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This study aimed to estimate the extent to which the development of
symbolic numerosity representations relies on pre-existing non-symbolic numerosity
representations that refer to the Approximate Number System. To achieve this aim,
we estimated the longitudinal relationships between accuracy in the Number Line (NL)
test and “blue–yellow dots” test across elementary school children. Data from a four-
wave longitudinal study involving schoolchildren in grades 1–4 in Russia and Kyrgyzstan
(N = 490, mean age 7.65 years in grade 1) were analyzed. We applied structural
equation modeling and tested several competing models. The results revealed that
at the start of schooling, the accuracy in the NL test predicted subsequent accuracy
in the “blue–yellow dots” test, whereas subsequently, non-symbolic representation in
grades 2 and 3 predicted subsequent symbolic representation. These results indicate
that the effect of non-symbolic representation on symbolic representation emerges after
a child masters the basics of symbolic number knowledge, such as counting in the
range of twenty and simple arithmetic. We also examined the extent to which the
relationships between non-symbolic and symbolic representations might be explained
by fluid intelligence, which was measured by Raven’s Standard Progressive Matrices
test. The results revealed that the effect of symbolic representation on non-symbolic
representation was explained by fluid intelligence, whereas at the end of elementary
school, non-symbolic representation predicted subsequent symbolic representation
independently of fluid intelligence.

Keywords: non-symbolic representation, approximate number system, symbolic representation, number line,
fluid intelligence, longitudinal study

INTRODUCTION

Considerable evidence suggests that the development of math competence is based on the ability
to efficiently represent numerical magnitude information in symbolic formats and the acquisition
of a symbolic number system (e.g., De Smedt et al., 2013; Schneider et al., 2017). The symbolic
representation of numerosity is unique to humans and requires the ability to precisely represent
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numerosity verbally as number words or visually as Arabic
number symbols (Dehaene and Cohen, 1995; Feigenson et al.,
2004; De Smedt et al., 2013). The close link between symbolic
numerosity representation and math achievement has been
confirmed in several studies (e.g., Sasanguie et al., 2012; Rodic
et al., 2015; Schneider et al., 2017). Therefore, it is important
to understand how the symbolic representation of numerosity
develops and how symbols acquire their numerical meanings.
This question is usually referred to as “the symbolic grounding
problem” (e.g., Leibovich and Ansari, 2016).

A widespread hypothesis posits that symbols acquire their
meanings by being mapped onto pre-existed non-symbolic
numerosity representations or an Approximate Number System
(ANS). The ANS is usually defined as a system that allows
individuals to perceive and approximately estimate numerosity
without counting and using symbols (e.g., Feigenson et al.,
2004; Dehaene, 2011). It has been postulated that the ability to
represent and estimate numerosity in a symbolic format exists
only in humans, whereas the ANS is evolutionarily ancient
and innate. The ability to perceive numerosity in non-symbolic
formats has been found in primates and non-human animals
(Emmerton, 2001; Cantlon and Brannon, 2007; Agrillo et al.,
2009). In humans, individual differences in this ability emerge
early in childhood and exist even in infants (Lipton and Spelke,
2004; Xu and Arriaga, 2007). Moreover, it has been demonstrated
that similar behavioral patterns can be found in animals,
infants, children and adults. In particular, Cantlon and Brannon
(2007) investigated non-symbolic arithmetic performance in
monkeys and college students and found that the monkeys’
approximate mental arithmetic performance follows the same
pattern as the students, who were tested using the same non-
verbal addition task.

Several arguments support the idea that children acquire
a symbolic number system by mapping these symbols onto
approximate non-symbolic representations of numerosity (e.g.,
Mundy and Gilmore, 2009). First, it has been suggested that non-
symbolic and symbolic magnitude representations adhere to the
same behavioral patterns, which are known as numerical distance
and size effects (e.g., Dehaene, 2001). It has been shown that
compared to numerosities in both symbolic and non-symbolic
formats, individuals are less precise and slower when comparing
numbers or sets of objects that are more similar to each other or
when there is a larger proportion between the numbers or sets
of objects (numerical distance or numerical proportion effect)
(e.g., Halberda and Feigenson, 2008; Holloway and Ansari, 2009).
The size effect manifests as lower accuracy and a slower reaction
time in comparing numbers and arrays of objects that are larger
in size (Dehaene, 2001). The existence of the distance and size
effects in symbolic and non-symbolic representation is usually
explained by the overlapping of Gaussian curves reflecting the
internal representation of each numerosity on a mental number
line (e.g., Dehaene, 2003; Dietrich et al., 2015).

The second argument suggests that non-symbolic numerosity
representation is associated with math achievement (e.g.,
Halberda et al., 2008; Libertus et al., 2013; Chen and Li,
2014; Keller and Libertus, 2015). In particular, it has been
shown that non-symbolic arithmetic enables the acquisition of

symbolic arithmetic skills (Gilmore et al., 2007). Hyde et al.
(2014) showed that brief non-symbolic number practice enhances
subsequent exact symbolic arithmetic in first graders. Some
authors have demonstrated that the association between the ANS
and symbolic math skills is stronger among children with low
math performance than other children (Bonny and Lourenco,
2013; Purpura and Logan, 2015). This might indicate that the
association between the ANS and symbolic skills is likely to be
stronger when symbolic skills are at early stages of development.

Despite extensive evidence suggesting that the ANS may
serve as the basis of the acquisition of symbolic numerosity
representation and more complex math skills, some existing
findings refute this hypothesis (for a review, Reynvoet and
Sasanguie, 2016). First, whether the non-symbolic magnitude
representation is associated with math achievement has been
questioned. Some studies failed to find a significant effect of non-
symbolic magnitude representation on math achievement (e.g.,
Inglis et al., 2011; Sasanguie et al., 2014). In many studies, the
link between non-symbolic magnitude representation and math
achievement became insignificant or dramatically decreased
after controlling for any measures of symbolic magnitude
representations or other cognitive abilities, such as inhibitory
function (e.g., Lyons and Beilock, 2011; Gilmore et al., 2013;
Kolkman et al., 2013; Sasanguie et al., 2013; Göbel et al., 2014).

The second argument against the ANS hypothesis of the
“symbol grounding problem” is based on the results of studies
demonstrating that non-symbolic and symbolic magnitude
representations are distinct systems. In particular, it has been
shown that the precisions of symbolic and non-symbolic
representations are not significantly correlated and that both
have an independent effect on math achievement at least in early
school-aged children (Fazio et al., 2014; Guillaume et al., 2016;
Matejko and Ansari, 2016; Sasanguie et al., 2017). It has also
been shown that the symbolic and non-symbolic ratio effects are
not correlated, suggesting that these two systems of numerosity
representation are distinct (Lyons et al., 2015).

The third argument against the hypothesis that ANS
serves a basis of the acquisition of the symbolic system
is derived from several longitudinal studies that found that
symbolic representations predicted subsequent non-symbolic
representations rather than the opposite (Kucian et al., 2011;
Mussolin et al., 2014; Shusterman et al., 2016). Specifically,
it has been shown that at 3–4 years of age, children’s
symbolic number knowledge predicts subsequent accuracy in
non-symbolic magnitude comparisons, whereas the opposite
link is not significant (Mussolin et al., 2014). Several studies
have also shown that formal math education and experience
with manipulating symbolic numbers enhance accuracy in non-
symbolic comparisons (Kucian et al., 2011; Guillaume et al., 2013;
Nys et al., 2013; Piazza et al., 2013). Thus, extensive evidence
refutes the hypothesis that the acquisition of a symbolic number
system occurs through the mapping of symbols onto ANS.

