb continues to assemble, whereas the oxidized aAb+UV became

significantly inhibited from further elongation up to 40 h.

(C) Dot blotting using NU-1 antibody reveals the presence of oligomers in the unoxidized and oxidized aAb at the starting

time point. However, the oligomers are still strongly detected in the oxidized aAb+UV at 4 days, unlike in the unoxidized

samples.

(D) TEM imaging at 4 days revealed the presence of fibrils in the unoxidized aAb sample, whereas the oxidized aAb+UV

showed oligomers and a reduced number of fibrils. A minimum of three independent experiments was repeated to

ensure the reproducibility of the findings. Scale bars, 500 nm
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with the unoxidized aAb, which showed extensive fibril network. Together, these data provide further ev-

idence indicating that photo-oxidation of pre-formed Ab fibrils leads to the formation of DiY cross-links and

results in stabilization of aAb assemblies, which prevent or delay further elongation. This is similar to the

stabilization of Ab oligomers observed following the slower/milder DiY cross-linking in the Ab/CuCl2 prep-

aration, which occurred after the formation of Ab oligomers (Figures 2B and 2C).
Self-Assembly Is Important for Ab Toxicity

Multiple pieces of evidence have shown the detrimental role of Ab on neuronal function that eventually

leads to neuronal death (Marshall et al., 2016; Lambert et al., 1998; Lacor et al., 2007; Zhang et al., 2014;

Selkoe and Hardy, 2016). Our Th-T, dot blot, and TEM data showed that Ab42 monomers self-assemble

to form significant level of oligomers at 2 h, and eventually protofibrils, fibrils, and a network of fibrils at

4 days (Figures 2 and 6). Hence, the rate of self-assembly is high at early time points and plateaus at later

time points when Ab forms fibril network and plaques (Marshall et al., 2016). To investigate the role of self-

assembly in toxicity, ReadyProbes live/dead assay was conducted on terminally differentiated SH-SY5Y

neuroblastoma cells incubated for 3 days with wild-type Ab42 prepared in the following manner; Ab42

was allowed to assemble for 2, 24, 48, and 96 h to form oligomers, protofibril mixture, and fibrils and

then treated for 2 h with UV (Ab+UV) to induce DiY, or untreated (Ab) (see Transparent Methods). vAb

was used as an assembly-incompetent control (Marshall et al., 2016). Our results reveal a significantly higher

level of cell death in wells incubated with Ab after 2 h of preparation, compared with cells treated with Ab

after 24, 48, and 96 h incubation consistent with previous observations (Figure 7) (Marshall et al., 2016).

However, the none of the oxidized Ab samples containing DiY showed any toxic effect on the cells, similar
8 iScience 23, 101537, October 23, 2020



Figure 7. Oxidized, DiY-Containing Ab Assemblies Are Not Toxic to Cells

Differentiated SH-SY5Y neuroblastoma cells were incubated with UV oxidized or unoxidized vAb or Ab for 3 days,

following which the percentage of dead cells was quantified using ReadyProbes Live/Dead Assay. The Ab and vAb

samples were freshly prepared and UV oxidized for 2 h (Ab+UV/vAb+UV), or UV oxidized for 2 h followed by a further

incubation on bench and in the dark for 24, 48, or 96 h, before being administered to cells. vAb and Ab samples not

exposed to UV were used as reference. Only the unoxidized/assembling wild-type Ab induced significant cell death.

Experiments were repeated five times. ***p < 0.001. p% 0.05 (*), <0.01 (**), <0.0001 (****) and >0.05 was not significant.

Error bars are expressed as GSEM.
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to the assembly-incompetent oxidized and unoxidized vAb (Figure 7). This suggests a key role for self-as-

sembly in the toxicity of Ab.
DISCUSSION

In AD, Ab self-assembles to dimers, oligomers, fibrils, and eventually amyloid plaques, one of the key hall-

marks of the disease. Ab is generally accepted to play a key role in AD, but the mechanism behind its

toxicity is still not completely understood. Numerous studies have searched for the elusive ‘‘toxic’’ species

and attempted to characterize its structure, and this has identified supposedly toxic assemblies such as

dimers, 12mers, *56 KDa and hexamers (Lesne et al., 2006; Reed et al., 2011; Benilova et al., 2012). Here,

we show that oxidation results in the formation of DiY cross-links which is one of several possible oxidative

modifications and this significantly slows, or halts the self-assembly of Ab42, trapping it in a specific state.

