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Abstract

Chromosome duplication and transmission into daughter cells requires the precisely orchestrated binding and release of
cohesin. We found that the Drosophila histone chaperone NAP1 is required for cohesin release and sister chromatid
resolution during mitosis. Genome-wide surveys revealed that NAP1 and cohesin co-localize at multiple genomic loci.
Proteomic and biochemical analysis established that NAP1 associates with the full cohesin complex, but it also forms a
separate complex with the cohesin subunit stromalin (SA). NAP1 binding to cohesin is cell-cycle regulated and increases
during G2/M phase. This causes the dissociation of protein phosphatase 2A (PP2A) from cohesin, increased phosphorylation
of SA and cohesin removal in early mitosis. PP2A depletion led to a loss of centromeric cohesion. The distinct mitotic
phenotypes caused by the loss of either PP2A or NAP1, were both rescued by their concomitant depletion. We conclude
that the balanced antagonism between NAP1 and PP2A controls cohesin dissociation during mitosis.
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Introduction

Histone chaperones perform crucial functions during the

duplication of eukaryotic genomes [1–2]. They guide the

posttranslational processing and trafficking of newly-synthesized

histones to replication forks and mediate replication-coupled

chromatin assembly [2–8]. Histone chaperones CAF1, ASF1 and

HIRA bind histone H3/H4 tetramers, whereas NAP1 binds both

H3/H4 tetramers and H2A/H2B dimers. Although originally

identified as factors that prevent aggregation and direct the

assembly of histones on DNA [9], it turned out that histone

chaperones play a variety of regulatory roles in chromosome

biology. In addition to replication-coupled chromatin assembly,

histone chaperones function in gene-specific transcription control,

DNA repair and direct specific histone modifications [10–15].

Histone chaperones achieve these diverse functions through

cooperation with other factors, such as histone modifying enzymes

and ATP-dependent chromatin remodelers [15–20]. For example,

ASF1 and NAP1 cooperates with histone modifying factors to

differentially modulate local chromatin during NOTCH signaling

[15,21]. NAP1 associates with RLAF (RPD3 and LID associated

factors), an assemblage of the histone deacetylase RPD3, histone

H3 lysine 4 demethylase LID/KDM5, SIN3A, PF1, EMSY and

MRG15. NAP1 recruits RLAF to the (E)Spl NOTCH-regulated

genes to generate a repressive chromatin structure and mediate

transcriptional silencing [15].

A specific function for histone chaperones during mitosis has not

been established. Suggestively, we noted the potential association

between NAP1 and cohesin in a proteomic survey of histone

chaperones [15]. Cohesin is the conserved protein complex that

mediates cohesion between sister chromatids after replication,

which is crucial for proper chromosome segregation in mitosis and

meiosis. The core of cohesin is formed by Stromalin (SA/SCC3),

and a tripartite ring comprising SMC1, SMC3 and RAD21/SCC1.

The cohesin ring embraces and holds sister chromatids together

[22–23]. For a comprehensive discussion of mitotic cohesin

dynamics we refer to a number of excellent reviews [24–31].

Briefly, cohesin binds chromosomes prior to DNA replication,

enabling the linkage of newly replicated sister chromatids from S-

through G2 phase. By metaphase, juxtaposed chromatids are only

connected at their centromeric regions and have separate

chromosome arms. This process is referred to as sister chromatid

resolution and requires cohesin release from the arms, but not

from the centromeres. During prophase, Polo-like kinase and

potentially other mitotic kinases, phosphorylate SA, which triggers

the bulk dissociation of cohesin from the chromosome arms [32–

34]. This step also requires the cohesin releasing complex WAPL-

PDS5 that interacts transiently with cohesin at mitotic entry [35–

38]. All this time, centromeric cohesin remains associated and is

protected from phosphorylation by the Shugoshin(Sgo)/MeiS332

family of proteins, which act in conjunction with PP2A [39–45].

At anaphase, separase-mediated cleavage of RAD21 causes the

dissociation of centromeric cohesin, allowing sister chromatid

segregation [46–47].

Motivated by the potential interaction between NAP1 and

cohesin [15], we wondered if NAP1 might function in the cohesin
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chromosome binding and release cycle. We established that

NAP1 and cohesin interact functionally. Through counteracting

PP2A access to cohesin in early mitosis, NAP1 is a crucial

regulator of the chromosomal cohesin cycle. Loss of NAP1

severely compromised cohesin release from the chromosome

arms and sister chromatid resolution. These results uncover a

mitotic function for NAP1 that is separate from its role in

nucleosome assembly.

Results

NAP1 is required for sister chromatid resolution
To examine the role of NAP1, we analyzed mitotic chromo-

somes prepared from colchicine-treated S2 cells after RNAi-

mediated depletion of NAP1. Loss of NAP1, but not loss of the

histone chaperone CAF1, caused a striking increase in the number

of unresolved sister chromatids (Figure 1A and Figure S1A). In

addition, depletion of NAP1 caused reduced cell proliferation,

mitotic defects, an accumulation of poly/aneuploid cells and an

increased portion of cells in the G1-phase of the cell cycle (Figure

S1B–D). We also analyzed mitotic chromosomes from Drosophila

larvae homozygous for the NAP1 knockout allele nap1KO1 [48].

Nap1KO1 homozygous flies are semi-lethal, and male escapers are

sterile. Immunoblotting confirmed that NAP1 was not detectable

in larvae homozygous for nap1KO1, whereas cohesin levels were

unaffected (Figure S1A). We prepared mitotic chromosomes from

colchicine-treated larval brain cells. In cells lacking NAP1 we

observed a dramatic increase in cohesively linked sister chroma-

tids, compared to wild type cells (Figure 1B). Quantification of S2

cells and larval brain cells with either resolved or unresolved sister

chromatids confirmed the crucial role of NAP1 in this process

(Figure 1C). However, we observed no changes in mitotic

chromosome morphology, immunostaining efficiency of histone

H3, micrococcal nuclease (MNase) sensitivity or nucleosome

spacing upon depletion of NAP1 (Figure 1D and Figure S1E).

This suggests that there are no gross changes in chromatin

organization due to loss of NAP1. We conclude that NAP1 is

required for sister chromatid resolution and normal mitosis.

Cohesin release is compromised in cells depleted for
NAP1

Resolution of sister chromatids is initiated at prophase by the

bulk removal of cohesin from mitotic chromosome arms [24–26].

Therefore, we examined chromosomal cohesin binding after

knockdown of NAP1. We used antibodies against SA and RAD21

to visualize cohesin on mitotic chromosomes that were isolated

from colchicine-treated S2 cells. Depletion of NAP1 caused a

striking accumulation of cohesin on the mitotic chromosome arms

(Figure 2A–B). In mock-treated cells, we could only detect cohesin

binding to the centromeric regions of mitotic chromosomes.

Likewise, chromosomes from homozygous nap1KO1 larval brain

cells were densely coated with cohesin, whereas on wild type

chromosomes cohesin binding was limited to the centromers

(Figure 2C–D). Thus, NAP1 is required for cohesin release during

mitosis.