In addition, some authors argue that reciprocal relationships
exist between ANS and symbolic representation systems (e.g.,
Toll et al., 2015; Goffin and Ansari, 2019). In particular, Toll
et al. (2015) examined developmental changes in non-symbolic
and symbolic comparison skills and demonstrated that there are
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bidirectional relationships. Goffin and Ansari (2019) proposed
the possibility that the nature and direction of the associations
between symbolic and non-symbolic numerosity representations
may change depending on age and experience.

There are several possible issues in the studies concerning
the relationship between ANS and symbolic magnitude
representation that may hinder the generalization of the
obtained results or result in contradictions in the findings.
The first problem is related to issues with the measurement
and operationalization of non-symbolic and symbolic
representations. Notably, many studies confirmed that the
ANS is the basis of the development of symbolic representations,
used different symbolic math skills, such as number knowledge
or arithmetic skills, and rarely used measurements of symbolic
magnitude representations.

Even if symbolic representations were measured separately
from more complex math skills, different tests might be used.
The most popular measurements involve symbolic magnitude
comparison tasks in which individuals compare two Arabic
numbers and select the larger number (e.g., Toll et al., 2015;
Matejko and Ansari, 2016), “give-a number task” (Mussolin et al.,
2014; Shusterman et al., 2016) or Number Line task (NL) (e.g.,
Fazio et al., 2014). Although the results of different symbolic
tests have high common dispersion (e.g., Laski and Siegler, 2007),
it is possible that the relationship between non-symbolic and
symbolic representations might vary due to differences in the
measurement instruments.

The ability to represent numerosity in the non-symbolic
format is mostly measured by various non-symbolic comparison
tests in which individuals compare two arrays of objects (mostly
dots) and determine which array is larger (e.g., Halberda et al.,
2008; Libertus et al., 2011; Sasanguie et al., 2012; Smets et al.,
2016). Several protocols of “dots” tests exist, such as the Panamath
protocol (“blue–yellow dots test”) and the protocol described
by Gebuis and Reynvoet (2011). The different types of “dots”
tests may differ in their control of the visual parameters of
the stimulus, which may seriously change the results of the
ANS tests (e.g., Gebuis and Reynvoet, 2012; Szucs et al.,
2013; Smets et al., 2016), and consequently, the power of
the association between the ANS and symbolic math skills
may also change.

The low consistency among the results of non-symbolic
comparison tests, depending on the different ways used to
control the visual parameters, questions the ability to process
non-symbolic numerosity independently from perceptions of
continuous visual properties, such as the cumulative area of two
sets or a convex hull (e.g., Gebuis and Reynvoet, 2012; Clayton
et al., 2015; Gilmore et al., 2016). Some authors have proposed
that the development of precision in the ANS test is explained by
an increase in the precision of the estimation of visual properties
rather than specific numerosity perception (e.g., Leibovich and
Henik, 2013; Gebuis et al., 2016). Other authors have suggested
that although at an early age, accuracy in ANS tests is affected
by the visual properties of a stimulus, the ability to estimate
magnitude in non-symbolic format independently of the visual
properties increases with age (Szucs et al., 2013; Tokita and
Ishiguchi, 2013; Starr et al., 2017). However, the relationship

between ANS and symbolic numerical skills might be partially
explained by visuospatial skills.

The third problem is related to confounding variables. In
longitudinal research, when developmental relationships between
two constructs or variables are considered, it is important to
consider other variables that could be correlated with both
constructs. Some studies have demonstrated that both symbolic
and non-symbolic skills are affected by executive function,
intelligence or spatial ability (Xenidou-Dervou et al., 2015; Chew
et al., 2016; Price and Wilkey, 2017). In various studies, non-
verbal intelligence is significantly linked to a wide range of
symbolic math skills, such as number line precision, arithmetic
skills and number knowledge (e.g., Bachot et al., 2005; Geary
et al., 2008; LeFevre et al., 2013; Östergren and Träff, 2013;
Chu et al., 2016). Consequently, non-symbolic and symbolic
representations might be correlated because they are affected by
the same cognitive functions.

The fourth problem involves the methodology of the studies.
Most studies investigating the association between ANS and
symbolic magnitude representations were cross-sectional, which
restricted their ability to draw conclusions regarding causality
or even the direction of the effect. In cross-sectional studies,
it is impossible to determine whether ANS serves as the
foundation of symbolic representation or vice versa. To draw
conclusions regarding the direction of the link, longitudinal
studies are needed. Moreover, importantly, each variable should
be measured at each time point to control for the previous level
of the variables of interests (Goffin and Ansari, 2019).

In longitudinal studies performed to estimate developmental
relationships between variables, it is possible to create different
path models using the manifested scores of each variable (such as
the proportion of correct answers). However, some studies have
demonstrated that using manifested variables in path analyses
might lead to biased estimations of the relationships between the
variables (Coffman and MacCallum, 2005; Cole and Preacher,
2014). Instead of using manifested variables, it is recommended
to apply the latent variable approach and structural equation
modeling (Cole and Preacher, 2014). For example, in Wong et al.
(2016) study, ANS was identified as a latent construct measured
by non-symbolic comparison, non-symbolic addition, non-
symbolic subtraction and non-symbolic multiplication. These
authors also identified latent variable “Mapping,” which refers to
symbolic number processing and was measured by numerosity
naming, numerosity production and the NL test.

Unfortunately, longitudinal studies involving relatively large
samples can rarely use several measures of one ability. When only
one test of one ability is used, an alternative approach that might
be used is parceling (aggregated estimation of several items) and
the creation of latent variable with several parcels per construct
(Little et al., 2002, 2013). Coffman and MacCallum (2005)
demonstrated that using parcels and a specification of latent
constructs with these parcels is better than using manifested
variables in path analyses to obtain more reliable estimations of
the associations between variables. Although some researchers
have expressed concerns regarding the use of parcels, parceling
offers some advantages in cases of the unidimensionality of the
latent constructs (Little et al., 2013).
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In summary, to estimate the extent to which ANS might
serve as a basis for the development of symbolic numerosity
representation and the acquisition of the numerical meaning
of symbols, it is important to consider several aspects. It is
important to use longitudinal designs and select relevant and
reliable measures of symbolic and non-symbolic numerosity
representations. It is also important to control for possible
confounders, such as general cognitive abilities, as previous
studies have demonstrated significant correlations with
symbolic numerosity processing (e.g., Hornung et al., 2014;
Namkung and Fuchs, 2016).

In this study, we aim to determine whether the development
of symbolic representations occurs by mapping symbols on ANS.
To fulfill this goal, we estimate the longitudinal relationship
between non-symbolic comparison skills, which are related to the
ANS, and precision in the NL test, which is related to symbolic
representation, using a four-wave longitudinal study involving
elementary schoolchildren.