We compared the self-assembly and toxicity of assembly-incompetent vAbwith wild-type Ab and oxidized,

trapped Ab.

MCO and photo-induced oxidation of vAb revealed that DiY forms very rapidly as early as 5 min post-

oxidation. However, oxidation did not lead to vAb assembly even after 5 days in the oxidative environment

or post-oxidation. This demonstrates that the oxidation and the formation of DiY does not induce

aggregation of the vAb, which is known not to self-assemble (Marshall et al., 2016). DiY was also rapidly

induced in wild-type Ab using both MCO and photo-induced oxidation; however, further assembly is

inhibited or significantly slowed. Co-incubation of DiY-containing Ab with freshly prepared uncross-linked

Ab demonstrated significantly reduced assembly. This suggests that oxidation and DiY cross-linking does

not induce or facilitate the aggregation of the wild-type Ab. Instead, Ab assemblies are trapped and further

elongation is delayed. This is supported by previous reports that showed that DiY-cross-linked Ab are slow

to fibrilize and form long-lived soluble oligomeric aggregates (Kok et al., 2013; O’malley et al., 2014, 2016;

Sitkiewicz et al., 2014). Mass spectrometry studies have revealed that DiY cross-linking leads to the stabi-

lization of Ab40 in compact oligomeric species (Sitkiewicz et al., 2014), which is in strong support of our

findings.

Previous studies have suggested that DiY cross-linking can facilitate Ab assembly (Atwood et al., 2004;

Yoburn et al., 2003; Barnham et al., 2003; Zhang et al., 2017) or inhibit or slow Ab self-assembly (Smith

et al., 2007; Gu et al., 2018) or stabilize assemblies (Vazquez et al., 2019). Importantly, it has been shown

that copper influences self-assembly in different ways depending on the concentration and ratio (Matheou
iScience 23, 101537, October 23, 2020 9
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et al., 2015; Sarell et al., 2010), which may go some way to explaining these inconsistencies. These discrep-

ancies could also arise from the different methods used to induce DiY in Ab. Previous studies have used

varying concentration of horseradish peroxidase and H2O2 (Galeazzi et al., 1999; Yoburn et al., 2003; Ali

et al., 2006; Sitkiewicz et al., 2014; O’malley et al., 2014), varying concentrations of copper and H2O2 (Yo-

burn et al., 2003; Atwood et al., 2004; Barnham et al., 2004; Smith et al., 2007; Davis et al., 2011; Al-Hilaly

et al., 2013; Williams et al., 2016), copper in combination with ascorbate (Gu et al., 2018), or photo-oxida-

tion (Yoburn et al., 2003; Williams et al., 2016) to induce DiY cross-links in Ab. In addition, even small differ-

ences in incubation conditions (e.g., trace metals, temperature, etc.) as well as atmospheric ozone levels

(Vazquez et al., 2019) would result in different levels of DiY cross-links formed, which may result in varying

impact on Ab assembly. Moreover, the nature of the DiY cross-links may differ from one protocol to

another. For example, other amino acids, such as phenylalanine, could modulate formation of cross-links

(Zhang et al., 2019). Methodologies are likely to induce different oxidative effects on other amino acid side

chains such as histidine, lysine, and met35 of Ab (Kowalik-Jankowska et al., 2004; Ali et al., 2005; Palmblad

et al., 2002; Friedemann et al., 2015). For example, met35 oxidation has been shown to attenuate Ab olig-

omer formation and to enhance oxidation of Ab Y10 (Palmblad et al., 2002). Mapping the specific modifi-

cations induced by the oxidation methods in a time-dependent manner using mass spectrometry would

help to provide clarity on the relative role for DiY on Ab assembly and whether this occurs in combination

with other modifications to Ab. This is a part of further studies.