Interestingly, NAP1’s sub-cellular localization is dynamic and

changes during the cell cycle (Figure S2). During interphase NAP1

is distributed about equally between cytoplasm and nucleus in

Drosophila embryos, but at prophase there is a strong increase in

nuclear NAP1. By metaphase, NAP1 has dissociated from

chromosomes, along with most SA, but by anaphase both re-

associate. Thus, nuclear accumulation of NAP1 at prophase agrees

well with its function in promoting cohesin release in early mitosis.

Together, these results suggest that NAP1 promotes sister

chromatid resolution by mediating cohesin release from the

chromosome arms.

NAP1 and cohesin share genomic loci
We wondered if NAP1 interacts with- and co-localizes with

cohesin on chromatin. Immunostaining of interphase 3rd instar

larval salivary gland polytene chromosomes with antibodies

against NAP1 and SA revealed a substantial overlap in their

genomic binding loci (Figure 3A). For a high resolution analysis,

we performed chromatin immunoprecipitations (ChIPs) in asyn-

chronously dividing S2 cells using antibodies against NAP1, SA

and SMC1. Following ChIP, isolated DNA fragments were

mapped back to the genome by hybridization to Drosophila tiling

arrays (Figure 3B and Figure S3A–C). All ChIPs were performed

using 2 independent biological replicates, which showed a high

degree of correlation (Figure S3D). The averaged genomic binding

profiles of NAP1 and cohesin were highly correlated (r.0.7),

indicating significant co-occupancy (Figure S3E).

We selected ChIP-chip peaks at a false discovery rate

(FDR),0.01, based on random permutation, yielding roughly

10,000 assigned binding loci for each factor. Intersection of

genomic binding sites revealed a substantial overlap between

cohesin and NAP1 loci (Figure 3C). Shared target loci include the

NOTCH-regulated cut and E(spl) genes, and the ecdysone-

controlled BrC and Eip75B genes (Figure 3B and Figure S3A–C).

Binding of NAP1 and SA to these loci was confirmed indepen-

dently by ChIP followed by quantitative PCR (Figure 3D–E).

Previously, it was found that NAP1 and cohesin are required for

the repression of NOTCH-target genes [15,49], indicating that

these factors might also cooperate in gene regulation.

NAP1 interacts with cohesin
To establish whether NAP1 interacts with cohesin, we

immunopurified NAP1, SA and SMC1 from Drosophila embryo

nuclear extracts (NE). Following extensive washes with a buffer

Author Summary

Eukaryotic DNA is assembled into a nucleo-protein
structure called chromatin. Nucleosomes are the basic
building blocks of chromatin, comprising 147 bp of DNA
tightly wrapped around a histone protein core. Histone
chaperones mediate nucleosome assembly by preventing
non-productive aggregation of histones with DNA. Here,
we describe an unexpected function for the canonical
histone chaperone NAP1 in sister chromatid resolution.
The precisely orchestrated binding and release of cohesin
is crucial for proper chromosome segregation in mitosis.
Cohesin holds newly replicated sister chromatids together
till early mitosis. Then, it is first removed from the
chromosome arms and lastly from the centromeres. This
process ensures proper chromosome resolution and
segregation into daughter cells. Cohesin removal from
the arms is initiated by mitotic kinases in early mitosis, but
can be counteracted by protein phosphatase 2A (PP2A).
We found that NAP1 blocks protein phosphatase 2A
binding to chromosomal cohesin, thereby allowing cohe-
sin phosphorylation and dissociation from the chromo-
some arms. Functional in vivo experiments established that
the antagonistic activities of NAP1 and PP2A control the
chromosomal cohesin cycle and sister chromatid resolu-
tion. These results provide a novel chromatin-assembly-
independent mitotic function for a histone chaperone.

NAP1 Is Required for Sister Chromatid Resolution
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containing 600 mM KCl and 0.1% NP40, immuno-purified

proteins were resolved by sodium dodecyl sulfate polyacrylamide

gel electrophoresis (SDS-PAGE) and visualized by Coomassie

staining (Figure 4A–C). Protein identities were determined by mass

spectrometry. Table S1 provides an overview of the proteins

identified. In addition, we included the results of NAP1 purified

from embryo NE using an independent antibody and NAP1

purified from S2 cells. All three independent NAP isolations

yielded similar results. NAP1-associated proteins, such as the

RLAF silencing complex [15], are mostly involved in transcription

control. Importantly, the full cohesin complex was associated with

NAP1 in all three independent purifications. Conversely, NAP1,

but not RLAF, was identified alongside the cohesin subunits in

both SA and SMC1 purifications. The majority of cohesin-bound

proteins we identified have been implicated in cohesin biology,

including the loading factors Nipped-B/SCC2 and MAU2/SCC4

[50–52]. Both NAP1 and cohesin purifications contained replica-

tion factor C, which is involved in DNA replication and cohesin

loading [53–54]. We also noted the presence of protein

phosphatase PP2A in the NAP1, SA and SMC1 purifications

(Table S1). Immunopurification of PP2A from embryo NE

followed by mass spectrometry revealed that PP2A is part of an

extensive network of kinases and phosphatases (Figure 4D and

Table S2). Most relevant for the present study, NAP1, the full

cohesin complex, and cohesin loading factors Nipped B and Mau2

were all present in the PP2A purification.

We confirmed the specific association between NAP1, cohesin

and PP2A by a series of co-immunoprecipitations (co-IPs) followed

by immunoblotting. NAP1 was prominent in SA IPs, together with

other cohesin subunits (Figure 4E). Conversely, the cohesin

subunits SA, SMC1 and RAD21 were readily detected in NAP1

IPs (Figure 4F). Likewise, NAP1 and cohesin subunits were also

detected in PP2A IPs under stringent conditions (600 mM KCl,

0.1% NP40). In addition, PP2A co-IPs under milder conditions

(200 mM KCl, 0.1% NP40) with MeiS332, a Drosophila homolog

of Sgo. Thus, the association between PP2A and Sgo/MeiS332

Figure 1. NAP1 is required for sister chromatid resolution. (A) Analysis of mitotic chromosomes from colchicine-treated S2 cells stained with
DAPI (shown in red). Sister chromatids from cells depleted for NAP1 (KD) frequently do not resolve properly, compared to those from mock-treated or
CAF1-105 depleted cells. Representative mitotic chromosomes are shown at higher magnification. (B) Mitotic chromosomes from wild type (WT) or
nap1KO1 larvae brain cells. (C) Quantification of sister chromatid resolution in the presence or absence of NAP1. The frequency of mitotic cells with
resolved sister chromatids is significantly lower in NAP1 depleted cells than in mock-treated or CAF1-105 depleted cells. Likewise, sister chromatid
resolution was significantly compromised in brain cells from nap1KO1 compared to wild type larvae. Each analysis was based on .30 cells from 3
biological replicates and significance was determined by a x2-test. (D) NAP1 knockdown does not affect nucleosome spacing or MNase sensitivity.
Formaldehyde cross-linked chromatin prepared from mock-treated or NAP1 depleted S2 cells was digested with indicated units of MNase. Purified
DNA was loaded onto a 2% agarose gel and stained with ethidium bromide. DNA fragments corresponding to mono-, di-, tri- and tetranucleosomes
are indicated.
doi:10.1371/journal.pgen.1003719.g001

NAP1 Is Required for Sister Chromatid Resolution
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seems to be conserved from mammals to flies (Figure 4G). Other

histone chaperones such as CAF1 or ASF1 did not bind cohesin,

supporting the selectivity of NAP1 binding.