The NL test was selected for several reasons. First, this test
is widely used in studies concerning symbolic representations
and their relationship with non-symbolic representations and
math achievement. Precision in the NL test is consistently
correlated with different types of math performances (De
Smedt et al., 2009; Göbel et al., 2014; Friso-van den Bos
et al., 2015; for a meta-analysis, see Schneider et al., 2018).
Moreover, the correlation remained significant after controlling
for domain-general (working memory and intelligence) and
domain-specific (non-symbolic magnitude representation and
proportional reasoning) abilities (Bailey et al., 2014; Hornung
et al., 2014). Second, NL test results are highly correlated with
another task reflecting symbolic magnitude representation, i.e.,
the number comparison task (e.g., Laski and Siegler, 2007).
Third, NL test results are more highly correlated with math
achievement than the symbolic magnitude comparison task
(Schneider et al., 2018).

Although most authors agree that the NL test is a good
instrument for measuring symbolic magnitude representations,
some authors propose that the NL test measures number-
numerosity mapping skills (e.g., Kolkman et al., 2013; Wong
et al., 2016). Thus, NL test results might reflect both symbolic
representations and mapping skills. From this point of view, the
estimation of the developmental relationship between ANS and
NL precision might shed on light on the “symbolic grounding
problem.” If the acquisition of the meaning of symbols is based
on mapping symbols onto pre-existed ANS, precision in the NL
test should be affected by the precision of ANS.

To estimate the developmental relationship between precision
in the NL test and ANS, we controlled for intelligence and
estimated the extent to which the relationship between
symbolic (or mapping) and non-symbolic skills might be
explained by common dispersion with fluid intelligence.
We hypothesize that if the relationship between symbolic
and non-symbolic representations is attributed to the
shared involvement of intelligence, the links between these
constructs will become insignificant after controlling for
FI. If the relationship between symbolic and non-symbolic
representations is not explained by FI, the links between

these constructs should remain significant after including
intelligence in the model.

MATERIALS AND METHODS

Participants
This study was conducted using data collected from 612
schoolchildren in grades 1–4 in Russia and Kyrgyzstan who
participated in an ongoing longitudinal project named the
“Cross-cultural Longitudinal Analysis of Student Success”
(CLASS) project. One school was selected in both Russia and
Kyrgyzstan. In both schools, the instruction was provided in
Russian. The schools were equal in terms of rating within their
region (e.g., the ratio of the average school scores on the final
state mathematics examination to the average scores in the
region), teacher characteristics (e.g., the ratio of teachers with
higher pedagogical education to the total number of teachers and
teachers’ experience and age) and curriculum (the mathematics
and Russian language programs at the primary, secondary and
high school levels were the same). The two samples did not differ
in the family educational level. The proportion of mothers who
had a higher education was 50.38% in the Russian sample and
52.65% in the Kyrgyz sample.

In both countries, all children studying in the first grade
in the selected schools at the start of the longitudinal project
participated in the study. The reasons for non-participation
included illness or absence from school on the date of testing.
We analyzed the patterns of missing data in the sample
and confirmed the MCAR (missing completely at random)
assumption by Little’s (1988) MCAR test. This test was
insignificant (Chi-square distance = 272.51, df = 248, p = 0.14),
indicating that MCAR assumption holds. Therefore, since the
MCAR assumption holds and the sample size is sufficient, it was
possible to apply listwise deletion to obtain adequate parameter
estimates (Coertjens et al., 2017).

As at least three time points are necessary to carefully estimate
developmental trajectories and development relationships (e.g.,
Duncan and Duncan, 2009; Curran et al., 2010), data from the
schoolchildren who participated once or twice were removed
from the analysis. The final sample consisted of 490 participants
(51% girls); of these participants, 27% participated three times,
and 73% participated four times. The mean age of the children
at Time 1 was 7.61 years (SD = 0.40, range 6.42 – 8.83), at Time
2, the mean age was 8.58 (SD = 0.42, range 7.33 – 9.83), at Time
3, the mean age was 9.61 (SD = 0.43, range 8.33 – 10.83), and at
Time 4, the mean age was 10.56 (SD = 0.41, range 9.33 – 10.75).

This study received approval from the Ethics Committee of
the Psychological Institute of the Russian Academy of Education.
Parental informed and written consent was obtained prior to the
data collection. Consent was obtained from the children orally.

Procedures and Materials
All participants were tested in quiet settings within their school
facilities by a trained experimenter, and all measurement waves
occurred at the end of the academic year (April–May). All
experimenters strictly used the same protocol with instructions
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for the testing administration across all measurements. An
experimenter with the help of two to three training adults
monitored the execution of the tasks.

The experiment was performed in a computer classroom
in groups of 14–15 pupils. Each participant sat in front of
an individual monitor screen and performed the experiment
independently. Each computer had a 17′′ LCD display with a
resolution of 1,440 - 900 pixels and a refresh rate of 60 Hz. The
participants were seated approximately 60 cm from the screen.

Each participant performed the “blue–yellow dots” test and
NL test at each time point on a computer, and on the following 1–
2 days, they performed the Raven’s Standard Progressive Matrices
(SPM) test in paper-and-pencil format. The sequence of the tests
was the same at each time point.

NL Test
This task was programed and adapted online from a description
obtained from Siegler and Opfer (2003) (Tosto et al., 2013). A line
was presented on the screen with a number at the top of the
screen. An 11.5-pixel-high vertical mark indicated the start and
end of the number line. The left end of the line was marked with
a “0,” and the right end was marked with the number “1,000.”
The total length of the line was 500 pixels, allowing the line
to be correctly displayed on the computer screen. The center
of the number line was at the center of the screen. The target
number was 0.4 cm in height and placed 3 cm above the center
of the number line.

The task required the participants to place the number
displayed along the line. In total, 22 numbers were estimated,
and these numbers were presented to all participants in the same
order at various time points as follows: 246, 179, 818, 78, 722,
150, 366, 122, 738, 5, 147, 938, 18, 606, 2, 34, 754, 100, 56,
163, 486, and 725.

Each pupil could move the mouse to mark the position of the
estimated number. The movement of the mouse coincided with
the movement of a vertical red line (18.5 pixels) on the number
line. When an individual decided to give an answer and mark the
position, s/he clicked on the left mouse button.

There was only one practice in this test trial to reduce the
effects of training as training has been shown to positively
affect estimation accuracy. It was possible to take breaks. On
each screen, there was an option to continue with the task or
resume it later.

“Blue–Yellow Dots” Test
In this version of the “blue–yellow dots” test, the participants
were presented with arrays of yellow and blue dots mixed
together that varied in size and number. The task required
the participants to judge whether the array contained more
yellow or blue dots by pressing the corresponding keys on the
keyboard. If an individual believed that the set contained more
yellow dots, s/he pressed the “ж” key (corresponding to the
“:” key on a QWERTY keyboard). If an individual believed
that the set contained more blue dots, s/he pressed the “c” key
(corresponding to the “c” key on a QWERTY keyboard).

The stimuli included 150 static pictures, and the arrays of
yellow and blue dots were presented in intermixed format.

The dot presentation varied between 5 and 21 dots of each color,
and the ratios of the arrays of the two colors fell between 1:3 and
6:7. In each trial, the cumulative area of the set containing more
dots was larger. The ratio of the cumulative areas of the two sets
(the smallest area divided by the largest area) ranged between 0.30
to 0.99. In all trials, the average size of the yellow dots was equal
to the average size of the blue dots.

