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Abstract

Background: The major obstacles for the implementation of genomic selection in Australian beef cattle are the
variety of breeds and in general, small numbers of genotyped and phenotyped individuals per breed. The Australian
Beef Cooperative Research Center (Beef CRC) investigated these issues by deriving genomic prediction equations (PE)
from a training set of animals that covers a range of breeds and crosses including Angus, Murray Grey, Shorthorn,
Hereford, Brahman, Belmont Red, Santa Gertrudis and Tropical Composite. This paper presents accuracies of
genomically estimated breeding values (GEBV) that were calculated from these PE in the commercial pure-breed beef
cattle seed stock sector.

Methods: PE derived by the Beef CRC frommulti-breed and pure-breed training populations were applied to
genotyped Angus, Limousin and Brahman sires and young animals, but with no pure-breed Limousin in the training
population. The accuracy of the resulting GEBV was assessed by their genetic correlation to their phenotypic target
trait in a bi-variate REML approach that models GEBV as trait observations.

Results: Accuracies of most GEBV for Angus and Brahman were between 0.1 and 0.4, with accuracies for abattoir
carcass traits generally greater than for live animal body composition traits and reproduction traits. Estimated
accuracies greater than 0.5 were only observed for Brahman abattoir carcass traits and for Angus carcass rib fat.
Averaged across traits within breeds, accuracies of GEBV were highest when PE from the pooled across-breed training
population were used. However, for the Angus and Brahman breeds the difference in accuracy from using pure-breed
PE was small. For the Limousin breed no reasonable results could be achieved for any trait.

Conclusion: Although accuracies were generally low compared to published accuracies estimated within breeds,
they are in line with those derived in other multi-breed populations. Thus PE developed by the Beef CRC can
contribute to the implementation of genomic selection in Australian beef cattle breeding.

Background
Genomic selection (GS) has been introduced into breed-
ing schemes of many livestock species [1-3]. The advan-
tages of GS compared to conventional breeding schemes
can be summarised as: (i) shortening the generation
interval because genomically estimated breeding values
(GEBV) can be calculated early in life, (ii) estimation of
GEBV for all genotyped individuals of a species/breed
for difficult to measure traits given a prediction equation
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(PE) that has been derived from a related population and
(iii) increased accuracy of estimated breeding values for
lowly heritable traits [2,4]. Since in beef cattle breeding,
selection candidates usually have some of their own per-
formance records before the selection decision is made,
the generation interval is usually not a constraint for the
genetic progress. Thus, advantages (ii) and (iii) are the key
improvements for Australian beef cattle breeding schemes
expected from the implementation of GS [5]. In the dairy
industry, several conditions have facilitated the imple-
mentation of GS: (1) a large number of phenotypes is
collected routinely; (2) wide-spread use of artificial insem-
ination facilitates the use of highly accurate conventionally
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estimated sire breeding values as pseudo-phenotypes; and
(3) large breeding organisations can bear the initial cost
of genotyping. Currently, these conditions are not met in
the Australian beef cattle industry. On the contrary, the
Australian beef industry is made up of a large number
of breeds and crosses (both Bos taurus and Bos indicus),
breeding organisations are rather small, and records of
economically important traits on live animals or carcasses
are usually expensive tomeasure and limited in number, as
are the genotypes of phenotyped individuals [5]. This situ-
ation is reflected in low numbers of genotyped individuals
which are generally not sufficient to calculate accurate
within-breed GEBV.
A possible approach to make GS feasible for breeds with