Furthermore, the method of Ab preparation used before DiY cross-linking may be critical in the outcome of

the DiY cross-links on Ab. Different sources andmethods are used to prepare Ab, resulting in a diverse pool

of Ab aggregates (Benilova et al., 2012). Ab exists in a pool of monomers, soluble oligomers, and insoluble

fibrils. Multiple studies have reported that the soluble Ab oligomers in AD are composed of dimers, trimers,

tetramers, pentamers, and decamers; Ab-derived diffusible ligands (ADDLs); dodecamers; and Ab*56

(Benilova et al., 2012). A question therefore arises regarding how DiY cross-linking impacts these pools

of assemblies: presumably by creating new cross-linked dimeric species. Previous molecular dynamics

studies have revealed that induction of DiY in a pool of monomeric Ab42 results in conformationally altered

dimers that expose hydrophobic residues that may be limited to forming trimers via hydrophobic rather

than polar interactions (Zhang et al., 2017). Our previous data showed that within 2 h of preparation, Ab

exists mostly as oligomers with a random coil conformation with a small b-sheet contribution (Marshall

et al., 2016). Here, our results showed that the very slow oxidation induced by CuCl2 alone first facilitates

the formation of Ab oligomers followed by DiY cross-linking of the oligomers resulting in a stabilized olig-

omeric population. The more rapid MCO reaction results in DiY formation as early as 5 min post-oxidation

whereby the Ab becomes trapped in a pre-oligomeric conformation (as assessed using the antibody NU-1).

Th-T fluorescence, CD, and TEM showed that photo-oxidation of early Ab species traps Ab in a random coil

conformation and prevents or significantly delays further assembly into amyloid fibrils. UV oxidation and

DiY cross-linking in preformed oligomer/protofibril assemblies similarly results in the stabilization of this

state and significantly delays further elongation to fibrils. Taken together, these results suggest that the

timing of oxidation of Ab critically influences its assembly, leading to the stabilization or significantly

reduced assembly of the Ab assemblies, which correlates with the time of cross-linking.

Ab self-assembly is believed to be important for its toxicity (Marshall et al., 2016), and many studies have

implicated the role of oligomeric species in cytotoxic effects (Glabe and Kayed, 2006; Soura et al., 2012;

Walsh et al., 1999). Here, we compared toxicity of the unoxidized Ab with Ab that had been photo-oxidized

and DiY cross-linked in vitro, whereby specific species in the assembly pathway have been stabilized. Ab42

was oxidized at different time points to stabilize a series of pre-oligomer, oligomeric, protofibrillar, and

fibrillar forms. We show that none of these species is able to induce cell death following 3 days of incuba-

tion with differentiated neuroblastoma cells, whereas unoxidized, oligomeric Ab remained potently toxic.

This finding is in conflict with previous studies that showed that DiY Ab42 assemblies are toxic to cells (Barn-

ham et al., 2004); DiY-cross-linked Ab40 dimers induce cell viability loss (Kok et al., 2013) and that Th-T pos-

itive, DiY-cross-linked Ab40 fibrils were able to inhibit long-term potentiation (LTP) (O’malley et al., 2014).

We also observed that oxidized vAb is not toxic to cells, suggesting that the presence of DiY alone is not

sufficient to induce toxicity. The oxidized and DiY-cross-linked Ab42 assemblies produced here are

different from DiY Ab40 reported by others (O’malley et al., 2014; Kok et al., 2013), as the DiY Ab42 pro-

duced shows little Th-T fluorescence intensity and does not proceed to form fibrils. However, we do not

rule out the possibility that DiY Ab preparation in our study and others also results in other oxidative

modifications, which may explain the discrepancies between these studies.
10 iScience 23, 101537, October 23, 2020
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It is important to note that method of peptide preparation, peptide type, peptide concentration and

aggregation state, and model system used may play a huge role in determining cell toxicity (Jana et al., 2016;

Kaniyappan et al., 2017; Cecchi et al., 2008; Krishtal et al., 2015). Previous studies on DiY Ab toxicity have

used LTP (O’malley et al., 2014), MTS proliferation assay (Barnham et al., 2004), MTT. and lactate

dehydrogenase assay (Ono et al., 2009) with varying Ab concentrations to determine DiY Ab toxicity. These as-

says, although showing the presence of cell injury, do not quantify absolute cell death. Impaired spine

morphology and density, accompanied by increased reactive oxygen species and intracellular calcium, without

apparent cell death have been reported as a result of tau toxicity (Kaniyappan et al., 2017).We have shown that a

very short, 2 h exposure to Ab oligomers of differentiated SHSY5Y cells result in oxidative and nucleolar stress

without DNAdamage or neuronal death (Maina et al., 2018). Thus, somediscrepanciesmay arise from the assays

and the cell model used. Moreover, if DiY Ab is toxic, then it may depend on the level of DiY. None of the pre-

vious studies that studiedDiY Ab toxicity quantified the level of DiY formedonAb. As a result, discrepanciesmay

also arise from the differences in the quantity of DiY cross-links in the Ab used in toxicity assays. Indeed, we

observed different levels DiY intensity between MCO and UV treatments.

