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ABSTRACT

We present an independent evaluation of six recent
hidden Markov model (HMM) genefinders. Each
was tested on the new dataset (FSH298), the results
of which showed no dramatic improvement over
the genefinders tested five years ago. In addition,
we introduce a comprehensive taxonomy of pre-
dicted exons and classify each resulting exon
accordingly. These results are useful in measuring
(with finer granularity) the effects of changes in a
genefinder. We present an analysis of these results
and identify four patterns of inaccuracy common in
all HMM-based results.

INTRODUCTION

Since the first genefinding algorithms such as TESTCODE
(1) came onto the scene, their effectiveness have grown
with nucleotide sensitivity and specificity now reported in
the high 90% range (2,3). Despite such nucleotide level
results, exon, gene and whole-genome level results still
need improvement (4,5). Research presses on towards
improving the capabilities of automated gene annotation on
the exon and whole-gene levels. Common among putatively
‘high’ performance genefinders is the implementation of
hidden Markov model (HMM) variants. We present an anal-
ysis and review of how the contemporary HMM genefinders:
Augustus, Genezilla, GenomeScan, GlimmerHMM, SNAP
and Twinscan fared on a new dataset (FSH298). Building
on this, we apply our novel and comprehensive taxonomy
of predicted exons to the output of each program tested.
The purpose of this is to identify patterns of inaccuracy
common to all HMM genefinders. Subsequently each pattern
of inaccuracy can then be addressed hopefully resulting
in more accurate genefinders. As this paper specifically
evaluates HMM genefinders, a brief review is first provided.

HIDDEN MARKOV MODELS

Genefinders are commonly divided into two categories either
ab initio or homology based (6,7). As will be discussed, many

genefinders are hybrids. Given a sequence of inputs and a set
of classes, a HMM assigns a class to each individual input. In
the case of genefinders, the inputs are DNA nucleotides and
the classes assigned are content signals or other regions, such
as exons, introns, Poly(A) tails and TATA boxes. HMMs can
be quite effective and have been implemented in other areas
such as speech and gesture recognition, DNA and protein
homology searches, and genefinding systems (8–10).

As a sequence passes through the HMM genefinder, a class
is assigned to each input based on a particular probability
associated with the current state. The model itself is a collec-
tion of states (each containing an output probability for each
class) and the transitions between states, where each transi-
tion has a probability of happening. As each input progresses
into the model, the focus of the model transitions from its cur-
rent state to another state (each having a different set of out-
put probabilities).

Multiple extensions of HMMs exist; two common ones are
the Generalized HMM and the Pair HMM. In a standard
HMM only one input is classified in a given state, afterwards
the model must perform a state transition, and the next input
is then classified. Generalized HMMs remove the constraint
of only one classification per state, and allow multiple classi-
fications (also known as emissions or observations) to occur.
As its name suggests pair HMMs compare two nucleotides
from separate sequences concurrently and at each state a
pair of nucleotides is used in determining which probability
is used when emitting a class.

An HMM is composed of five items, some already
mentioned. (i) A set of N states, i.e. TATA box, exon, intron,
etc. (ii) A set of M observations/classes. (iii) A state transition
probability distribution A ¼ {aij}. (iv) An observation
symbol probability distribution in state j. (v) An initial state
distribution p (11).

Associated with HMMs are three problems that must be
solved. (i) Evaluation, the probability of a set of observations
occurring given a particular HMM. Probabilities like this
provide a score on how applicable the given model is to
the sequence. The forward–backward algorithm calculates
this score (8). (ii) Decoding, determining the optimal order
of hidden states to generate the observed sequence.
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Commonly employed to solve this is the Viterbi algorithm
(12). (iii) Learning, estimating the probability of starting in
a given state. No one particular algorithm solves this opti-
mally, but multiple algorithms are used. For example
Baum–Welch and Expectation–Maximization algorithms
both have been employed to solve this problem (8).

Note that in the genefinding realm it is common practice
to identify only four ‘exons’ (single, initial, internal and ter-
minal); all of which must exist between the start and stop
codons. Classifications such as this are simplistic and inexact.
It is simplistic in that only four out of twelve (5) possible
exon types have ever been considered. It is inexact to define
an exon simply as a DNA-coding sequence between two
introns because exons also exist in untranslated regions
(UTRs).