a small number of genotypes and phenotypes is the deriva-
tion of PE that allow prediction of GEBV across breeds
[4,6]. This derivation is usually done on a mixed breed
training population that contains individuals of all tar-
geted breeds. Thus, the number of genotyped individuals
in the reference population might exceed the total num-
ber of genotyped individuals in any single breed, which
may allow for a higher power to detect single nucleotide
polymorphisms (SNPs) in strong linkage disequilibrium
(LD) with trait coding quantitative trait loci (QTL). How-
ever, whether all or only the small breeds gain from this
approach depends on the proportions of each breed in
the training population [4]. The across-breed-prediction
approach was followed by the Australian Beef Coop-
erative Research Center (www.beefcrc.com, Beef CRC),
which derived PE on a pooled training population of
genotyped individuals from eight different cattle breeds
and on different cross-breed and pure-breed subsets of
this pooled set, in which the genotyped individuals orig-
inated from Australian populations of Angus, Murray
Grey, Shorthorn, Hereford, Brahman, Belmont Red, Santa
Gertrudis, Tropical Composite breeds, and F1 crosses
of Brahman with Limousin, Charolais, Angus, Shorthorn
and Hereford breeds [7].
Beef CRC PE were derived for the commercial ani-

mal breeding sector. The value of the PE for breeders
depends on the accuracy of the resulting GEBV. This
accuracy is the proportion of the additive genetic vari-
ance of the focused phenotypic trait, estimated in the
commercial seed stock population, that is explained by
the GEBV. Common approaches to assess the accuracy
and the PE consist in subdividing of the training data
and a subsequent n-fold cross-validation, or the deriva-
tion of the PE in generation i and the derivation of
the accuracy in generation i + n, n ≥ 1 [7-11]. How-
ever, in both cases, the accuracy is usually calculated
as a product moment correlation, sometimes scaled by
some value. Whether accuracies obtained in this way
are also achievable in the commercial seed stock pop-
ulation depends on a variety of factors such as the

genetic distance between the commercial and the train-
ing population [12] and the sample size of the training
population. Another approach to obtain an estimator
of the proportion of the additive genetic variance in
the seed stock population explained by the GEBV is to
apply PE to genotyped seed stock individuals, model
the resulting GEBV as trait observations in a bi-variate
approach together with their phenotypic target trait and
assess the co-variances by restricted maximum likeli-
hood (REML) or Gibbs sampling [13-16]. This approach
accounts for various sources of bias in parameter esti-
mation, including genetic trends, relatedness between
individuals, inbreeding and differences in accuracy of
EBV. In addition, the genetic correlation between the
phenotypic target trait and the GEBV that is obtained
this way is an indispensable part of the blending of EBV
with GEBV.
The aim of this work was to determine whether Beef

CRC PE derived within and across breeds facilitate the
introduction of GS in the Australian commercial beef
cattle seed stock herds. For this purpose, GEBV were cal-
culated for genotyped seed stock animals of Australian
Angus, Limousin and Brahman breeds, thus, subsets of
those populations Beef CRC PE have been derived for,
and their accuracy was assessed as the genetic correla-
tion to their phenotypic target trait in a bi-variate REML
approach.

Methods
Genomically estimated breeding values
Prediction equations
The assembly of the training population, genotyping of
training individuals and PE derivationwere not part of this
project. For a detailed description of the PE derivation and
the size, breed composition and animal characteristics of
the training population see [7].
However, in short, PE supplied to the authors were

derived within the Beef CRC on 800K Illumina HDBovine
genotypes in a 5-fold cross-validation genomic best linear
unbiased prediction (GBLUP) approach with phenotypic
records as response variables [7]. PE were developed for
the following traits: post-weaning live weight (g.WW),
live weight on feedlot entry (g.YW), live weight on feed-
lot exit (g.FW), carcass rib fat (g.CRIB), carcass P8 fat
(g.CP8), carcass intra-muscular fat (g.CIMF) and car-
cass weight (g.CWT). For a list of GEBV and their
abbreviations see Table 1. Genotyped training animals
originated from Australian populations of the Angus,
Murray Grey, Shorthorn, Hereford, Brahman, Belmont
Red, Santa Gertrudis, Tropical Composite breeds, and
F1 crosses of the Brahman breed with the Limousin,
Charolais, Angus, Shorthorn and Hereford breeds, and
included cows, steers and bulls. For each of the above
traits, PE were derived on four sets of individuals:

www.beefcrc.com
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Table 1 GEBV and phenotypic traits and the used trait
abbreviations