Protein-protein interaction assays using recombinant proteins

confirmed the ability of NAP1 to bind cohesin subunits (Figure

S4). NAP1 did not bind to the recombinant catalytic or regulatory

subunits of PP2A, suggesting that they do not interact directly

(Figure S4). In cells, the association between PP2A and NAP1

might be mediated through bridging by cohesin. Collectively,

these results established a biochemical interaction between the

histone chaperone NAP1 and cohesin.

NAP1, but not PP2A, forms a separate module with SA
To characterize the NAP1, cohesin and PP2A interaction

further, we used Sephacryl S-300 size-exclusion chromatography

(Figure 4H). NAP1 and cohesin subunits co-eluted in column

fractions corresponding to an apparent molecular mass of

,1.5 MDa. A substantial portion of NAP1 and SA, but not the

other cohesin subunits, were also present in fractions correspond-

ing to an average molecular mass of ,300 kDa. We did not detect

appreciable amounts of NAP1 or SA eluting at their predicted

molecular weights, suggesting they are not present as free proteins.

Co-IPs from pooled high molecular weight S-300 column fractions

Figure 2. Loss of NAP1 compromises cohesin removal from mitotic chromosome arms. (A) Indirect immunofluorescent analysis of SA
(green) binding to mitotic chromosomes from mock-treated or NAP1 knockdown S2 cells. DNA visualized by DAPI is shown in red. The centromeric
localization of SA in mock-treated cells is indicated by arrowheads. Upon NAP1 KD, there is a dramatic accumulation of SA on the mitotic
chromosome arms in ,80% of cells. (B) Indirect immunofluorescent analysis of RAD21 (green) binding to mitotic chromosomes from S2 cells.
Analysis as described above. RAD21 accumulates on mitotic chromosome arms in ,80% of cells depleted for NAP1. (C) Binding of SA to mitotic
chromosomes from wild type or nap1KO1 larval brain cells. (D) Binding of RAD21 to mitotic chromosomes from larval brain cells. ,85% of nap1KO1

larval brain cells show accumulation of SA and RAD21 on mitotic chromosome arms.
doi:10.1371/journal.pgen.1003719.g002

NAP1 Is Required for Sister Chromatid Resolution
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Figure 3. NAP1 and cohesin co-localize on chromatin. (A) Distribution of NAP1 and SA proteins on Drosophila salivary gland polytene
chromosomes visualized by indirect immunofluorescence with antibodies against NAP1 (green) and SA (red). DNA was stained with 49,6-diamidino-2-
phenylindole (DAPI; blue). Split images and merge for red and green channels are shown. Regions harboring the Enhancer of split (E(spl)) gene cluster,
Broad Complex (BrC), Eip75B and chromocenter (c) are indicated. (B) Genomic view of NAP1 (green), SA (red) and SMC1 (blue) ChIP-chip enrichment

NAP1 Is Required for Sister Chromatid Resolution
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12–14 confirmed the presence of a large assemblage harboring the

full cohesin complex, NAP1 and PP2A (Figure 4I). In addition, co-

IPs from the pooled lower molecular weight fractions 27–29

revealed a separate complex comprising NAP1 and SA, but devoid

of PP2A or the other cohesin subunits (Figure 4J). A possible

interpretation of these results is that NAP1 forms a separate

module with SA, which interacts dynamically with the full cohesin

complex.

NAP1 counteracts PP2A association with cohesin
The removal of cohesin from chromosome arms is triggered by

SA phosphorylation in prophase, whereas centromeric cohesin is

protected from phosphorylation by a complex of PP2A and Sgo/

MeiS332 [32–34,39–40]. The results from our interaction studies

(Figure 4) suggest that NAP1, or the NAP1-SA module, may

compete with PP2A for cohesin binding. Therefore, we considered

the possibility that NAP1 promotes cohesin dissociation from

chromosome arms by blocking PP2A binding to cohesin. To test

this idea, we performed competition assays using recombinant

NAP1 expressed in baculovirus (Figure 5A) and cohesin complex

immunopurified from embryo nuclear extracts with antibodies

against SA or SMC1 (Figure 4B–C). Recombinant NAP1 binds

immunopurified cohesin and drives the dissociation of endoge-

nously bound PP2A (Figure 5B–C). To test the effect of NAP1 on

PP2A binding to cohesin in vivo, we immunopurified cohesin

complex from S2 cells that were either mock treated or depleted

for NAP1. Loss of NAP1 caused a strong increase in PP2A

association with cohesin (Figure 5D). Accompanying the increase

in cohesin-bound PP2A, immunoblotting with antibodies directed

against phospho-Serine or SA revealed decreased levels of

phosphorylated SA following NAP1 knockdown. Depletion of

NAP1 affected neither the integrity, nor the stoichiometry of the

cohesin complex (Figure 5E and Figure S5A). Likewise, cellular

levels of PP2A were not affected by NAP1 depletion (Figure S5B).

Next, we investigated if NAP1 counteracts PP2A binding to

cohesin during mitosis. Immunopurification of SA and SMC1

revealed increased association of NAP1 with cohesin in colchicine

treated cells that are arrested in mitosis, compared to untreated

cells (Figure 5F–G and Figure S6). Whereas NAP1 associates,

PP2A dissociates from cohesin in mitosis allowing persistence of

the phosphorylation of SA by mitotic kinases. After NAP1

knockdown, PP2A stayed bound to cohesin in mitotic cells and

SA remained dephosphorylated suggesting that NAP1 drives

PP2A dissociation (Figure 5G and Figure S6). To ensure the

phosphorylation effects we observe are SA specific, we immuno-

purified SA from S2 cells under denaturing conditions. Immuno-

blotting with antibodies against phospho-Serine confirmed that we

detect phosphorylated SA and not an associated factor such as

SMC1, which dissociates from SA under these conditions

(Figure 5H). Finally, the effect of colchicine treatment or NAP1

knockdown show that SA phosphorylation is cell-cycle regulated

and depends on NAP1 (Figure 5I). We conclude that NAP1

counteracts PP2A binding to cohesin, thereby preventing SA

dephosphorylation during G2/M transition, resulting in a net

increase in phosphorylated SA.

NAP1 counteracts PP2A binding to chromosomes
To examine the role of NAP1 in the binding of PP2A to

chromosomal cohesin loci, we performed ChIPs (Figure 6A).

Knockdown of NAP1 resulted in a striking increase in PP2A

association with the cohesin and NAP1 binding sites examined.

In contrast, SA depletion caused a loss of PP2A binding to the

genomic NAP1 and cohesin sites, suggesting that SA tethers

PP2A to chromatin. Confirming the specificity of the assay,

ChIP signals were strongly reduced after PP2A knockdown.

Based on these ChIP results, we conclude that PP2A binding to

chromosomal cohesin is attenuated by NAP1. This notion is

supported by immunostaining of mitotic chromosomes. Knock-

down of NAP1 caused a strong accumulation of PP2A onto the

chromosome arms in ,80% of cells (Figure 6B). Upon loss of

NAP1, MeiS332 is no longer restricted to the centromers, but

now coats the chromosome arms (Figure 6C). Thus, MeiS332

behaves similar to its centromeric partner PP2A. This result

provides additional support for the notion that the role of PP2A-

Sgo/MeiS332 in mitosis is conserved from flies to mammals.