For genefinders to attain consistently high output this
practice must end. Unfortunately bias inherent in the gene
research focuses mainly on protein coding exons, and in-
sufficient data exist for training genefinders to annotate
non-coding exons (M. Zhang, unpublished data).

METHODS

Due to their pervasiveness in the genefinder market, HMM-
based genefinders are the focus of this research. We test
six genefinders: Augustus, Genezilla, GenomeScan, Glim-
merHMM, SNAP and Twinscan. Two of these (Twinscan
and GenomeScan) also employ homology by default for
prediction.

Three criteria were used for considering a genefinder for
this evaluation. The first and most obvious criteria is that
the genefinder must be HMM based on or else an extension
to the HMM concept. Additional selection factors were age
and testability. We looked for genefinders made available
since 2001 which had not been involved in a comparison
project similar in nature.

Attempts were made to include Doublescan either version
1 (2) or version 2 beta (I. M. Meyer, unpublished data), but test-
ing could not be completed. Version 1.0 (hosted, but no longer
supported at http://www.sanger.ac.uk/Software/analysis/
doublescan/) never returned any results. Beta version 2.0
(unpublished data, correspondence with Meyer) suffers from
modular dependency issues and only functioned sporadically.
TWAIN (13) was considered and then removed, as it already
implements a version of GeneZilla and implements homology.

FSH298 DATASET

For the purposes of this test a new dataset, FSH298, was
built (available as Supplementary Data at NAR online). The
dataset was extracted based on three search criteria:

� The sequence contained a complete CDS.
� The sequence was from human DNA.
� The sequence was published after July 2005.

The publishing date was ensured to be accurate by using the
‘limit’ feature of Entrez Nucleotide at NCBI and selecting
‘Publication Date’ from the appropriate drop-down menu.

This ensures that the programs were not trained on
sequences in the FSH298 dataset. In addition to ensuring
non-overlap of training and test data, we created this dataset

to be both testable and heterogeneous than previous tests. It is
testable in the sense that we have known CDS annotations,
yet is wild in so much as extreme filtering methods were
not applied. Unlike previous test sets (18 and 20) we pur-
posefully did not search for or remove sequences with the
following characteristics:

� Non-canonical translation start and stop codons (ATG–
TAA, TAG, TGA).

� Non-canonical intron boundaries (GT–AG).
� Protein coding frames not evenly divisible by three.

FSH298 has the following properties:

� It consists of 37 genes with no introns in the open reading
frame (commonly referred to as a ‘single exon gene’) and
261 multi-exon genes. The mean number of coding exons
per gene is 8.57.

� There are 2555 coding exons with a mean length of 171
bases. There are 2257 introns with a mean length of 3534
bases.

� It consists of 10 793 400 nt over 298 sequences with a mean
sequence length of 36 219 bases.

� Four percent of the dataset are CDS, 74% intronic (between
coding exons only, not UTR introns), while 22% is neither
protein coding nor intronic (thus intergenic, promoter,
UTR, Poly(A), etc.).

Regarding alternative splicing only two sequences
(DQ070893 and AF479645) in FSH298 had an alternative
coding sequence. These alternatives were identified by the
GenBank feature tag ‘CDS’. The statistics for these two
sequences were calculated manually, selecting the alternative
with the best match, and integrated with the non-alternative
spliced statistics. It is possible that in the future additional
CDS features may be annotated which are currently unknown.

TEST PROGRAMS

The following section provides a brief introduction to each
program, its training set, output format and other relevant
characteristics.

Augustus

This program (14) is originally a generalized HMM for
eukaryotes, and has since been expanded to model introns
more accurately and to incorporate user-defined heuristics.
The original training set used on Augustus was from
GenBank of October 2002. It consisted of 1284 single gene
sequences. Augustus output is in the GFF format scoring
both strands of DNA and assigning a score to each predicted
coding sequence. We tested all the sequences of the FSH298
dataset locally on Augustus v.1.5.