Trait Abbreviation

GEBV post-weaning live weight g.WW

GEBV live weight at feedlot period start g.YW

GEBV live weight at feedlot period end g.FW

GEBV scan eye muscle area g.SEMA

GEBV scan rib fat g.SRIB

GEBV scan P8 fat g.SP8

GEBV carcass rib fat g.CRIB

GEBV carcass p8 fat g.CP8

GEBV carcass intramuscular fat g.CIMF

GEBV carcass weight g.CWT

Phenotypic 200 day weight p.WW

Phenotypic 400 day weight p.YW

Phenotypic 600 day weight p.FW

Phenotypic bull eye muscle area p.BEMA

Phenotypic heifer/steer eye muscle area p.HEMA

Phenotypic bull rib fat p.BRIB

Phenotypic heifer/steer rib fat p.HRIB

Phenotypic bull P8 fat p.BP8

Phenotypic heifer/steer P8 fat p.HP8

Phenotypic carcass rib fat p.CRIB

Phenotypic carcass P8 fat p.CP8

Phenotypic carcass intra-muscular fat percentage p.CIMF

Phenotypic carcass weight p.CWT

all genotyped animals across breeds (ALL), Angus
only (ANGUS), Bos taurus only (Angus, Murray Grey,
Hereford, Shorthorn) (BOSTAURUS) and Brahman only
(BRAHMAN).

Genotypes and genomically estimated breeding values of
commercial seed stock animals
The ALL, ANGUS, BOSTAURUS and BRAHMAN PE
were applied to genotypes of commercial seed stock ani-
mals that originated from Australian populations of the
Angus, Limousin and Brahman breeds. None of these
genotyped individuals were in the training population.
This set of animals will be referred to as “validation
set”. For all three breeds, the validation set consisted of
widely used sires and animals from the current gener-
ation. The numbers of individuals (sires/animals in the
current generation) in each breed sample were 1582
(383/1199) for Angus, 782 (368/414) for Limousin, and
400 (108/302) for Brahman. After removing individuals
that did not match the breed specific pedigrees, the val-
idation sets consisted of 1487 Angus, 721 Limousin and

400 Brahman individuals. Genotypes of all validation ani-
mals were obtained using the Illumina 50K Bead Chip. To
apply Beef CRC PE, all genotypes were imputed from 50K
to 800K. Imputation was done with a population-based
approach [17] using 800K Beef CRC genotypes [7], and
2500 800K genotypes of Limousin, Charolais and Sim-
mental individuals, supplied by the Irish Cattle Breeding
Federation (ICBF), as reference genotypes. The popula-
tion approach was necessary because many of animals in
the current generation were not registered at the time of
imputation, which made it impossible to exploit possible
duo or trio structures in the data because of unknown par-
ents. Finally, GEBV were calculated by applying the above
described PE to the animals’ genotypes.

Compilation of phenotypic datasets
The phenotypic datasets and pedigree data of all three
breeds were obtained from databases of their respec-
tive breed societies: Angus Australia, Australian Limousin
Breeders’ Society and Australian Brahman Breeders’
Association. All phenotypic data were adjusted for sys-
tematic effects as described in [18]. For all traits and
breeds, the number of records in the phenotypic datasets
exceeded those of the GEBV datasets. For Angus, some
individuals that were used in the training population were
also part of the phenotypic datasets (see Table 2).
Phenotypic traits included in the analysis were 200-

day weight (p.WW), 400-day weight (p.YW), 600-day
weight (p.FW), bull’s scan eye muscle area (p.BEMA),
heifer’s scan eye muscle area (p.HEMA), bull’s scan rib
fat (p.BRIB), heifer’s scan rib fat (p.HRIB), bull’s scan
P8 fat (p.BP8), heifer’s scan P8 fat (p.HP8), carcass
rib fat (p.CRIB), carcass P8 fat (p.CP8), carcass intra-
muscular fat (p.CIMF) and carcass weight (p.CWT). Note
that not all traits were available for each breed. For
a list of phenotypic traits and their abbreviations see
Table 1.
Contemporary groups were formed as defined in [18]