Nonetheless, here we show that oxidation of Ab in vitro leads to formation of DiY, halts Ab self-assembly,

and prevents cytotoxicity in a live-dead assay. We have previously demonstrated that assembly-incompe-

tent vAb is not toxic to cells (Marshall et al., 2016). We therefore conclude that continued self-assembly is

important for Ab toxicity. We believe that the timing of the oxidation may be critical. For example, forma-

tion of DiY in Ab fibrils would promote its stability and formation of amyloid plaques. Indeed, we have pre-

viously shown the presence of DiY on Ab plaques in AD brain tissue and demonstrated that DiY Ab fibrils

become highly insoluble and resistant to formic acid denaturation (Al-Hilaly et al., 2013).

In conclusion, oxidation, which results in DiY cross-linking, promotes Ab stabilization and does not induce

or facilitate Ab assembly. Our findings strongly suggest a role for self-assembly for Ab toxicity. We show

that Ab exerts a high level of toxicity at a stage when self-assembly potential is high, compared with

when the self-assembly rate is significantly diminished or abolished, as is the case for oxidized and vAb.

This is observed even for those preparations wherein oligomeric Ab has been stabilized. Our work implies

that the timing of DiY formation plays a key role in further assembly and stability of Ab.

Limitations of the Study

Here, we have provided evidence to show that oxidative conditions can induce the formation of DiY cross-

links in Ab42 using MCO and UV photo-oxidation in vitro. We show that oxidation under the conditions

used here halts further assembly. Stabilized Ab42 following oxidation is non-toxic to differentiated neuro-

blastoma cells. However, our study was not able to fully characterize whether other amino acids were

affected by oxidation and what impact this might have on the prevention of assembly. We confirm that

DiY is a major outcome of oxidation. Our work shows that oxidation of Ab in vitro results in formation of

non-toxic Ab species. However, oxidative stress is known to be an important trigger for neurodegenerative

diseases and our results do not imply a protective effect of oxidative stress. Oxidation has been performed

under controlled environment in vitro affecting only Ab self-assembly. Oxidation of Ab in vivo is likely to

have made diverse effects that have not been addressed in this study.

Resource Availability

Lead Contact

Further information and requests for resources of reagents should be directed to and will be fulfilled by the

Lead Contact, Louise Serpell l.c.serpell@sussex.ac.uk.

Materials Availability

This study did not generate new unique reagents.

Data and Code Availability

This study did not generate code. The published article contains all datasets generated or analyzed during

this study.
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All methods can be found in the accompanying Transparent Methods supplemental file.
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Supplemental information 

Transparent methods 
 
Materials and Methods 
Preparation of Aβ 
Recombinant Aβ42 (Aβ) and variant Aβ42 (vAβ) were purchased in Hexafluoroisopropanol 

(HFIP) films from rPeptide and JPT, respectively.  vAb is a variant of Ab1-42 with F19S and 

G37D mutations which render the peptide assembly incompetent (see (Marshall et al. 2016) 

for detail). The peptides were prepared using an established protocol, and all procedures were 

done using protein LoBind Eppendorfs and tips. 0.2 mg/mL of the peptides were solubilized in 

200 μL HFIP (Sigma-Aldrich), vortexed for 1 min and sonicated in 50/60 Hz bath sonicator for 

5 min. The HFIP was removed by air drying using a low stream of nitrogen gas. The dried 

peptide films were dissolved in 200 μL Dimethyl sulfoxide (DMSO) >99.9% (Sigma-Aldrich), 

vortex for 1 min and sonicated for 1 min. The solution was passed through a 2 mL 7K MWCO 

Zeba buffer-exchange column (Thermo Scientific) and stacked with 40 μL of 10 mM phosphate 

buffer (pH 7.4). The concentration of the peptides was determined using a NanoDrop 

spectrophotometer (Thermo Scientific) at a wavelength of 280 nm (extinction coefficient of 

1490 M-1cm-1). The peptide solutions were immediately diluted to 50 μM with the 10 mM 

phosphate buffer and used as indicated. For the experiments involving preformed Aβ 

assemblies, the 50 μM Aβ was left to assemble for 24 without shaking before being subjected 

to UV exposure. 
 