GeneZilla

Formerly known as Tigrscan, GeneZilla (15) implements a
GHMM. GeneZilla is a mammoth system which capitalizes
on the modularity of HMMs. As with all genefinders the
author attempted to use training data provided by the devel-
oper. With the exception of four submodels: initial-exon,
internal-exon, terminal-exon and single-exon, Genezilla was
trained on human-models-refseq8000.tar.gz (available from
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http://ftp.bioinformatics.org/pub/genezilla). The four sub-
models were not included with the distribution and were
derived from the developer recommended (W. H. Majoros,
personal communication) Homo.sapiens.tar.gz dataset (avail-
able from http://www.genefinding.org/datasets.html). Gene-
Zilla correctly ran on all 298 sequences.

GenomeScan

Building on the strengths of Genscan, we ran the Genome-
Scan (3) web server on all FSH298 sequences, and it com-
pleted successfully on 294. We ran a BLASTX query on
the entire FSH298 dataset in the organism domain Rodentia
to obtain homologous data to run in GenomeScan along
with FSH298. We selected the highest scoring BLASTX
result that was not classified as experimental. GenomeScan
output was return by email, the contents of which were cop-
ied into text files for processing.

GlimmerHMM

GlimmerHMM v.2.1 (15) is a GHMM for identifying genes
on eukaryotes. The dataset used for training GlimmerHMM
was assembled in 2004 (M. Pertea, personal communication).
Given the full test set GlimmerHMM predicted genes on all
sequences. GlimmerHMM output is a proprietary format
similar to GFF and was placed into a single text file for pars-
ing and calculating statistics.

SNAP

SNAP’s (version 2004-03-02) (16) original focus was to
annotate genomes for which gene finder has not yet been
fine-tuned. SNAP was first trained on Arabidopsis thaliana
of the four datasets available from the developer’s website
(http://homepage.mac.com/iankorf/). SNAP was then
retrained on human DNA. The dataset used was the 804
plus strand sequences from the Homo.sapiens.tar.gz dataset
(available from http://www.genefinding.org/datasets.html); a
subset of those used in partial retraining of GeneZilla. All
sequences were tested locally, with a result returned for
each sequence.

Twinscan

A pair of HMM, Twinscan (17) implements both second- and
fifth-order homogenous Markov chains in gene finding along
with mouse homology information. We successfully ran
295 sequences from FSH298 on the Twinscan webserver
(available at http://genes.cs.wustl.edu/twinscan). Output of
Twinscan was received by email in gtf formatted files.

Statistics

In order to calculate metrics useful for comparing each gen-
efinder we first calculated the following four metrics:

� True positive (TP), a nucleotide that is correctly annotated
as coding.

� True negative (TN), a nucleotide that is correctly annotated
as a non-coding.

� False positive (FP), a nucleotide incorrectly annotated as
coding.

� False negative (FN), a nucleotide incorrectly annotated as
non-coding.

Once completed these serve as the basis for the next step,
calculation of the following comparison measures.

Nucleotide specificity (NSp) is defined as the proportion of
nucleotides that are truly coding:

SP ¼ TP

TP þ FP

Nucleotide sensitivity (NSn) is defined as the proportion
of annotated nucleotides that are correctly predicted as
coding (2).

Sn ¼ TP

TP þ FP

Sensitivity shows a proportion in relation to reality, while
specificity shows a proportion in relation to the prediction.
Neither Sn nor Sp alone is a good indication of the prediction
accuracy because if one has a high value the other may not.
A good discussion of this is available in (18). To overcome
this issue the following nucleotide measures calculate a
value useful for comparisons:

(i) Correlation coefficient (CC) displays a relationship
between sensitivity and specificity, when both coding
and non-coding regions exist in the training and test
datasets.

CC ¼ TP * TN � FN* FPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FNÞ* ðTNþ FPÞ* ðTPþ FPÞ* ðTNþ FNÞ

p
(ii) Burset and Guigó (18) introduced the average correlation

(AC), derived in part from the average conditional
probability (ACP). AC partially resolves the CC defici-
ency of: a zero value occurring as a factor in the deno-
minator causing a square root of zero calculation error.