Collectively, our findings suggest that NAP1 regulates sister

chromatid resolution by preventing PP2A binding to cohesin on

chromosome arms. Blockage of PP2A allows phosphorylation of

SA by mitotic kinases, which drives cohesin release and sister

chromatid resolution.

NAP1 and PP2A are antagonistic regulators of sister
chromatid resolution

If NAP1 mediates sister chromatid resolution by counteracting

PP2A, concomitant loss of PP2A should reverse the effects of

NAP1 depletion. To test this idea, we analyzed mitotic chromo-

somes after knockdown of either NAP1, PP2A or both factors

(Figure 7A and Figure S7A). First, we observed that the effect of

PP2A knockdown is the opposite of NAP1 depletion. Instead of

unresolved sister chromatids, which are the hallmarks of NAP1

depletion, knockdown of PP2A caused diminished centromeric

cohesion in ,65% of mitotic cells (Figure 7A–B). This was

accompanied by dissociation of centromeric SA and RAD21, but

not MeiS332 in ,60–65% of mitotic cells (Figure 7B–D).

However, after concomitant depletion of NAP1 and PP2A the

majority of mitotic chromosomes appeared normal. We observed

no loss of centromeric cohesion and the majority of sister

chromatids were resolved properly. In agreement with the rescued

phenotype, cohesin and MeiS322 localization was largely normal

in ,70–80% of cells depleted for both NAP1 and PP2A.

Our earlier biochemical results indicated that NAP1 counteracts

PP2A binding to SA, thereby preventing SA dephosphorylation.

Therefore, we tested if the loss of phosphorylated SA after NAP1

knockdown was dependent on PP2A. Indeed, concomitant

knockdown of PP2A and NAP1 restored the levels of phosphor-

ylated SA, Whereas depletion of PP2A alone did not affect SA

profiles at Enhancer of Split E(spl) NOTCH inducible gene cluster. Filtered binding sites (FDR,0.01) are indicated as bars below the respective profiles.
ChIP-chip enrichment scores, genomic coordinates and genes are indicated. Regions examined by ChIP-qPCR are indicated by arrows. (C) Venn
diagram depicting the overlap between SMC1, SA and NAP1 binding loci. The overlap between SMC1 and SA loci is 3.7 times greater (p,0.001) than
expected by random chance. The overlap between NAP1 and cohesin loci derived from shared SMC1 and SA filtered peaks is 5.2 times greater
(p,0.001) than expected by random chance. (D) ChIP-qPCR analysis of SA binding to genomic sites harboring E(spl), cut, Eip75B and BrC genes
selected from ChIP-chip profiles (Figure 3B and Figure S3A–C). ChIP enrichments after SA (red bars) and Mock (black bars) RNAi knockdowns (KD)
were expressed relative to signals from mock-treated cells. For mock treatment we used dsRNAs directed against GFP. Results are based on 3
biological replicates and error bars represent standard error of mean (S.E.M.). (E) ChIP-qPCR analysis of NAP1 binding to genomic loci. Analysis as
described above.
doi:10.1371/journal.pgen.1003719.g003

NAP1 Is Required for Sister Chromatid Resolution
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Figure 4. NAP1 interacts biochemically with the core cohesin complex and PP2A. (A) Proteomic analysis of the NAP1 interaction network.
NAP1 and associated proteins were immunopurified from 0–12 hour Drosophila embryo nuclear extracts (NE) using affinity-purified antibodies raised
against NAP1. After extensive washes with a buffer containing 600 mM KCl and 0.1% NP40, bound proteins were resolved by SDS-PAGE, visualized by

NAP1 Is Required for Sister Chromatid Resolution
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phosphorylation (Figure 7E). These results suggest that NAP1 and

PP2A act antagonistically in the control of the cohesion cycle.

To complement the experiments in which we depleted

endogenous proteins, we compared the effects of ectopic

expression of NAP1, PP2A or the PP2AH59Q catalytic mutant

[55] in S2 cells (Figure 7F and Figure S7B–D). Over-expression of

NAP1 resulted in a mild increase of defective centromeric

cohesion and a loss of cohesin binding to the centromers. Ectopic

expression of PP2A gave the opposite phenotype, and mimicked

the effect of NAP1 depletion, namely, cohesive linkage of the

majority of mitotic chromosome arms (,80%). Highlighting the

importance of PP2A’s catalytic activity, expression of PP2AH59Q

did not lead to failed sister chromatid resolution, but a mild loss of

centromeric cohesion. Thus, ectopic expression of a phosphatase-

defective PP2A mutant yielded a similar phenotype as depletion of

endogenous PP2A. When over-expressed together, NAP1 and

PP2A cancelled each other out, resulting in wild type mitosis in

most cells. The results of these ectopic expression assays are fully

consistent with those of our depletion experiments. Collectively,

they demonstrate the antagonistic function of NAP1 and PP2A in

regulation of SA phosphorylation, cohesin release and sister

chromatid resolution.

Discussion

As reflected by their name, a major activity of histone

chaperones is to prevent illicit liaisons and guide newly synthesized

histones to sites of chromatin assembly. Here, we described a

mitotic function for the canonical histone chaperone NAP1 that is

unrelated to nucleosome assembly. We found that NAP1 binds

cohesin and blocks dephosphorylation of SA by PP2A, thereby

promoting cohesin dissociation from the chromosome arms.

Consequently, chromosomal binding of cohesin during mitosis is

controlled by the balance between the opposing activities of NAP1

and PP2A.

NAP1 is part of a large assemblage including the full cohesin

complex and PP2A. In addition, NAP1 and SA form a

subcomplex, which lacks the other cohesin subunits and PP2A.

An attractive scenario is that the NAP1-SA module or NAP1 alone

competes with PP2A-bound SA within the full cohesion complex.

PP2A displacement by NAP1 allows stable phosphorylation of

cohesin and its dissociation during early mitosis. NAP1 might also

act as a direct inhibitor of PP2A catalytic activity, because a

mammalian NAP1 homolog, SET, has been identified as a potent

PP2A inhibitor [56], which promotes sister chromatid segregation

during mouse oocyte miosis [57–58]. In addition, NAP1 might

help cohesin phosphorylation by tethering Polo kinase to cohesin.

In fact, we detected a potential association between NAP1 and Polo

kinase (Figure S4). However, the dramatic chromosome condensa-

tion defects after Polo kinase depletion precluded a functional

evaluation of a possible role of NAP1 in its function. Nevertheless,

although we cannot exclude additional NAP1 activities, our

functional experiments established that blockage of PP2A suffices to

explain the crucial role of NAP1 during sister chromatid resolution.

NAP1 not only regulates the chromosomal distribution of

cohesin and PP2A, but also that of MeiS332, a fly homolog of Sgo.

The function of MeiS332 and PP2A appears to be largely

conserved from mammals to flies because they bind each other

and depletion of either factor causes a loss of centromeric cohesion

[39–45]. Either knockdown of NAP1 or over-expression of PP2A

(Figure S7E) caused spreading of MeiS332 onto the arms of

mitotic chromosomes, accompanying the loss of sister chromatid

resolution. Thus, the balanced antagonism between NAP1 and

PP2A controls chromosomal association of both cohesin and

MeiS332 during mitosis.