The stimulus flashed on the screen for 400 ms, and the
maximum response time was 8 s. If no answer was given during
this time, the answer was recorded as incorrect, and a message
appeared on the screen to encourage the participant to press
the space bar to continue to the following trial. The message
disappeared after 20 s, and the next stimulus was displayed
only after pressing the space bar. The task included a set of
instructions, a practice trial with two items and the option to
repeat the practice. The presentation order was the same for all
participants at each time point. It was possible to take breaks after
each of the 50 trials.

Raven’s SPM Test
Raven’s SPM test is often used to measure fluid intelligence. The
original version of the test comprises 5 sets, i.e., A, B, C, D, and
E. Within each set, 12 items progressively become more difficult;
thus, there were 60 tasks in total (Raven and Raven, 1998). There
was no discontinuity rule, and all participants performed all tasks.
The sum of correct answers in each block was calculated.

Statistical Approach
The accuracy in the NL and “blue-yellow dots” tests can be
calculated by using several approaches. For the NL test, several
indicators of accuracy exist. The first indicator reflects the
estimates of the deviation of the marked position of the numbers
from the actual position of the number, which can be divided on
a scale of estimates (e.g., Absolute Error Rates, Siegler and Booth,
2004) or used in the absolute term (e.g., Geary, 2011). The second
indicator is the pattern of the estimates. For each individual,
several models (e.g., logarithmic, exponential, and linear) of
the relationship between the actual and marked numbers are
estimated, and the fit indices of each model are calculated
(proportion of explained variance). Then, the proportion of
individuals whose estimates were the best fit by each model
is calculated (e.g., Siegler and Opfer, 2003; Siegler and Booth,
2004). It has been demonstrated that the correlations between
the NL test results and math achievement were higher using
estimate deviations from the actual position than using the model
fit indices (Schneider et al., 2018). Therefore, for the current
analysis, we selected the deviation from the actual position as an
indicator of NL precision. The higher the deviation, the lower the
precision in the NL test.

The precision of ANS in the different dot test can be measured
by the proportion or sum of correct answers (accuracy), reaction
times, numerical distance effect or Weber fraction (w), which
indicates the minimum proportion of two sets that can be
detected by the participants. Thus, smaller Weber fractions
indicate that an individual was able to differentiate numerosities
that were more similar to each other. The proportion of correct
answers and w were highly correlated in cross-sectional studies
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FIGURE 1 | Schematic diagrams for the measurement models for ANS and NL.

FIGURE 2 | Schematic path diagrams for the four competitive models. (A) – Autoregressive model; (B) – NL affects ANS; (C) – ANS affects NL; (D) – ANS and NL
have a reciprocal relation. ANS, approximate number sense; NL, number line.
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TABLE 1 | Descriptive statistics for the total scores and parcels from first to fourth
grades.

Grade Test Mean SD Min Max

1 ANS (total scores) 92.20 14.13 61 124

ANS1 (items 1–50) 32.37 5.99 16 45

ANS2 (items 51–100) 29.92 5.38 17 45

ANS3 (items 101–150) 29.90 5.46 18 46

NL (total scores) 0.16 0.96 0.03 0.54

NL1 (items 1–7) 0.16 0.09 0.02 0.49

NL2 (items 8–14) 0.16 0.11 0.003 0.58

NL3 (items 15–22) 0.16 0.10 0.015 0.67

Raven’s SPM (total) 28.16 10.65 4 53

Block A 9.28 1.84 1 12

Block B 7.73 3.30 0 12

Block C 5.26 3.05 0 11

Block D 4.54 3.52 0 12

Block E 1.34 1.95 0 12

2 ANS (total scores) 95.47 12.99 56 124

ANS1 (items 1–50) 33.89 5.66 17 45

ANS2 (items 51–100) 30.91 4.80 18 44

ANS3 (items 101–150) 30.67 5.18 14 44

NL (total scores) 0.13 0.08 0.02 0.45

NL1 (items 1–7) 0.13 0.08 0.02 0.55

NL2 (items 8–14) 0.12 0.10 0.01 0.66

NL3 (items 15–22) 0.13 0.09 0.02 0.62

Raven’s SPM (total) 33.88 9.66 3 54

Block A 10.03 1.64 1 12

Block B 8.76 2.75 0 12

Block C 6.82 2.69 0 12

Block D 6.38 3.14 0 12

Block E 1.89 1.99 0 9

3 ANS (total scores) 98.80 13.40 63 130

ANS1 (items 1–50) 35.57 5.55 17 47

ANS2 (items 51–100) 31.93 5.13 19 44

ANS3 (items 101–150) 31.29 5.35 18 46

NL (total scores) 0.09 0.06 0.01 0.50

NL1 (items 1–7) 0.09 0.06 0.01 0.46

NL2 (items 8–14) 0.08 0.07 0.004 0.57

NL3 (items 15–22) 0.09 0.07 0.01 0.54

Raven’s SPM (total) 38.56 8.13 11 60

Block A 10.67 1.36 4 12

Block B 10.14 2.23 1 12

Block C 7.92 2.35 0 12

Block D 7.24 2.45 0 12

Block E 2.59 2.38 0 12

4 ANS (total scores) 100.29 13.73 63 131

ANS1 (items 1–50) 35.93 5.51 15 47

ANS2 (items 51–100) 32.15 5.27 18 47

ANS3 (items 101–150) 32.19 5.36 19 45

NL (total scores) 0.07 0.05 0.02 0.33

NL1 (items 1–7) 0.08 0.05 0.01 0.34

NL2 (items 8–14) 06 0.05 0.02 0.34

NL3 (items 15–22) 0.07 0.05 0.01 0.38

Raven’s SPM (total) 41.66 7.49 12 57

(Continued)

TABLE 1 | Continued

Grade Test Mean SD Min Max

Block A 10.91 1.22 4 12

Block B 10.59 1.91 0 12

Block C 8.32 2.11 0 12

Block D 8.28 2.41 0 12

Block E 3.55 2.46 0 11

SD, standard deviation; Min, minimum; Max, maximum.

(e.g., Inglis and Gilmore, 2014; Dietrich et al., 2016; Tosto
et al., 2017). It has also been demonstrated that among four
possible indicators of precision in the dot test, proportion of
correct answers had the highest test–retest reliability (Inglis
and Gilmore, 2014). In the current study, we used the sum
of correct answers as an indicator of accuracy in the “blue-
yellow dots” test.

Since using the raw scores of the variables might lead to a
biased estimation of the paths among the manifested variables
(Cole and Preacher, 2014), we did not use the mean accuracy
of both tests in the path analysis. Instead, we specified ANS
and NL as latent constructs with three parcels per construct
(Coffman and MacCallum, 2005) and used structural equation
modeling to estimate the longitudinal relationship between the
results of the NL test and the “blue-yellow dots” test across the
children in grades 1–4.

For the NL test, each parcel was calculated as the mean
deviation of the estimated number’s position from the actual
position divided by 1,000 (as we had a “0–1,000” NL scale) for 7–
8 sequential items. In summary, three parcels were created from
22 trials. The first parcel was calculated as the average deviation
divided by 1,000 for the first seven numbers, the second parcel
was calculated as the average deviation divided by 1,000 for the
next seven numbers and the third parcel was calculated as the
average deviation divided by 1,000 for the last eight numbers.