AC ¼ ðACP � 0:05Þ * 2

ACP ¼ 1

4

�
TP

TPþFN
þ TP

TPþFP
þ TN

TNþFN
þ TN

TNþFP

�

Unfortunately ACP has a minor, yet previously undocu-
mented drawback. In situations where the test sequence con-
sists of a single exon gene and the genefinder is 100%
accurate, AC is unable to calculate and display such preci-
sion, as ACP requires the identification of non-coding
nucleotides. Lack of non-coding nucleotides causes a division
by zero error and the resultant inability to rate a genefinder’s
accuracy as perfect. Such deficiencies can be overcome by
either ensuring that the test data have non-coding nucleotides
(e.g. in flanking regions) or programmatically by testing for
said conditions and implementing a proper work-around.

Regarding exon level accuracy specificity (ESp) is defined
as the proportion of exons that are actually coding. Likewise,
exon sensitivity (ESn) is the proportion of exons that are cor-
rectly predicted as coding

ESp ¼ TE

PE
ESn ¼ TE

AE

where TE (true exons) is the number of correctly predicted
exons, AE (actual exons) is the number of annotated
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exons and PE (predicted exons) is the number of predicted
exons (19).

Finally we calculated the mean average of ESn and ESp.
This average places equal weight on both measurements, but
consolidates them into a single numerical metric, which has
become a de facto standard for measuring exon level accuracy.

RESULTS

In obtaining the results of the study we prepared a new
dataset FSH298, this consists of genetic sequences added to
GenBank after the publication of the training data of the
six genefinders in this study. We calculated two sets of
results. The first was the traditional measurements for esti-
mating the effectiveness of genefinders (discussed above).
These results are in Table 1. The second is the predicted
exon taxonomy (PET) described later.

All sequences were attempted on each genefinder; how-
ever, in the cases of GenomeScan and Twinscan, four and
three sequences failed to complete on each genefinder,
respectively. Sequence length caused the failure in Twinscan.
GenomeScan however never completed one sequence,
despite multiple attempts, and repeatedly returned a stack
execution error for three additional sequences. Furthermore,
these were the only two which were run via a web interface;
all other programs were run locally.

For the purposes of GenomeScan each sequence in
FSH298 was BLASTX’ed (20) employing the organism sub-
set Rodentia for comparison. The same organism was used in
the BLASTN search to find homologs as input for Twinscan.

In order to confirm correct annotation only results from the
positive strands were considered. If multiple genes were pre-
dicted on a single sequence, all predicted exons were treated
as part of one gene.

Predicted exon taxonomy statistics

The second set of results obtained was the classification of
each exon predicted as coding and determining the resulting
trends as presented in the following section. No genefinder
evaluations has until now presented such a comprehensive
taxonomy of all possible exon classifications. Burset and
Guigó (18) measured ‘Missed Exons’ and ‘Wrong Exons’.
Rogic, Mackworth and Ouellette (19) extended this with
‘Partially Correct’ and ‘Overlapping exons’.

Each exon predicted was classified into one out of thirteen
categories, and further identified by each genefinder as
initial, internal, terminal or single. These are illustrated in
Figures 1–4. Class 1 exons are correct on both boundaries
(Figure 1). Classes 2–9 cover every possible type of overlap.
Rogic et al. (19) separate these into two categories, partially
correct and overlapping. The former have one boundary
correct (Figure 2), and include classes 2, 7, 8 and 9.

The latter (Figure 3) match no boundaries, and are com-
posed of classes 3–6. Exons of classes 10 and 11 either end
on an annotated 50 boundary or start on a known 30 boundary
(Figure 4). These should never occur, however if an exon of
this type occurs, it may well warrant further investigation.

Table 1. Performance of six Genefinders on the FSH298 dataset

Nucleotide Exon
No genes SN SP AC CC CR PC OL ME WE SNE SPE AVG

Twinscan 7 0.90 0.95 0.89 0.88 0.50 0.34 0.07 0.12 0.07 0.59 0.51 0.55
GenomeScan 43 0.88 0.83 0.72 0.81 0.63 0.07 0.01 0.26 0.14 0.76 0.74 0.75
GlimmerHMM 9 0.89 0.79 0.80 0.80 0.61 0.13 0.03 0.14 0.21 0.69 0.63 0.66
Augustus 0 0.81 0.78 0.78 0.76 0.63 0.12 0.01 0.15 0.17 0.64 0.63 0.64
GeneZilla 0 0.70 0.67 0.67 0.65 0.40 0.16 0.05 0.17 0.31 0.47 0.40 0.44
SNAP (H.sap) 9 0.72 0.71 0.69 0.66 0.35 0.20 0.08 0.31 0.34 0.40 0.36 0.38
SNAP (A.thal) 7 0.47 0.22 0.22 0.19 0.04 0.10 0.09 0.52 0.76 0.11 0.04 0.08