One level of regulation involves changes in NAP1’s subcellular

localization and chromatin binding through the cell cycle. At

prophase there is a strong increase in the level of nuclear NAP1,

but by metaphase, NAP1 and cohesin have dissociated from the

chromosomes (Figure S2). Thus, the dynamic behavior of NAP1

correlates well with its function in promoting cohesin release at

early mitosis. Regulation of NAP1 localization may involve cyclin

B-cdc2/cdk1 kinase complexes. Previously it was found that yeast

and vertebrate NAP1 are phosphorylated by cyclin B-cdc2 [59]

and that yeast cyclin B requires NAP1 for its full range of mitotic

functions [59].

We suggest that histone chaperones are at the hubs of

specialized protein networks that perform a wide variety of tasks

in chromosome biology. Through association with distinct

partners, NAP1 is able to perform different functions. By acting

as a histone chaperone, NAP1 mediates chromatin assembly [60–

61]. Through recruitment of the histone H3 deacetylase and

H3K4 demethylase complex RLAF, NAP1 controls gene-selective

silencing at developmental loci [15]. Finally, by binding cohesin

and blocking SA dephosphorylation by PP2A, NAP1 mediates

sister chromatid resolution during mitosis. These results emphasize

the surprisingly diverse- and specific regulatory functions of

histone chaperones in chromosome biology.

Materials and Methods

Antibodies
Anti-SA antibodies were raised in guinea pigs and rabbits

against a GST-fusion protein encoding SA amino acids 12–312,

coomassie staining and identified by mass-spectrometry. NAP1, RLAF subunits (SIN3A, LID, EMSY, PF1, RPD3 and MRG15) and cohesin subunits
(SMC1/3, SA and RAD21) are indicated. A comprehensive list of identified proteins is provided in Table S1. (B) Identification of SA-associated factors.
For a complete list of associated factors see Table S1. (C) Identification of SMC1-associated factors (see Table S1). (D) Identification of PP2A interaction
network. Purification of PP2A-associated factors was performed as described above with antibodies against the catalytic subunit. For a list of selected
factors associated with PP2A see Table S2. Protein bands corresponding to PP2A catalytic subunit, NAP1 and cohesin subunits, identified by mass
spectrometric analysis are indicted. (E) SA was IPed from NE, followed by extensive washes with a buffer containing 600 mM KCl and 0.1% NP40. The
binding of NAP1, cohesin subunits, PP2A, MeiS332, and histone chaperones ASF1 and CAF1 was assayed by immunoblotting using the appropriate
antibodies. Mock IPs were performed with pre-immune serum. Input represents 10% of the binding reactions. A lack of SA association with MeiS332
was also confirmed under lower stringency (200 mM KCl, 0.1% NP40). (F) Co-IP analysis of NAP1 interactions. Analysis as described above. (G) Co-IP
analysis of PP2A interactions. All PP2A interactions were detected under high stringency (600 mM KCl), except for MeiS332, which can be detected
only at lower stringency (200 mM KCl). (H) Sephacryl S-300 size-exclusion chromatography analysis of NAP1, cohesin, PP2A and MeiS332. The
indicated fractions were resolved by SDS-PAGE followed by immunoblotting. NAP1, PP2A and cohesin subunits SA, SMC1 and RAD21 co-eluted in
column fractions corresponding to an apparent molecular mass of ,1.5 MDa. In addition, NAP1 and SA, but not SMC1 or RAD21, eluted in lower
molecular weight fractions of ,300 kDa. Voided volume (void), determined by Blue Dextran 2000, and elution of the markers ferritin (440 kDa) and
aldolase (158 kDa) are indicated. (I) co-IPs of NAP1 and SA from pooled high molecular weight S-300 column fractions (#12–14). IPs were performed
as above. Input represents 10% of the binding reactions. (J) co-IPs of NAP1 and SA from pooled lower molecular weight fractions (#27–29). As S-300
fractions #27–29 lack SMC1 and RAD21, NE was used as a control for Western blotting efficiency.
doi:10.1371/journal.pgen.1003719.g004
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Figure 5. NAP1 regulates SA phoshorylation levels by counteracting PP2A association with chromosomal cohesin during mitosis.
(A) Colloidal blue staining of immunopurified, baculovirus expressed HA-tagged NAP1 from Sf9 cells. (B–C) NAP1 can displace PP2A from cohesin.
The endogenous cohesin complex was immunopurified from embryo NE with antibodies against SA (B) or SMC1 (C) as described in Figure 4B–C.
Next, increasing amounts of purified HA-NAP1 was added. Following extensive washes the binding of endogenous NAP1, HA-NAP1 and PP2A to the
cohesin complex was analyzed by immunoblotting. (D) Western blot analysis of SA IPed from either mock-treated or NAP1 knockdown (KD) cells.
Blots were probed with antibodies against SA, phosphorylated serine (phosphoSer), PP2A or NAP1. Note the increased PP2A binding to SA in the
absence of NAP1. Concomitantly, SA phosphorylation levels decreased, as revealed by the antibodies against phosphoSer, which recognize a band
corresponding to the migration of SA. A slower migrating form of SA, presumably due to phosphorylation, is indicated by an arrow. (E) NAP1
depletion does not affect cohesin complex stability or stoichiometry. In parallel to the immunoblotting in (D), we resolved the IPed SA by SDS-PAGE
followed by colloidal blue staining. The identity of the cohesin subunits were determined by mass spectrometric analysis (Figure S5A). (F) Cell cycle
profiles of mock-treated (Mock) or NAP1 depleted (KD) S2 cells arrested in mitosis by colhicine (red curves) as compared to asynchronously dividing
cells (black curves). Cell cycle profiles were determined by FACS analysis. G1, S and G2/M phases are indicated. (G) PP2A dissociates from cohesin in
mitosis, whereas NAP1 binding to SA is increased. Immunoblotting analysis of SA IPed from either mock or NAP1 depleted (KD) cells, treated (+) or
untreated (2) with colhicine as in (D). Similar results were obtained for SMC1 IPs from colhicine-treated cells (Figure S6). (H) Immunopurification of
SA from S2 cell extracts denatured by 6M Urea ((d)IP) to selectively identify phosphorylated SA with antibodies against phosphorylated serine
(phosphoSer). Note that SMC1, NAP1 and PP2A dissociate from SA under these conditions. (I) Western blot analysis of SA IPed under denaturing

NAP1 Is Required for Sister Chromatid Resolution

PLOS Genetics | www.plosgenetics.org 9 September 2013 | Volume 9 | Issue 9 | e1003719



purified from E. Coli. Rabbit polyclonal antibodies against the

NAP1 were previously described [15], anti-SMC1 and anti-

RAD21 antibodies were a gift from D. Dorsett [49], anti-phospho-

Serine (Abcam, ab6639), anti PP2A-C (BD Biosciences, 610555),

anti-CID (Abcam, ab10887) and anti-a-Tubulin (Sigma, T5168).