For the ANS test, each parcel was calculated as the sum of
correct answers among 50 sequential items. In summary, there
were 150 trials in the ANS test, and the following three parcels
were created: the first parcel was calculated as the sum of correct
answers on items 1–50, the second parcel was calculated as the
sum of correct answers on items 51–100 and the third parcel was
calculated as the sum of correct answers on items 101–150. After
calculating the parcels, we specified the measurement models for
each grade separately (Figure 1).

After specifying the measurement models, we assessed
and compared four competing structural models to select
the best fitting model. The schematic path diagrams of each
model are shown in Figure 2. The first model (Figure 2A)
was an autoregressive model with no cross-lagged effects and
only temporal stability and contemporary associations. This
model implied that there were no developmental associations
between symbolic and non-symbolic representations and
that the two types of numerosity representations developed
independently of each other.

In the second model (Figure 2B), the cross-lagged pathways
from NL in the previous grade to ANS in the subsequent
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grade were added to test the hypothesis that NL had an effect
on subsequent ANS while the ANS was not predictive of NL
accuracy. This model implies that ANS was not the basis of
the acquisition of symbolic representations and that, vice versa,
symbolic skills may enhance ANS precision.

The third model (Figure 2C) included the cross-lagged
pathways from ANS in the previous grade to NL in the
subsequent grade to test the hypothesis that the precision of
the NL estimation was predicted by the previous level of ANS
accuracy. This model corresponds to the “ANS hypothesis” in
the “symbolic grounded problem.” The final model represented
reciprocal effects and tested the effects in both directions
(Figure 2D). In each model, the correlations between ANS and
NL within one grade were added. We also added autoregressive
paths from ANS and NL in first grade to ANS and NL in third
grade and from ANS and NL in second grade to ANS and NL in
fourth grade, which significantly improved the model fit.

After selecting the best fitting model of the relationship
between ANS and NL, we specified measurement models with
the ANS, NL and FI latent constructs within each grade. FI was
specified as a latent construct with five parcels. Each parcel was
calculated as the sum of correct answers per block in Raven’s
SPM test (A, B, C, D, and E). Then, we included FI in each grade
as a predictor of subsequent ANS and NL to examine how the
relationship between ANS and NL changed after controlling for
FI. We included a country variable (0 = Kyrgyzstan, 1 = Russia)
as a predictor to control for between-country differences in the
latent constructs. In the following step, we tested a model in
which FI had reciprocal relationships with ANS and NL.

The maximum likelihood estimator was applied. To
compare the models, we used the chi-square difference
test. The analysis was conducted with Mplus 7.0 software
(Muthén and Muthén, 2012).

RESULTS

Descriptive Statistics
The descriptive statistics of the parcels of each test and grade are
presented in Table 1.

Measurement Models
In each grade in which we tested the measurement model, ANS
and NL were represented by three parcels. We also tested models
with FI as the latent construct, which was presented by five
parcels. The results revealed that all measurement models had
good fit indices at each grade (Tables 2, 3).

Structural Equation Modeling
Relationship Between ANS and NL
The fit indices of each structural model of the relationship
between ANS and NL are shown in Table 4.

The autoregressive model demonstrated a satisfactory fit to the
data. The analysis revealed significant paths from ANS in grade
1 to ANS in grade 2 and grade 3, from ANS in grade 2 to ANS
in grade 3 and grade 4, and from ANS in grade 3 to ANS in

TABLE 2 | Fit indices of the measurement models for each grade with ANS
and NL.

Grade 1 Grade 2 Grade 3 Grade 4
(n = 423) (n = 469) (n = 478) (n = 472)

BIC 5783.36 6754.14 6769.49 6858.82

Sample-size
adjusted BIC

5723.07 6693.84 6709.19 6798.51

χ2 23.576 10.78 13.91 6.64

df 8 8 8 8

RMSEA 0.068 0.027 0.039 0.000

90% CI 0.037 – 0.100 0.000 – 0.064 0.000 – 0.073 0.000 – 0.048

CFI 0.987 0.998 0.995 1.00

TLI 0.975 0.995 0.991 1.00

SRMR 0.041 0.021 0.016 0.017

BIC, Bayesian information criterion; RMSEA, root mean square error of
approximation; 90% CI, 90% confidence interval for RMSEA; CFI, comparative fit
index; TLI, Tucker Lewis index; SRMR, standardized root mean square residual.

TABLE 3 | Fit indices of the measurement models for each grade with ANS, NL
and FI.

Grade 1 Grade 2 Grade 3 Grade 4

BIC 11278.89 12688.84 12961.83 12931.38

Sample-size
Adjusted BIC

11164.64 12574.58 12847.57 12817.13

χ2 122.86 62.46 52.03 69.69

df 41 41 41 41

RMSEA 0.067 0.033 0.023 0.038

90% CI 0.053 – 0.081 0.014 – 0.049 0.000 – 0.041 0.022 – 0.054

CFI 0.96 0.99 0.99 0.99

TLI 0.95 0.99 0.99 0.98

SRMR 0.048 0.029 0.026 0.039

BIC, Bayesian information criterion; RMSEA, root mean square error of
approximation; 90% CI, 90% confidence interval for RMSEA; CFI, comparative fit
index; TLI, Tucker Lewis index; SRMR, standardized root mean square residual.

grade 4. These patterns of autoregressive paths were also obtained
for NL (Figure 3).

Model 2 with the cross-lagged path from NL to ANS did
not show a significant improvement in terms of fit to the data
compared to the autoregressive model [1χ2(3) = 6.47, p > 0.10].
Only one cross-lagged path, i.e., the path from NL in grade 1 to
ANS in grade 2, was significant (β = −0.14, SE = 0.06, p < 0.05).
The negative coefficient indicated that decreasing the deviation
from the actual position of the number on the NL was correlated
with increased accuracy in the non-symbolic comparison.

In contrast, Model 3 showed significant improvement over the
autoregressive model after adding the cross-lagged paths from
ANS to NL [1χ2(3) = 20.34, p< 0.001]. ANS in grade 2 predicted
NL in grade 3 (β =−0.16, SE = 0.05, p < 0.01], and ANS in grade
3 predicted NL in grade 4 (β = −0.13, SE = 0.05, p < 0.05). The
path from ANS in grade 1 to NL in grade 2 was not significant.

The full reciprocal model did not fit the data better than
Model 3 [1 χ2(3) = 5.23, p > 0.10]. Next, we tested a restricted
reciprocal model (Model 5a) in which the cross-lagged path
from NL at grade 1 to ANS at grade 2 was added to the cross-
lagged paths from ANS to NL. This model fit the data better
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TABLE 4 | Fit indices for the structural models with ANS and NL.