The metrics provided are for the whole genome, the nucleotide and the exon level. At the whole genome (No genes) is the number of sequences where no gene was
predicted. At the nucleotide level sensitivity (SN), specificity (SP), approximate correlation (AC) and the correlation coefficient (CC) are displayed. On the exon
level correct exons (CR), partially correct (PC), overlapping exons (OL), missed exons (ME), wrong exons (WE), exon sensitivity (SNE) exon specificity (SPE),
and the mean average (AVG) of SNE and SPE. All genefinders successfully completed each of the 298 sequences except Twinscan and GenomeScan which
completed 295 and 294, respectively. SNAP was trained on two organisms, A.thaliana (A.thal) and H.sapiens (H.sap).

Figure 1. Class 1 exons. Match exactly at both boundaries.

Figure 2. Partially correct. Classes 3–6 match only one boundary.
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Classes 12 and 13 are both wrong exons, neither touching nor
overlapping any annotated boundary. Their class is solely
determined by their distance in bases to the nearest actual
exon boundary (upstream or downstream).

The name PET is especially correct as genefinders should
identify all exons (whether non-, partially- or fully-coding).
The PET is applicable to all predicted exons, not just the cod-
ing ones.

Such a formal taxonomy of predicted exons (as the one
presented) is necessary for multiple reasons. The first is to
identify patterns of incorrect exon identification common to
all HMM-based genefinders. By using the class and the fea-
ture (initial, internal, terminal or single exons) we can identi-
fy patterns at the finest level possible. Thus new genefinders
can be engineered to resolve such issues.

The second reason is to see the direct result of changes to a
particular genefinder. Generation of PET statistics clearly
show which classes a genefinder tends to predict most.

In order to classify a predicted exon, a reference exon must
first be found. These are found by comparing the predicted
exon to every annotated exon for the sequence in question.
An annotated exon is a candidate to be a reference exon if
any bases overlap the predicted exon. The annotated exon
with the largest number of overlapping bases is then selected

as the reference exon. If no annotated exons overlap the pre-
dicted exon, then the exon closest physically is the reference
exon. The predicted exon is classified based on its 50 and 30

boundaries in relation to the selected reference exon.
Twinscan in addition to identifying exons annotates

‘start_codons’ and ‘stop_codons’ as separate entries in its
output. Each of these was classified together with its respec-
tive preceding or succeeding coding sequence; failure to do
so would make comparison practically impossible. GeneZilla
likewise adds the additional genetic feature Poly(A) tail
among its output; these were discarded as they are not
included as part of the CDS annotations in GenBank.

DISCUSSION

The traditional genefinder measurement statistics are pre-
sented in Table 1. Focusing first at the exon level, Genome-
Scan seems the decisively best performing program with an
average sensitivity and specificity of 0.75. Issac and Raghava
confirmed this result in (21) where GenomeScan fared simi-
larly with an average of 0.74. GlimmerHMM and Augustus
converge on a similar performance level of 0.65. A step
lower is Twinscan’s exon average at 0.55. Finally Genezilla
and SNAP (Homo sapiens) return an exon level average of
0.44 and 0.38, respectively.

At the nucleotide level Twinscan outperformed all the oth-
ers with 0.88 and 0.89 for AC and CC, respectively. Twin-
scan’s sensitivity and specificity measured 0.90 and 0.95,
respectively. GlimmerHMM, GenomeScan and Augustus all
returned AC and CC varying between 0.70 and 0.80. Finally
SNAP outperformed Genezilla, yet both had an AC and CC
value ranging from 0.65 to 0.69.

It is tempting to state that GenomeScan is the best perform-
ing genefinder overall; however, at the whole gene level it
rated poorest, not finding 43 genes in the 294 (15%)
sequences it successfully completed. Statistically this is
worse than any other genefinder in previous independent
evaluations (18,20). Previously Genie (22) and MZEF (23)
were the worst performers not finding a gene in 7% of
sequences tested. Genezilla and Augustus performed best in
this area identifying a coding region in every sequence tested.