S2 cell culture, RNAi knockdown and cell transfection
Drosophila S2 cells were cultured in Schneider’s media (Invitro-

gen 21720-024) supplied with 10% FBS. Double-stranded RNAs

for NAP1, SA and PP2A/MTS were synthesized using an Ambion

Megascript T7 kit according to the manufacturer’s protocol with

the following primers: 59-TATTGAACAATGGACGCCC-39 and

59-TGAAACTCCAAGGTGTACG-39 for NAP1; 59- CAGT-

CAAATACATAAAATGATGGCG-39 and 59-GCTCAATCCA-

TTGGTCAACA-39 for SA; and 59-GGCAGTCTTTCC-

CTTCGTATATC-39 and 59-CGAACTTGTGTCTCTGTCA-

ACTG-39 for the PP2A catalytic subunit encoded by the mts gene.

Primers were flanked by T7-promoter sequence (59-TTAATAC-

GACTCACTATAGGGAGA-39) at the 59-end. For mock knock-

downs, dsRNA against GFP was synthesized with the following

primers (59- CAAGAGTGCCATGCCCGAAGGT-39 and 59-

TGTGGTCACGCTTTTCGTTGGG-39) flanked by the T7

promoter sequence. For cytological or FACS analysis, S2 cells

were incubated with dsRNA for 2 days as described [62]. Open

reading frames (ORFs) of GFP, NAP1, PP2A and catalytically

inactive PP2A - PP2AH59Q [55] were cloned into pENTR/

DTOPO entry vector (K2400-20, Invitrogen) and subcloned into

Drosophila expression vector pAHW (obtained from the Drosophila

Genome Resource Center, DGRC) carrying the Actin 5C

promoter and a sequence encoding the HA-tag by LR-clonase

reaction. Polyethylenimine (PEI) ,25000 Da (408727 Sigma-

Aldrich) was used for transient transfection of S2 cells as described

[63]. Protein expression and mitotic chromosomes were analyzed

48 hours post-transfection.

Cytological procedures
For indirect immunofluorescence analysis, S2 cells were fixed in

phosphate buffered saline (PBS) buffer containing 3.7% formal-

dehyde for 5 min. Cells were incubated with antibodies against

CID and a-Tubulin diluted at 1:200 and 1:1000, respectively.

After washes with PBS, cells were incubated with fluorescently-

labeled secondary antibodies (Molecular Probes) and analyzed

with the Leica FW4000 imaging system. For mitotic chromosomes

preparation from S2 cells and Drosophila larvae brain cells, cells

were treated with 10 mM colhicine for 10 min, incubated with

0.5% sodium citrate for 5 min (10 min for brain cells) and fixed in

45% acetic acid containing 3.7% formaldehyde for 5 min. Next,

cells were squashed on objective slides and covered by a cover-slip.

Slides were washed with PBS, and incubated with anti-SA, anti-

RAD21 and anti-MeiS332 antibodies, each diluted 1:200, and

anti-PP2A diluted 1:20. After washes and incubation with

fluorescent-labeled secondary antibodies, mitotic chromosomes

were analyzed on a Leica FW4000 imaging system. To quantify

the accumulation or loss of cohesin, PP2A or MeiS332 on mitotic

chromosomes, chromosomes from at least 30 cells were analyzed.

Fluorescent assisted cell sorting (FACS) of S2 cells was performed

as described [64].

Chromatin immunoprecipitation (ChIP)
For chromatin immunoprecipitation experiments (ChIPs), S2

cells were fixed with 1% formaldehyde for 10 min. Fixation was

stopped by addition of 125 mM glycine and cells were lysed in ice-

cold L buffer (1% sodium dodecyl sulfate, 10 mM EDTA, 50 mM

Tris-HCl pH 8.1, 0.5 mM phenylmethylsulfonyl fluoride - PMSF,

conditions ((d)IP) from either mock- or NAP1 depleted (KD) cells, which were either treated (+) or untreated (2) with colchicine, confirmed the
changes in SA phosphorylation caused by mitotic arrest or NAP1 depletion.
doi:10.1371/journal.pgen.1003719.g005

Figure 6. NAP1 counteracts PP2A association with chromatin. (A) ChIP-qPCR analysis of PP2A binding to the genomic loci of NAP1 and
cohesin. PP2A was ChIPed from mock-treated S2 cells, or cells depleted for either NAP1 (green), SA (red) or PP2A itself (blue). ChIP signals for all
knockdowns (including Mock KD) were expressed relative to the mock-treated S2 cells. ChIPs were performed using 3 biological replicates and error
bars represent S.E.M. (B) Loss of NAP1 leads to PP2A accumulation on the arms of mitotic chromosomes. Indirect immunofluorescent analysis of PP2A
(green) binding to mitotic chromosomes of mock-treated S2 cells (B) or after NAP1 knockdown (B9). DNA visualized by DAPI staining is shown in red.
(C) Accumulation of MeiS332 on the arms of mitotic chromosomes after NAP1 knockdown. MeiS332 localizes at the centromeres of mitotic
chromosomes of mock-treated S2 cells (C), but spread onto the chromosome arms after loss of NAP1 (C9).
doi:10.1371/journal.pgen.1003719.g006
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and 100 ng/ml of leupeptin and aprotinin). Cross-linked chroma-

tin was fragmented by sonication to an apparent length of

,500 bp. Cross-linked chromatin (100 mg) was diluted with 9

volumes of buffer D (150 mM NaCl, 20 mM Tris-HCl pH 8.1,

2 mM EDTA pH 8.0, 1% Triton-X100, 0.5 mM PMSF, and

100 ng/ml of leupeptin and aprotinin) and pre-cleared with 10 ml

of protein A agarose (16–157, Upstate). Pre-cleared chromatin was

incubated at 4uC with appropriate antibodies overnight and

precipitated with 20 ml of protein A agarose. For Mock ChIPs,

chromatin was incubated with preimmune serum. Protein A

agarose was washed extensively with buffer W (20 mM Tris-HCl

pH 8.1, 2 mM EDTA pH 8.0, 0.1% SDS, 1% Triton X-100,

0.5 mM PMSF, and 100 ng/ml of leupeptin and aprotinin)

containing 150 mM NaCl, and 16with buffer W/500 mM NaCl.

DNA retaining on the protein A agarose was eluted by incubating

with 250 ml buffer E (1% SDS, 0.1 M NaHCO3, 500 mg/ml

Proteinase K) for 2 hrs at 37uC and overnight at 65uC and

extracted with QIAquick PCR purification kit (Qiagen Cat.

28106). DNA isolated from the ChIPs was analyzed by quanti-

tative PCR (ChIP-qPCR) using the Bio-Rad CFX96 Real-Time

System. Sequences of the primers used for qPCR are listed in

Table S3.

For ChIP-chips, recovered DNA was amplified with REPLI-g

(Qiagen Cat. 150025), digested with DNase, labeled and

hybridized on Affymetrix Drosophila tiling 2.0R arrays. For each

antibody we perform 2 independent biological replicates. ChIP-

chip hybridization intensities were analyzed using R and R/

Bioconductor packages as described [65]. In brief, log2(ChIP/

Input) and log2(Mock/Input) ratios were quantile normalized in

parallel. Then, averaged ratios were median scaled and

log2(Mock/Input) ratio was subtracted from log2(ChIP/input)

ratio resulting in ChIP-chip score. Finally, peaks were selected based

on random permutations at false discovery rate (FDR),0.01.