Model 1 Model 2 Model 3 Model 4 Model 5a& Model 5b&&

(Autoregressive) (NL predicts ANS) (ANS predicts NL) (Full reciprocal) (Restricted reciprocal1) (Restricted reciprocal2)

Sample-size
Adjusted BIC

25312.47 25315.06 25301.19 25305.02 25299.50 25299.51

χ2 283.09 276.62 262.75 257.52 258.05 261.07

df 202 199 199 196 198 199

RMSEA 0.029 0.028 0.026 0.025 0.025 0.025

90% CI 0.020 – 0.036 0.020 – 0.036 0.016 – 0.034 0.016 – 0.033 0.015 – 0.033 0.016 – 0.033

CFI 0.99 0.99 0.99 0.99 0.99 0.99

TLI 0.98 0.98 0.98 0.98 0.98 0.98

SRMR 0.061 0.054 0.039 0.035 0.036 0.039

1 χ2 (1 df) 6.47 (3) (vs. Model 1) 20.34∗∗∗ (3) (vs. Model 1) 5.23 (3) (vs. Model 3) 4.71∗ (1) (vs. Model 3) 3.03 (1) (vs. Model 5a)

&Model 5a – Model 3 with additional pathway from NL at grade 1 to ANS at grade 2. &&Model 5b – Model 5a without path from ANS at grade 1 to NL at grade 2.
∗p < 0.05, ∗∗∗p < 0.001.

FIGURE 3 | Autoregressive model. ANS, approximate number sense; NL, number line; Standardized coefficients are demonstrated; paths from the manifested
variables (parcels) to the latent constructs are not shown.

than Model 3 [1 χ2(1) = 4.71, p < 0.05]. However, the path
from ANS at grade 1 to NL at grade 2 was insignificant in
Model 5a, and we thus tested Model 5b in which this path
was excluded. A comparison of Models 5a and 5b demonstrates
that Model 5b did not fit the data worse than Model 5a.
Therefore, we selected Model 5b as a better fitting model.
Therefore, the effects from NL to ANS were supported in
grade 1, whereas ANS in grades 2 and 3 predicted subsequent
NL (Figure 4).

Relationships Among ANS, NL, and FI
To test if the relationship between NL and ANS might be
explained by common dispersion with FI, we added FI at each
grade as a predictor of ANS and NL in the subsequent grades
to the restricted reciprocal model as it was previously selected
as a better fitting model (Model 6). We also added the country

variable (Russia = 1) as a predictor of ANS, NL, and FI. The
goodness of fit indices for this model are demonstrated in Table 5.

The results of Model 6 reveal that FI in grade 1 predicted
subsequent ANS and NL, whereas FI in grade 2 predicted NL in
grade 3, and FI in grade 3 predicted ANS in grade 4. The paths
from NL in grade 1 to ANS in grade 2 and from ANS in grade 2
to NL in grade 3 became insignificant, while the path from ANS in
grade 3 to NL in grade 4 remained significant. Thus, NL in grade
3 was predicted by FI but not by ANS, whereas NL in grade 4 was
predicted by ANS in grade 3 but not FI (Figure 5). Accordingly,
FI eliminated the cross-lagged paths from grades 1 to 2 and from
grades 2 to 3 but not from grades 3 to 4.

The cross-country differences were significant in grade 1 for
ANS, NL and FI and in grade 2 for FI only; in grade 3, significant
between-country differences existed in NL and FI, and in grade 4,
there were no significant cross-country differences.
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FIGURE 4 | Model with restricted reciprocal relations between ANS and NL. ANS, approximate number sense; NL, number line; Standardized coefficients are
demonstrated; paths from the manifested variables (parcels) to the latent constructs are not shown.

Then, we tested a model in which FI had reciprocal
relationships with ANS and NL (Model 7). The goodness of fit
indices of this model are presented in Table 5. A comparison of
Models 6 and 7 reveals that Model 7 fit the data better than Model
6 [1χ2 = 23.33 (6), p < 0.001].

The results (see Table 6) reveal that FI in grade 1 predicted
NL and ANS in grade 2, and FI in grade 2 predicted NL in
grade 3. The path from FI in grade 3 to ANS in grade 4 became
insignificant in Model 7; therefore, FI in grade 3 did not predict
ANS or NL in grade 4. FI was also predicted by ANS or NL at
different time points. In particular, FI in grade 2 was predicted
by ANS in grade 1, and FI in grade 3 was predicted by ANS
and NL in grade 2. FI in grade 4 was not predicted by the
previous ANS or NL (Figure 6). Accordingly, the results reveal

TABLE 5 | Fit indices for the structural models with ANS, NL, and FI.

Model 6 (FI predicted
ANS and NL, country

differences)

Model 7 (reciprocal
relationships between FI

and ANS, NL)

Sample-size
Adjusted BIC

47968.45 47962.69

χ2 1304.89 1281.56

dF 833 827

RMSEA 0.034 0.033

90% CI 0.030 – 0.037 0.030 – 0.037

CFI 0.95 0.96

TLI 0.94 0.95

SRMR 0.049 0.044

1 χ2(1 df) 23.33∗∗∗ (6) (vs. Model 6)

∗∗∗p < 0.001.

that FI had a reciprocal relationship between ANS or NL in
grades 1–2, whereas the relationships between ANS and NL in
these years were not significant when controlling for FI. Later,
in grade 3, the effect of FI on subsequent ANS or NL became
insignificant, whereas the effect of ANS in grade 3 to NL in grade
4 was significant.

DISCUSSION

The “symbolic grounded problem,” which can be defined as
the question of how symbolic number systems develop and
how symbols acquire their meanings, has been extensively
discussed. A widely supported hypothesis posits that symbols
acquire their meanings by mapping onto an innate and
evolutionary ancient system of non-symbolic numerosity
representations (ANS). Although some evidence confirms this
hypothesis (e.g., Gilmore et al., 2007), several existing arguments
contradict the “ANS hypothesis.” In particular, some studies
have found no close relationship between symbolic numerosity
representations and ANS at least at a young age (Matejko
and Ansari, 2016), while other studies have demonstrated
that in contrast to the “ANS hypothesis,” the acquisition of
symbolic math skills may improve accuracy in non-symbolic
representation, while the opposite links were non-significant
(Mussolin et al., 2014).

It has been suggested that some contradictions might be
explained by methodological issues regarding the measurement
of both symbolic and non-symbolic representations, such as the
use of different types of tasks, different measures of accuracy
or different formats of stimulus presentation in tasks involving
non-symbolic representations. Other existing issues are related to
the lack of longitudinal studies and the problem of confounding

Frontiers in Psychology | www.frontiersin.org 10 December 2019 | Volume 10 | Article 2724

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-10-02724 December 3, 2019 Time: 17:28 # 11

Tikhomirova et al. Symbolic and Non-symbolic Numerosity Representations

FIGURE 5 | Model with restricted reciprocal relations between ANS and NL; FI is a predictor of ANS and NL (with country controlled). ANS, approximate number
sense; NL, number line; FI, fluid intelligence; Standardized coefficients are demonstrated; paths from the manifested variables (parcels) to the latent constructs are
not shown. Correlations between the constructs within one wave are not shown. The country variable is included in the model but is not shown. Insignificant paths
are shown in gray.

variables in the estimation of developmental relationships
between non-symbolic and symbolic representations.

Considering these issues, we aimed to estimate the
developmental relationship between non-symbolic and symbolic
representations using a four-wave longitudinal study involving
schoolchildren from grade 1 to grade 4. Symbolic representations
were measured by an NL test, and non-symbolic representations
were measured by a “blue–yellow dots” test. We used the
mean deviation from the actual position of the number as
an indicator of accuracy in the NL test and the sum of the
correct answers as an indicator of accuracy in the “blue–yellow
dots” test. We specified ANS and NL as latent constructs, and
each construct was presented by three parcels to avoid biased
estimations of paths using a path analysis with manifested
variables (Cole and Preacher, 2014).