It is no surprise that the two lowest performing genefinders
were those requiring partial or complete training, especially
considering the overall lack of documentation and support
in the genefinding software development world. Training
for SNAP is mostly automated. Genezilla’s complex training
regimen however has a larger opportunity for human error.
SNAP was designed to perform initial genefinding on
sequences for which no organism-specific genefinder exists;
furthermore, its state model is not designed specifically for
higher eukaryotes. Genezilla, however, is a massive system
implementing multiple specific sub-model types over a robust
state structure.

A second explanation for the results of Genezilla and
SNAP exists. Each genefinder returned similar results when
trained on essentially the same dataset. Therefore, it is possi-
ble that the training dataset are responsible for their lower
results.

Comparing our results to that of Rogic et al. (19), there
does not seem to be a vast improvement in the genefinders
tested. AC varied in (19) from 0.68 to 0.91. The six programs

Figure 3. Overlapping exons. No boundaries match but the exons do overlap
true annotated exons for classes 2, 7, 8 and 9.

Figure 4. Wrong exons. Classes 10 and 11 reverse a boundary. Classes 12
and 13 neither match a boundary nor overlap an annotated exon.
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we tested produced an AC ranging from 0.67 to 0.88. The
mean of exon specificity and sensitivity ranged from 0.43
to 0.76 in Rogic’s tests, while most of the genefinders in
this evaluation ranged from 0.44 to 0.75. Given these results
and those at the whole-gene level discussed above, why have
genefinders remained stagnant in their performance espe-
cially when they have individually published higher results?
Have HMM genefinders reached their quantum limits? How
can future HMM genefinder development proceed to be
more effective in the future?

In order to answer these questions we have developed
the PET. We submit that every predicted coding sequence
must be placed into one of the 13 possible classes, and the
patterns (or ratios) between classes considered in future gene-
finder development. Similar to the habit of identifying
only four classes of coding regions, any classification of pre-
dicted exons that is not comprehensive provides inadequate
information for properly ascertaining genefinder performance.

Future techniques must now focus on resolving these
patterns of inaccuracy inherent in all HMM-based genefind-
ers. Use of the PET and measuring the ratios between
predicted exon classes will allow researchers to directly
measure the effects of new genefinders.

FEATURE

Every sequence is classified by its genefinder as a particular
feature, being initial, internal, terminal or single. Table 2 dis-
plays the average distribution of exons for all six genefinders.
The top row of the table shows the actual distribution of
exons. It can be seen that the genefinders achieve a high
level of accuracy at 74% for internal exons, while the actual
percentage of internal exons is 78%. For the remaining exon
feature types each gene finder was within two percentage
points of correctly identifying the appropriate number of
exons. It is tempting to use this as an indicator of exon
level performance; however, one must be careful because in
some instances a genefinder will have predicted multiple
start/stop exons on the same strand, while in others it has
predicted no start/stop exons.

Predicted exon taxonomy

Looking at the results in Table 3, overall the genefinders found
more class 1 exons, correct exons, than any other class. Eighty-
two percent of the exons Twinscan found were class 1, while
only 36% of SNAPs were class 1. On the average 63% of the

exons predicted were correct; meaning that in general
automated genefinders are right almost two-thirds of the time
at the exon level. Agreeing with the EAVG results from
Table 1, this makes the genefinders GlimmerHMM and
Augustus average and GenomeScan above average.

The second and third largest classes of exons are 13 and
12, respectively, the wrong exons. The next most frequently
occurring group of exons are those termed ‘Partially Correct’
(classes 3–6), where each exon correctly matches one bound-
ary. Each class makes up �2.8% of total number of predicted
exons. For each of the overlapping exon classes 2, 7, 8 and 9,
they each comprise �0.5% of all exons predicted. Class 10
exons would break the standard splice site rules as a predicted
exon has a 30 boundary that matches a known 50 donor site.
Class 11 exons would have a 50 boundary on an acceptor
splice site. No exons of either of these last two classes
were predicted.