Protein immunopurifications, mass spectrometry and co-
immunoprecipitations

Nuclear extracts (NEs) from 0–12 hour old Drosophila embryos

or S2 cells were prepared as described [66]. Immunopurification

procedures were also performed essentially as described [66].

Briefly, for immunopurification of NAP1 and cohesin, extracts

were incubated with affinity-purified antibodies cross-linked to

protein A sepharose beads (GE Healthcare 17-0963-03) by

dimethylpimelimidate. After incubation, beads were washed

extensively with HEMG buffer: 25 mM HEPES-KOH pH 7.6,

0.1 mM EDTA, 12.5 mM MgCl2, 10% glycerol, a cocktail of

protease inhibitors, and containing 600 mM KCl, 0.1% NP-40

(HEMG/600). Proteins retained on the beads were eluted with

100 mM NaCitrate buffer pH 2.5, resolved by SDS-PAGE and

visualized by colloidal-blue staining or immunoblotting. For

denaturing IPs of SA, cells were lysed in a buffer containing 6M

Urea, 150 mM NaCl, 5 mM DTT and 50 mM Tris pH 7.6

followed by the step-wise dialysis to lower the Urea concentration

to 2M. Finally, the extract were dialyzed against HEMG/400 and

SA was immunoprecipitated as described above.

NE fractionation by (NH4)2SO4 precipitation, POROS-hepa-

rin and Sephacryl S-300 size-exclusion chromatography were

performed as described [67]. In brief, NEs were concentrated by

chromatography on a POROS-heparin (PerSeptive Biosystems)

column equilibrated with HEMG/100 (pH 7.6) buffer followed by

a step elution with HEMG/400 (pH 7.6) buffer (H0.4 fraction).

The H0.4 fraction was loaded onto an 800-ml Sephacryl S-300

column (Pharmacia) equilibrated and developed with HEMG/100

(pH 7.6) buffer.

Mass spectrometry analysis of immunopurified protein com-

plexes was performed on a LTQ-Orbitrap hybrid mass spectrom-

eter (ThermoFischer) as described [68]. Detected peptides were

matched against the FlyBase database (http://www.flybase.org/)

using a Mascot search algorithm and identified proteins, Mascot

scores and number of unique peptides are listed in Table S1 and

Table S2. Details will be made available upon request.

Recombinant NAP1 purification, interaction- and
competition assays

Recombinant HA-tagged NAP1 (HA-NAP1) was expressed and

purified using the baculovirus expression system. For competition

assays, the cohesin complex bound to PP2A was immunopurified

from embryo nuclear extracts with antibodies against SA or SMC1

as described above. Purified HA-NAP1 was incubated with the

cohesin complex captured on Protein A beads followed by a series

washes with HEMG/600. Proteins retained on the beads were

resolved by SDS-PAGE and analyzed by immunoblotting. For

interaction assays, HA-NAP1 captured on anti-HA coated beads

was incubated with recombinant [35S]methionine-labeled cohesin

subunits, PP2A subunits and Polo produced by in vitro transcrip-

tion/translation system (Promega L1170). Proteins bound to

NAP1 were resolved by SDS-PAGE and detected by autoradiog-

raphy.

Figure 7. NAP1 and PP2A act antagonistically in cohesin cycle. (A) Analysis of mitotic chromosomes from colchicine-treated S2 cells after
knockdown of NAP1, PP2A or both factors. We quantified the frequency of resolved (blue), unresolved (red) sister chromatids and loss of centromeric
cohesion (Cen. Loss; green). Concomitant depletion of NAP1 and PP2A resulted in a statistically significant increase of the frequency of resolved
chromatids compared to the NAP1 knockdown, as determined by x2-test (n.30, from 3 biological replicates). For the corresponding Western blot
analysis see Figure S7A. (B) Representative example of mitotic chromosomes from colhicine-treated S2 cells depleted for NAP1, PP2A or for both
proteins. DNA visualized by DAPI staining is shown in red. Centromers are indicated by arrowheads, whereas loss of centromeric cohesion is indicated
by full arrows. (B9) The localization of SA (green) on mitotic chromosomes same as in (B) was determined by indirect immunofluorescence. (C) RAD21
(green) localization on mitotic chromosomes. (D) MeiS332 (green) localization on mitotic chromosomes. (E) Depletion of PP2A restores SA
phosphorylation in cells lacking NAP1. Western blot analysis of SA IPed from either mock-treated S2 cells or after knockdown (KD) of NAP1, PP2A or
both proteins under normal (top panel) or denaturing (middle panel, (d)IP) conditions from asynchronously dividing cells (2 colhicine) or colhicine
treated cells (bottom panel, + colhicine). Blots were probed with antibodies against SA, phosphorylated serine, PP2A or NAP1. After NAP1
knockdown, SA phosphorylation levels drop substantially. Whereas depletion of PP2A alone does not affect bulk SA phosphorylation, concomitant
knockdown of PP2A and NAP1 neutralized the effect of NAP1 depletion, leading to restored levels of phosphorylated SA. Antibodies against
phosphoSer recognize a band corresponding to the migration of SA. A slower migrating form of SA, presumably due to phosphorylation, is indicated
by an arrow. (F) Analysis of mitotic chromosomes from colchicine-treated S2 cells after over-expression (OE) of GFP (Mock), NAP1, PP2A, both NAP1
and PP2A or the catalytic mutant PP2AH59Q. Quantification of mitotic phenotypes was as described above (A). Overexpression of PP2A, but not
PP2AH59Q, resulted in significant increase of the frequency of unresolved chromatids. The PP2A over-expression phenotype was rescued by co-
expression of NAP1, as determined by x2-test (n.30, from 3 biological replicates). For the corresponding Western blot analysis see Figure S4B.
Representative examples of mitotic chromosomes are shown in Figure S7C–D.
doi:10.1371/journal.pgen.1003719.g007
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Accession numbers
Data were deposited to Gene Expression Omnibus under

accession number GSE30938 (http://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?token = xnuhnwkmqqmwcli&acc = GSE30938).

Supporting Information

Figure S1 NAP1 is required for cell proliferation and normal

mitosis. (A) Left panel: immunoblotting analysis of S2 whole-cell

extracts prepared from mock-treated cells (Mock) or cells depleted

for either NAP1 or SA by RNAi-mediated gene knockdown (KD).

Histone H3 served as a loading control. Note that there is a

modest reduction in SMC1 and RAD21 protein levels in cells

depleted for SA. Middle panel: analysis of NAP1 and cohesin

protein levels in Drosophila larvae brain cells homozygous for the

NAP1 knockout allele nap1KO1 by immunoblotting with the

indicated antibodies. Right panel: Western blot analysis of S2

whole-cell extracts prepared from mock-treated cells (Mock) or

cells depleted for CAF1-105. (B) Proliferation of S2 cells treated

with dsRNA directed against NAP1 is significantly reduced in

comparison to the mock-treated cells. Cells were plated at 106

cells/ml, incubated with dsRNA directed against GFP (Mock) or

NAP1 (KD) and counted for 4 consecutive days. Error bars

indicate standard error of mean obtained from 3 different

experiments. (C) Cell cycle profiles of S2 cells after depletion of

NAP1. S2 cells were treated with dsRNA directed against NAP1

(KD) or GFP (Mock) for 2 days. Cell cycle profiles were

determined by fluorescent assisted cell sorting (FACS) analysis.