Our analysis revealed that the restricted reciprocal model
in which symbolic representation in grade 1 predicted

non-symbolic representation in grade 2 and non-symbolic
representation in grades 2 and 3 predicted subsequent symbolic
representation fit the data significantly better than the other
models. These results are consistent with some hypotheses
regarding the bidirectional relationship between symbolic and
non-symbolic representations (Goffin and Ansari, 2019).

Our results confirmed the “ANS hypothesis” but only at
the end of elementary school. At the start of schooling,
when children must rapidly acquire system number knowledge,
symbolic representation is not predicted by non-symbolic
representation and vice versa; accurate symbolic representations
may lead to improvement in precision in ANS. These results
are consistent with a study conducted by Mussolin et al. (2014),
who demonstrated that at 3–4 years of age, children’s symbolic
number skills predicted subsequent accuracy in non-symbolic
magnitude comparisons, whereas the opposite links were non-
significant. The children in our sample were older than those in
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TABLE 6 | Standardized regression coefficients from the Model 7.

Paths ANS, NL and FI

B (SE) 95% CI

Autoregressive paths

ANS2 ON ANS1 0.36∗∗∗ (0.06) [0.24;0.49]

ANS3 ON ANS2 0.41∗∗∗ (0.06) [0.29;0.54]

ANS3 ON ANS1 0.20∗∗ (0.07) [0.07;0.33]

ANS4 ON ANS2 0.12 (0.07) [−0.01;0.26]

ANS4 ON ANS3 0.57∗∗∗ (0.06) [0.45;0.68]

NL2 ON NL1 0.39∗∗∗ (0.05) [0.29;0.49]

NL3 ON NL2 0.19∗∗ (0.05) [0.08;0.29]

NL3 ON NL1 0.30∗∗∗ (0.05) [0.20;0.40]

NL4 ON NL2 0.13∗∗ (0.05) [0.04;0.23]

NL4 ON NL3 0.53∗∗∗ (0.05) [0.43;0.62]

FI2 ON FI1 0.43∗∗∗ (0.06) [0.31;0.54]

FI3 ON FI2 0.70∗∗∗ (0.06) [0.58;0.82]

FI3 ON FI1 0.16∗ (0.07) [0.03;0.29]

FI4 ON FI3 0.73∗∗∗ (0.04) [0.65;0.82]

Cross-lagged paths

ANS2 ON NL1 −0.06 (0.06) [−0.17;0.06]

ANS2 ON FI1 0.20∗∗ (0.08) [0.05;0.35]

ANS3 ON FI2 0.09 (0.07) [−0.05;0.23]

ANS4 ON FI3 0.10 (0.06) [−0.01;0.21]

NL2 ON FI1 −0.25∗∗∗ (0.07) [−0.38;−0.12]

NL3 ON ANS2 −0.07 (0.06) [−0.17;0.05]

NL3 ON FI2 −0.29∗∗∗ (0.06) [−0.45;−0.17]

NL4 ON ANS3 −0.11∗ (0.05) [−0.21;−0.01]

NL4 ON FI3 −0.09 (0.05) [−0.19;0.01]

FI2 ON ANS1 0.15∗∗ (0.05) [0.05;0.25]

FI2 ON NL1 −0.02 (0.05) [−0.11;0.08]

FI3 ON ANS2 0.11∗ (0.05) [0.01;0.23]

FI3 ON NL2 −0.10∗ (0.04) [−0.19;−0.01]

FI4 ON ANS3 −0.01 (0.06) [−0.12;0.10]

FI4 ON NL3 −0.08 (0.05) [−0.18;0.02]

Correlations within waves

ANS1 WITH NL1 −0.21∗∗∗ (0.06) [−0.32;−0.10]

NL1 WITH FI1 −0.28∗∗∗ (0.05) [−0.39;−0.17]

ANS1 WITH FI1 0.25∗∗∗ (0.06) [0.13;0.37]

ANS2 WITH NL2 −0.05 (0.06) [−0.17;0.07]

NL2 WITH FI2 −0.12∗ (0.06) [−0.24;−0.004]

ANS2 WITH FI2 0.22∗∗ (0.07) [0.09;0.35]

ANS3 WITH NL3 −0.29∗∗∗ (0.06) [−0.40;−0.17]

NL3 WITH FI3 −0.15∗ (0.06) [−0.27;−0.02]

ANS3 WITH FI3 0.09 (0.07) [−0.05;0.23]

ANS4 WITH NL4 −0.18∗ (0.07) [−0.31;−0.04]

NL4 WITH FI4 −0.13 (0.07) [−0.27;0.003]

ANS4 WITH FI4 0.11 (0.08) [−0.04;0.27]

Country differences

NL1 ON country −0.18∗∗∗ (0.05) [−0.28;−0.09]

NL2 ON country 0.02 (0.06) [−0.09;0.13]

NL3 ON country 0.14∗ (0.05) [0.04;0.25]

NL4 ON country 0.03 (0.04) [−0.06;0.11]

(Continued)

TABLE 6 | Continued

Paths ANS, NL and FI

B (SE) 95% CI

ANS1 ON country 0.17∗∗ (0.06) [0.06;0.28]

ANS2 ON country 0.04 (0.07) [−0.09;0.16]

ANS3 ON country 0.05 (0.06) [−0.07;0.16]

ANS4 ON country 0.06 (0.05) [−0.03;0.15]

FI1 ON country 0.57∗∗∗ (0.04) [0.50;0.65]

FI2 ON country 0.31∗∗∗ (0.05) [0.21;0.41]

FI3 ON country −0.26∗∗∗ (0.05) [−0.36;−0.16]

FI4 ON country −0.05 (0.04) [−0.13;0.04]

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05.

the study conducted by Mussolin et al. (2014), but it is possible
that this relationship pattern is typical during the period at the
beginning of formal schooling when children acquire symbolic
number knowledge.

It may also be the case that the acquisition of symbolic number
systems during schooling can enhance the adjustment of the
ANS through feedback. It has been demonstrated that feedback
during the execution of non-symbolic number comparison tasks
is associated with increased accuracy (DeWind and Brannon,
2012). Thus, the acquisition of symbolic number knowledge
and counting provide the opportunity to compare the results of
approximate and exact estimations of numerosity and tune the
results of rapid and approximate estimation according to more
exact symbolic representations.

These results are partially consistent with an alternative
hypothesis of the “symbolic grounding problem,” which posits
that an understanding of symbolic number systems is acquired
not through mapping onto the ANS but through the association
of numbers to an Object Tracking System (OTS), which
refers to a system representing numbers in a very precise
way but with limited capacity (3–4 items) (Reynvoet and
Sasanguie, 2016). According to this hypothesis, an understanding
of larger numerosity occurs through order association with
smaller numbers rather than through the ANS. From this
point of view, the growth in precision in NL should not be
associated with the ANS.

Meanwhile, our study demonstrated that later, in grades 3–
4, precision in the NL estimation was predicted by the ANS,
which confirms the “ANS hypothesis” of the “symbolic grounding
problem” but in a slightly different way.