Metal-catalysed oxidation (MCO) of Aβ and vAβ  
Freshly prepared samples of Aβ1-42 and vAβ1-42 peptides (50 μM) in 10 mM phosphate 

buffer, pH7.4 were incubated i) without CuCl2, ii) in the presence of 400 μM CuCl2 (peptide: 

CuCl2 ratio 1:8) and iii) in the presence of 400 μM CuCl2 and 2.5 mM H2O2. At this 

concentration, we did not observe any precipitation of copper phosphate. An additional control 

was performed adding ethylenediaminetetraacetic acid (ETDA) (2 mM) to the assembly 

mixture of wild type Ab. The peptides were incubated at 37°C without agitation and at each 

time point collected, the oxidation reaction was quenched using EDTA at a final concentration 

of 2 mM. A minimum of three independent experiments were conducted to ensure the 

reproducibility of the findings. 

Standard curve of dityrosine	

Dityrosine was synthesised as described in (Al-Hilaly et al., 2013). To generate a dityrosine 

standard curve, a set of dityrosine standard concentrations (0.1, 0.5, 1, 2, 3, 5 and 10 µM) 



 2 

were prepared in Milli-Q water. Each concentration was prepared in triplicate and dityrosine 

fluorescence was recorded for each concentration using excitation wavelength 280 nm and 

emission wavelength 410 nm. The mean values of dityrosine fluorescence intensity for each 

concentration were plotted against dityrosine concentration and line plot was constructed by 

linear regression analysis using Microsoft Excel software. The equation of this line was used 

to quantify the dityrosine content of Aβ samples oxidized with MCO or CuCl2 alone. 

Photo-oxidation of Aβ and vAβ  
Freshly prepared samples of Aβ1-42 and vAβ1-42 peptides (50 μM) in 10 mM phosphate 

buffer, pH 7.4 were incubated i) without UV-C in the dark, and ii) under of UV-C for 5min or 2h 

using a G6T5 Germicidal 9′ 6W T5 UVC lamp set to 8 J/m2/sec (General Lamps Ltd). A 

minimum of three independent experiments were conducted to ensure the reproducibility of 

the findings. 

 

Fluorescence spectroscopy 
The formation of dityrosine was monitored with a fluorescence spectrophotometer (Varian 

Ltd., Oxford, UK), using a 1 cm path length quartz cuvette (Starna, Essex, UK). The presence 

of dityrosine was detected using fluorescent excitation wavelength of 320 nm and emission 

collected between 340 – 600 nm, with dityrosine peak signal observed between 400-420 nm. 

Tyrosine fluorescence signal was monitored using an excitation wavelength of 280 nm and an 

emission wavelength of 305 nm, with the peak tyrosine emission observed at 305 nm. For 

experiments involving metal-catalysed oxidation, the reaction was quenched using EDTA to a 

final concentration of 2 mM. For all the measurements, the excitation and emission slits were 

both set to 10 nm, scan rate set to 300 nm/min with 2.5 nm data intervals and an averaging 

time of 0.5 s. The photomultiplier tube detector voltage was set at 500 V. 

 

Thioflavin T fluorescence assay of Aβ self-assembly 
Samples were incubated with 100 μM Thioflavin T (Th-T), and the rate of Th-T binding was 

monitored over time at 37°C using SpectraMax i3 plate reader with samples incubated in 

CellCarrier-96 Ultra Microplates (PerkinElmer). The readings were collected in a black 96-well 

plate with a clear bottom (PerkinElmer), which was sealed with an optically clear polyolefin 

film to avoid evaporation (StarSeal Advanced Polyolefin Film, Starlab). The number of 

readings per well was set to 6, PMT voltage was set to high and blank spectra of the buffer 

were subtracted to protein fluorescence scans. The excitation wavelength was set at 440 nm, 

and emission at 483 nm and the signal collected every 30 min, with 5 sec low orbital shakes 

before readings. The fluorescence data were plotted against time. A minimum of three 

independent experiments was repeated to ensure the reproducibility of the findings. 
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Circular Dichroism (CD) 
The secondary structure of Aβ and vAβ peptides at 50 μM concentration in 10 mM phosphate 

buffer (pH 7.4) incubated under different conditions was assessed using Jasco J715 CD 

spectrometer (Jasco, Goh-Umstadt, Germany). 140 μL of each sample was placed into a 1 

mm path length quartz cuvette (Hellma) and scanned between 190 nm and 260 nm. The CD 

spectra were collected in triplicate at a maintained temperature of 21 °C.  