Cells were fixed, and DNA was stained with propidium iodide (PI).

Quantification is based on gated cells. The percentage of cells in

G1, S or G2/M phases and corresponding FACS profiles are

shown for mock-treated cells (black) and NAP1 knockdown cells

(NAP1 KD, red). Depletion of NAP1 caused a mild accumulation

of the cells in G1 phase, and an increase of cells with a DNA

content .4n (marked by asterisk). (D) NAP1 knockdown causes

mitotic defects. Indirect immunofluorescent analysis of Drosophila

S2 cells with antibodies against tubulin (blue) and CID (green) was

performed to visualize mitotic spindles and centromeres, respec-

tively. DNA was stained by DAPI (red). Representative mitotic

defects in NAP1 depleted cells, such as sister chromatid

missegregation and misalignment relative to the equator, and

DNA bridges during anaphase are indicated by arrowheads. The

frequency of mitotic defects for NAP1 depleted (KD) cells is

significantly higher than for mock-treated cells, as determined by a

x2-test of .30 cells analyzed for each knockdown (bottom panel).

(E) NAP1 does not have an appreciable effect on histone levels

detected on mitotic chromosomes. Indirect immunofluorescent

analysis of histone H3 (green) on methanol-fixed mitotic

chromosomes in mock-treated or NAP1 knockdown (KD) cells.

DNA, visualized by DAPI, is shown in red.

(PDF)

Figure S2 Changes in NAP1’s subcellular localization during

mitosis. Indirect immunofluorescence analysis of Drosophila em-

bryos stained with antibodies against NAP1 (red) and SA (green).

DNA was visualized by DAPI (blue). SA is nucleus during

interphase and pro(meta)phase. By metaphase, the bulk of SA is

removed from the chromosome arms, but by anaphase it binds the

chromosomes again. During interphase, NAP1 is distributed

roughly equally between nucleus and cytoplasm. However, there

is a strong increase in NAP1 nuclear localization at pro(meta)-

phase. During metaphase, NAP1 dissociates from the DNA, but

still surrounds the mitotic chromosomes. During anaphase, NAP1

starts to re-associate with the chromosomes.

(PDF)

Figure S3 Genome-wide binding profiling of NAP1 and cohesin

by ChIP-chip. (A–C) Genomic view of NAP1 (green), SA (red) and

SMC1 (blue) ChIP-chip enrichment profiles across genomic

regions harboring the cut NOTCH target gene (A), and two

ecdysone-inducible loci harboring Broad Complex (BrC) (B) and

Eip75B (C) genes. Filtered binding sites are indicated as bars below

the respective profiles. ChIP-chip enrichment scores, genomic

coordinates and genes are indicated. Regions examined by ChIP-

qPCR are indicated by arrows. (D) The genome-wide ChIP-chip

profiles of NAP1 and cohesin subunits SMC1 and SA are highly

correlated between independent biological replicates. (E) The

genome-wide ChIP-chip profiles of NAP1 and cohesin subunits

SMC1 and SA are highly correlated to each other, in contrast to

the binding profile of the ATP-dependent chromatin remodeler

MI2. Pairwise smooth scatter plots of averaged NAP1, SA, SMC1

and MI2 ChIP-chip enrichment scores are shown, and correla-

tions (r) and linear regression lines are indicated.

(PDF)

Figure S4 NAP1 interacts in vitro with cohesin subunits, but not

PP2A. Protein-protein interaction assay using recombinant HA-

tagged NAP1, expressed in Sf9 cells using the baculovirus system

(Figure 5A). Cohesin subunits (SA, SMC1, SMC3 and RAD21),

PP2A catalytic subunit (PP2A) and regulatory subunits (PP2A-29B,

WDB), and Polo like kinase were produced using a coupled in

vitro transcription/translation (IVT) system in the presence of

[35S]methionine. Radiolabeled proteins were incubated with

Protein A beads decorated with anti-HA antibodies bound to

HA-NAP1 or lacking HA-NAP1 (Mock). Following extensive

washes with a buffer containing 600 mM KCl and 0.1% NP40,

proteins were resolved by sodium dodecyl sulfate polyacrylamide

gel electrophoresis (SDS-PAGE) and detected by autoradiography.

Input corresponds to 10% of the binding reaction.

(PDF)

Figure S5 Depletion of NAP1 does not affect cohesin complex

stability. (A) Mass spectrometry analysis of SA IPed from either

mock-treated or NAP1 knockdown (KD) cells. IPed SA was

resolved by SDS-PAGE followed by colloidal blue staining

(Figure 5E).The identity of the cohesin subunits were determined

by mass spectrometric analysis and number of unique peptides (#)

is shown. (B) NAP1 depletion does not affect PP2A levels.

Immunoblotting analysis of S2 cell extracts prepared from mock-

treated cells or cells depleted for NAP1 (KD), using the indicated

antibodies. Histone H3 serves as a loading control.

(PDF)

Figure S6 NAP1 association with the core cohesin complex is

cell-cycle regulated. Western blot analysis of SMC1 IPed from

either mock-treated or NAP1 depleted (KD) cells treated (+) or

untreated (2) with colhicine. The NAP1 association with cohesin

is increased in colhicine treated cells, whereas PP2A binding is

reduced in mitotically arrested cells. PP2A binding to cohesin is

increased in NAP1 depleted cells and it remains bound to cohesin

in mitotically arrested cells.

(PDF)

Figure S7 Effects of NAP1 and PP2A ectopic expression on

mitosis. (A) Western blot analysis of S2 whole-cell extracts

prepared from mock-treated cells or after knockdown of either

NAP1, PP2A or both NAP1 and PP2A. Histone H3 serves as a

loading control. (B) Western blot analysis of S2 whole-cell extracts

prepared from cells transfected with constructs expressing either

GFP or HA-tagged versions of NAP1, PP2A, both NAP1 and

PP2A or a catalytically-inactive form of PP2A: PP2AH59Q. Ectopic

over-expression (OE) of NAP1, PP2A and PP2AH59Q was detected
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with antibodies against HA. Histone H3 serves as a loading

control. (C–D) Analysis of mitotic chromosomes from colchicine-

treated S2 cells after over-expression (OE) of GFP (Mock), NAP1,

PP2A, both NAP1 and PP2A or the catalytic mutant PP2AH59Q.

DNA visualized by DAPI staining is shown in red. Centromers are

indicated by arrowheads, whereas loss of centromeric cohesion is

indicated by full arrows. The localization of (C9) SA and (D)

RAD21 (all shown in green) on mitotic chromosomes was

determined by indirect immunofluorescence. The strong binding

of SA and RAD21 to the arms of mitotic chromosomes was

observed in ,80% of cells that over-expressed PP2A, but not in

mock-treated cells. (E) MeiS332 (green) accumulates on mitotic

chromosomes of cells overexpressing PP2A (OE).

(PDF)

Table S1 Proteomics analysis of NAP1 and Cohesin protein

interaction networks. # - number of unique peptides, score -

Mascot score. The common contaminants, such as Hsc70,

ribosomal proteins, etc. were excluded from the list.

(PDF)
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