Most likely, the effect of non-symbolic representation on
symbolic representation emerges after a child masters the basics
of symbolic number knowledge, such as counting in the range of
20 and simple arithmetic. According to the national educational
standards in Russia and Kyrgyzstan, in the first grade, pupils
should understand numbers from 0 to 20. During this period,
the precision of the ANS does not predict NL accuracy because
pupils may identify the position of a number on a number line
by connecting larger numbers to smaller numbers. Subsequently,
after students master more complex number knowledge (from
20 to 100 and from 100 to 1,000), ANS can serve as a basis for
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FIGURE 6 | Model with restricted reciprocal relations between ANS, NL, and FI (with country controlled). ANS, approximate number sense; NL, number line; FI, fluid
intelligence; Standardized coefficients are demonstrated; paths from the manifested variables (parcels) to the latent constructs are not shown. Only significant paths
are shown. Correlations between the constructs within one wave are not shown. The country variable is included in the model but is not shown.

symbolic representation. It is possible that for relatively small
numbers (0–10), the acquisition of the semantic meaning of
symbols occurs through mapping to the OTS, while for relatively
large numbers, such acquisition relies on mapping to the ANS.
Future studies are needed to test this hypothesis.

The association between ANS and NL might be explained
by the fact that they both represent numerosity processing.
In addition, the NL test and “blue–yellow dots” test may
be correlated because they both involve visuospatial skills.
Specifically, it has been demonstrated that visuospatial skills,
such as visuospatial working memory and mental rotation, are
significantly correlated with NL precision (Geary et al., 2008;
LeFevre et al., 2013; Simms et al., 2016). The accuracy of

non-symbolic magnitude comparison is also affected by the
visual properties of the stimulus (e.g., Gebuis and Reynvoet,
2012; Gilmore et al., 2013). Particularly, children can rely on
a comparison of the total surface area between two compared
sets of objects to make comparison judgments in the case of
congruency between numerosity and visual cues (e.g., Gilmore
et al., 2013; Starr et al., 2017). Consequently, pupils who are
more precise in their estimation of visual cues in the non-
symbolic comparison task might be more accurate in identifying
the position of the number on the NL.

In this study, we could not identify the extent to which
the relationship between accuracy in the “blue-yellow dots” test
and NL test was explained by the involvement of visuospatial
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skills. However, notably, the involvement of visuospatial skills
might explain the association between the two constructs but not
the direction of this association. Thus, even if we control for
visuospatial skills to explain the relationship between accuracy
in the NL test and “blue-yellow dots” test, we could not explain
why accuracy in the “blue-yellow dots” task predicted subsequent
accuracy in the NL and vice versa.

To some extent, we control for visuospatial skills by including
the accuracy in Raven’s SPM test. Numerous studies have
demonstrated that Raven’s SPM test measures not only the g
factor but also other factors, such as visualization and perceptual
and spatial factors (e.g., van der Ven and Ellis, 2000; Lynn
et al., 2004; Schweizer et al., 2007; Gignac, 2015). In particular,
Lynn et al. (2004) identified the following three factors that are
measured by Raven’s SPM test: gestalt continuation, visuospatial
ability and verbal-analytic reasoning. Schweizer et al. (2007)
contended that there is a correlation between performance
on Raven’s SPM test and perceptual efficiency. Our results
indicated that the paths from the NL test in grade 1 to ANS
in grade 2 and from ANS in grade 2 to NL in grade 3
became insignificant after including accuracy in Raven’s SPM
test in the model. However, the path from ANS in grade 3
to NL in grade 4 remained significant. This finding indicates
that non-symbolic representation has an independent effect
on the accuracy of symbolic representation, but this effect
occurs later at the end of elementary school. We propose
that at the beginning of schooling, symbolic and non-symbolic
representations are related to each other because both require
shared cognitive mechanisms, while in the process of education,
these representations become more distinct from domain-
general resources.

Furthermore, as the results of Model 7 demonstrate, in
grades 1 and 2, FI predicts both subsequent symbolic and non-
symbolic representations or separately symbolic representations.
Later, in grade 3, FI does not predict non-symbolic or symbolic
representations in grade 4. NL accuracy in grade 4 was predicted
only by ANS and not FI. This finding can also indicate the
growing independence of numerosity representations from more
general cognitive abilities.

Although the estimation of cross-country differences was not
an aim of our study, notably, there were significant cross-country
differences in non-symbolic and symbolic representations in
grade 1. These differences eventually became insignificant. In
grades 1 and 2, FI was higher in the children from Russia,
and in grade 3, the children from Kyrgyzstan demonstrated a
higher accuracy in FI. In grade 4, there were no differences in
FI between the Russian and Kyrgyz children. The differences in
non-symbolic and symbolic representations may likely be due to
different experiences with formal education before the beginning
of school. Most children from the Russian sample (95%) attended
kindergarten before school and were taught the number system
and simple arithmetic. In contrast, the children from the Kyrgyz
sample were less likely to have attended kindergarten (32%)
and had less experience with formal education before school.
In such cases, the Russian children had an advantage at the
beginning of schooling, but this advantage disappeared from
grade 1 to grade 4. However, future studies are needed to

obtain a deeper understanding of the cross-country difference
and its dynamic in FI.

Our study has several limitations. First, in our study, we
used the version of the “blue-yellow dots” test in which all
trials were congruent, as numerosity was positively correlated
with the surface areas. The congruency of trials may impugn
the validity of this test for the measurement of non-symbolic
representations per se. Partly, this limitation may be overcome
by using an intermixed format of stimulus presentation.
It has been demonstrated that the reliability of this test
is higher in an intermixed format than in the paired or
sequential formats (Price et al., 2012). It has been also shown
that the associations between mathematical achievement and
accuracy in congruent and incongruent trials were exclusively
significant in the intermixed task but not in a separate
format of stimulus presentation (Norris and Castronovo,
2016). Therefore, we propose that the “blue–yellow dots”
test is more sensitive to the measurement of non-symbolic
representations in the intermixed format than in the separate
format of presentations.

The second limitation refers to the age and educational
experience of the participants. To investigate if ANS serves
as a basis for the acquisition of symbolic number knowledge,
it is necessary to start testing participants before they begin
any formal education. In the current longitudinal project, we
started testing pupils at the end of grade 1 when they had
almost a full year of schooling. Therefore, the association
between ANS and symbolic representation that was found
in our study referred to a period when pupils already had
number system knowledge to some extent. However, we assume
that the acquisition of a symbolic number system does not
limit the acquiring of numbers from 1 to 10 or to 20. The
acquisition of a number system continues through all stage
of formal education. Accordingly, our findings may shed on
light on the developmental relations between ANS and symbolic
representation in the period of elementary school when pupils
may master some basis of a symbolic number system. The
association between ANS and symbolic representation may
change in different studies of education.

Therefore, we propose that non-symbolic representation has
an effect on symbolic representation at the end of elementary
school that is independent of fluid intelligence or visuospatial
skills, whereas the effect of symbolic representation on the
precision of non-symbolic comparison in the previous stage of
formal education is explained by fluid intelligence or visuospatial
skills. Future research is necessary to estimate the possible
changes in the relationship among FI and symbolic and non-
symbolic representations in secondary or high school. The
ongoing longitudinal project CLASS will obtain results for further
investigation of the development of and interrelations among
these constructs.
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