A potential discrepancy appears between the class 1 exons
of Table 3 and the CR percentage of Table 1. It would seem
that these should be approximately equivalent as we are cal-
culating statistics based on both exon boundaries matching.
The difference however is in the method of calculating the
average. The statistics in Table 1 are a normalized distribu-
tion (the sum of the correct exon frequencies for all
sequences) of exons for each sequence. Conversely the aver-
ages in Table 3 have not been normalized, but are the simple
count of predicted exons for each class divided by the total
number of predicted exons.

Looking at the raw percentages of Table 3, it would seem
that Twinscan is by far the most effective genefinder, almost
ten percentage points above GenomeScan. However given its
method of calculation, the high results for Twinscan may
have been skewed by high accuracy on a few sequences
with an abnormally high exon count. These results are not
invalid, but indicate that Twinscan could be more effective
on longer sequences. Further testing would be required to
confirm this.

The purpose in creating this PET was to identify patterns of
inaccuracy in all HMM genefinders. The following questions
were posed: Is there any class of exon that is never predicted?
If so how does this class relate to its boundaries? Do any pat-
terns materialize around the 50 or 30 ends of a gene? Are there
any patterns evident to ‘internal’ exons? Do intronless genes
display any peculiar pattern? Which patterns occur in each
class given a particular exon feature? How far away are
incorrectly predicted boundaries from real boundaries?

In answering the first question no exons was correctly pre-
dicted in classes 10 and 11. Beyond this GenomeScan was the
only genefinder that did not predict an exon of every class. It
found no class 7 exons. The distribution of class 7 exons is
displayed in Table 4. Again we see GenomeScan’s continued
effectiveness.

With regard to the 50 boundary of a multi-exon gene it is
clear (from Table 5) that class 5 initial exons tend to occur
twice as much as class 3 initial exons. This shows that
HMM genefinders are more conservative and tend to predict
shorter initial exons on the 50 side of the exon. It also shows
that the 30 end of the first coding exon tends to be accurately
identified.

At the other end of the gene, class 4 terminal exons gener-
ally occur much more frequently than class 6 terminals.

Table 2. Distribution of predicted exons by feature

Initial Internal Term Single

Actual exon distribution 0.10 0.78 0.10 0.01
Mean for all genefinders 0.12 0.72 0.12 0.02
Augustus 0.11 0.73 0.13 0.03
Genezilla 0.11 0.77 0.11 0.01
GenomeScan 0.11 0.76 0.11 0.02
GlimmerHMM 0.12 0.73 0.13 0.02
Twinscan 0.08 0.70 0.05 0.01
SNAP (H.sapiens) 0.20 0.60 0.17 0.03

For each program the percentage of exons predicted as a particular feature is
displayed. Term is an abbreviation for Terminal.

322 Nucleic Acids Research, 2007, Vol. 35, No. 1



Instead of returning conservative results, genefinders are
much more likely to predict exons extending into the 30-
UTR, than stopping before the stop codon. This is further
supported by the fact that no genefinder predicted a class 6
single exon. Interestingly GeneZilla, whose output include
Poly(A) tail annotation fared similarly to the other genefind-
ers, when one might expect a genefinder with more states in
its state model to be more accurate around the 30 boundary.

Comparing the averages (Table 3) we see that class 13
exons occur more than three times as frequently as class
12. Further investigation showed that class 13 exons’ average
distance from their reference exon (5668 bases) is slightly
more than half the distance of class 12 exons (10 489
bases). Thus genefinders seem more likely to predict exons
nearer to the 30 side of actual exons, and conversely are
less likely to predict exons 50 of a TE.

Before SNAP was trained on human DNA sequences, it
was trained on Arabidopsis. All of patterns identified

above, occurred to a similar degree in the SNAP (A.thaliana)
results. First, class 5 initial exons were predicted twice as
much as class 3 initial exons. Second, a tendency to predict
exons which extend into the 30-UTR region. Class 13 exons
still occur �3 times as often as class 12, and at an average
distance (7064 bases) significantly closer to an actual exon
than class 12 (12 164 bases).