 

Negative-stain transmission electron microscopy (TEM) 
The morphology of control and cross-linked Aβ and vAβ peptides was assessed by negative 

stain TEM. Briefly, 4 μL of each sample was dropped onto 400-mesh carbon-coated grids 

(Agar Scientific, Essex, UK). After 1 min incubation, the excess sample was blotted using filter 

paper, and the grid was washed with 4 μL filtered Milli-Q water and blotted. The grid was then 

negatively stained for 40 sec using 4 μL of filtered 2% (w/v) uranyl acetate. The excess stain 

was blotted with filter paper and grids left to air-dry before storage. The grids were examined 

on a Jeol Jem1400-plus transmission electron microscope (Jeol, USA), operated at 80 kV 

fitted with a Gatan Orius SC100 camera (UK). 

 
Dot-blotting 
A total of 4 μl was spotted onto a 0.2 μM pore nitrocellulose membrane and allowed to dry for 

10 min. The membrane was boiled with PBS for 1 min twice and then blocked with blocking 

buffer (5% milk in 0.05% TBS-T) for 1 hour at room temperature on a rocker. The blocking 

buffer was next replaced with mouse NU-1 primary antibody (1/2000) and left to bind overnight 

at 4°C on a rocker. The membrane was washed 6 times for 5 min with washing buffer (0.05% 

TBS-T), then incubated with an HRP-conjugated goat anti-mouse secondary antibody for 1 

hour. The membrane was washed six times for 5 min with washing buffer, then incubated with 

Clarity Western ECL Substrate (Bio-Rad) for 1 min before being developed in the darkroom. 

The NU-1 antibody was a gift from the William Klein lab (Lambert et al.). A minimum of three 

independent experiments were conducted to ensure the reproducibility of the findings. 

 

Cell death assay  
Differentiated SHSY5Y neuroblastoma cells were used for the toxicity experiments. Firstly, 

undifferentiated SHSY5Y neuroblastoma cells (ATCC CRL-2266™), were maintained in 

Dulbecco’s Modified Eagle Medium: Nutrient Mixture F-12 (DMEM/F-12) (Life Technologies, 

United Kingdom), supplemented with 1% (v/v) L-glutamate (L-Gln) (Invitrogen), 1% (v/v) 

penicillin/streptomycin (Pen/Strep) (Invitrogen) and 10% (v/v) Fetal Calf Serum at 37°C and 

5% CO2. The undifferentiated SHSY5Y cells were seeded to 60% confluency in a CellCarrier-
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96 Ultra Microplates (PerkinElmer). The cells were differentiated in a medium containing 1% 

Fetal Calf Serum supplemented with 10 μM trans-Retinoic acid (Abcam) for 5 days. Next, the 

medium was replaced with a serum-free media supplemented with 2 nM brain-derived 

neurotrophic factor (BDNF) (Merck Millipore). After 2 days in the BDNF-containing media, the 

media was replaced with serum-free media and the cells were treated with UV cross-linked or 

uncross-linked vAβ or Aβ for 3 days. At the end of the incubation period, the cells were 

incubated with ReadyProbes reagent (Life Technologies) for 15 min. The ReadyProbes kit 

contains NucBlue Live reagent that stains the nuclei of all live cells and Propidium iodide that 

stains the nuclei of dead cells with compromised plasma membrane. The cells were imaged 

at 37oC and 5% CO2 using Operetta CLS high-content analysis system (PerkinElmer) using 

DAPI and TRITC filters. At least 5000 dead and live cells were analysed using the Harmony 

software automated analysis algorithm within the Operetta CLS high-content analysis system. 

A minimum of three independent experiments were repeated to ensure the reproducibility of 

the findings.  
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Supplemental Results 
Figure S1 

 
Figure S1. Related to Figure 1. Standard curve showing the concentration of DiY standard 

against intensity at 410 nm. Data was recorded as described in Methods above.  

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Figure S2. Related to Figure 1. Thioflavine T fluorescence assay comparing Ab1-42 self-

assembly under MCO conditions, copper alone and in buffer with EDTA to chelate trace 

metals. Ab1-42 self-assembly at a higher rate than Ab1-42 in buffer suggesting that the trace 

metals present in the water used to make the buffer can influence the assembly rate.  
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