Each of the patterns described above is a specific item
for potential and measurable improvement in HMM gene-
finders. A new 50-UTR-specific model may be ideal to reduce
initial class 5 exons, while concurrently keeping class 3 low.
The quality of new 30-UTR and Poly(A) tail models can be
assessed against previous results to ensure that the count of
class 6 terminal exons is not increasing, if one reduces
the number of class 4 terminal exons. Using the PET, one
can compare models by class to ensure the count of exons
of a particular class are decreasing (or increasing if it is
class 1). One can measure the different ratios of each class
to precisely verify the affects of a change to a model.

HOMOLOGY AND SIMILARITY

Two genefinders tested include homology by default,
Genomescan and Twinscan. GenomeScan scored highest at
exon level in Table 1, while Twinscan scored highest in
class 1 exons in Table 3. The homologs used for Twinscan
are incorporated into the system by the developer, whereas
GenomeScan requires the researcher to provide homologous
sequences. If a suitable homolog set is not available then nei-
ther of these two may provide high-quality results.

Furthermore regarding similarity, we can see SNAP’s
results on two different training sets, human and plant. The
difference in results is clearly seen, with SNAP having
much higher performance when trained on a human data
for testing on human DNA sequences. This underscores an
already prevalent theme that training on the same organism,
if not at least homologous organism is vital for good genefin-
der performance.

CONCLUDING REMARKS

In summary we have evaluated the most recent HMM-based
genefinders upon an independent test set, and it seems the

Table 3. PET distribution

Class Augustus (%) GeneZilla (%) GenomeScan (%) GlimmerHMM (%) Twinscan (%) SNAP (%) Avg (%)

1 72.19 49.00 73.28 65.33 82.42 36.08 63.05
13 11.54 31.67 14.41 18.09 4.73 32.75 18.86
12 5.24 5.15 4.31 5.74 1.37 9.63 5.24
5 2.49 5.15 1.73 2.09 2.61 4.58 3.11
4 4.27 2.00 2.04 2.70 0.83 5.79 2.94
3 3.63 2.67 2.29 3.25 2.20 3.26 2.89
6 1.06 2.26 1.36 1.26 4.48 3.50 2.32
8 0.21 0.68 0.19 0.38 0.25 2.12 0.64
2 0.38 0.29 0.19 0.51 0.17 1.31 0.47
9 0.38 0.64 0.42 0.44 0.41 0.44 0.46
7 0.13 0.48 0.00 0.21 0.54 0.54 0.32
10 0.00 0.00 0.00 0.00 0.00 0.00 0.00
11 0.00 0.00 0.00 0.00 0.00 0.00 0.00

For each of the classes the mean average as a percentage of overall predicted exons was calculated. 5% of all exons predicted are class 12, while �19% are class 13.

Table 4. Class seven exon distribution by genefinder and feature

Genefinder Initial Internal Term Single

Augustus 0 2 1 0
Genezilla 3 9 1 2
GenomeScan 0 0 0 0
GlimmerHMM 2 4 0 0
Twinscan 0 8 1 4
SNAP (H.sapiens) 6 9 1 0

GenomeScan was the only genefinder to predict zero exons for a class (no
including classes 10 and 11 as no genefinder predicted these). Term is an
abbreviation for Terminal.

Table 5. Initial and terminal exon comparison

3 Initial 5 Initial 4 Terminal 6 Terminal 4 Single 6 Single

Augustus 12 22 26 1 6 0
GeneZilla 17 52 22 8 1 0
GenomeScan 2 15 5 3 1 0
GlimmerHMM 16 36 23 6 4 0
Twinscan 8 29 3 3 2 0
SNAP

(H.sapiens)
35 74 92 3 8 0

SNAP
(A.thaliana)

41 99 74 9 28 0
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latest generation of genefinders does not perform vastly better
than those tested 5 years ago. No one genefinder can be deci-
sively named the best, but GenomeScan seemed to perform
most noteworthy. The other homology incorporating genefin-
der, Twinscan produced solid results at the nucleotide level
and in raw exons annotated correctly.

We also grouped every predicted exon into one of thirteen
classes based on our comprehensive and novel taxonomy.
With this we can more precisely measure the performance
of all genefinders, and the effects a change has on their out-
put. We identified four patterns of inaccuracy common to all
HMM-based genefinders. As these patterns occur in all
genefinders some fundamental shift may be needed to obtain
consistently higher performance.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR online.
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