but all single record groups were deleted. For p.WW,
p.YW and p.FW, records were excluded if the sire, dam,
maternal grandsire or embryo transfer recipient dam
was unknown. Multiple records of these traits were also
deleted except for the first. In order to decrease the com-
putational demand, the number of Angus records for
p.WW and p.YW was further reduced as follows: records
were kept only if the recorded individual was part of
the validation set, or was a direct progeny of an indi-
vidual in the validation set, or was in a contemporary
group with an individual that belonged to one of the latter
two groups.

Estimation of the variance components
Variances and variance ratios were obtained from bi-
variate REML analysis for which each phenotypic trait was
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Table 2 Parameters of phenotypic traits

Trait1 Angus Limousin Brahman

N2 n3 x4 s5 N x s N x s

p.WW 120928 73 252.3 38.6 83210 239.4 43.6 145558 210.4 39.7

p.YW 81428 39 383.6 71.5 60044 380.0 79.9 67115 280.9 84.7

p.FW 114170 54 535.2 103.5 38545 521.8 115.7 70955 393.6 111.8

p.BEMA 88265 0 83.0 10.8 3450 101.8 14.4 6655 74.6 19.5

p.HEMA 101221 250 62.9 9.9 3237 75.2 14.1 4494 53.6 11.7

p.BRIB 88256 0 3.7 1.5 3381 2.9 1.3 6097 3.8 2.5

p.HRIB 101360 289 5.3 2.3 3229 3.4 1.8 4018 3.4 2.0

p.BP8 88087 0 4.7 2.0 3443 3.4 1.7 6292 5.3 3.4

p.HP8 101530 289 6.8 3.2 3254 4.4 2.6 4184 5.3 3.2

p.CRIB 1203 573 12.3 5.5 - - - 1486 7.7 3.7

p.CP8 2183 0 21.0 6.4 1057 11.2 4.5 1575 14.0 5.1

p.CIMF 2822 0 7.2 2.6 986 3.4 1.5 1584 2.8 1.3

p.CWT 3839 0 400.4 47.4 1082 303.2 67.7 - - -

1for trait abbreviations see Table 1, 2number of phenotypic observations, 3number of Angus individuals with a phenotypic record in this data set which have been
used for deriving ANGUS, BOSTAURUS and ALL prediction equation, 4mean, 5standard deviation. Note that no Limousin individuals were used in the training set and
all phenotyped Brahman individuals which where part of the training set were excluded from the analysis.

analysed in conjunction with its assigned GEBV. The fit-
ted model for p.WW, p.YW and p.FW and their respective
GEBV was:
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whereA is the numerator relationship matrix constructed
such that every individual with a phenotypic or GEBV
observation had at least three generations of ancestors
in the pedigree if available, and I is an identity matrix.
σ 2
a is the variance of the direct additive genetic effect

of the phenotypic trait, σ 2
g is the variance of the direct

additive genetic effect of the GEBV, σ 2
m is the variance

of the maternal additive genetic effect of the phenotypic
trait, σa,m is the covariance between the direct additive
genetic effect of the phenotypic trait and the maternal
additive genetic effect of the phenotypic trait, σa,g is the
covariance between the direct additive genetic effect of
the phenotypic trait and the direct additive genetic effect
of the GEBV, σg,m is the covariance between the direct
additive genetic effect of the GEBV and the maternal
additive genetic effect of the phenotypic trait, σ 2

p is the
variance of the maternal permanent environmental effect,
σ 2
ep is the variance of the residual effect of the pheno-

typic trait, σ 2
eg is the variance of the residual effect of the

GEBV, and σep,g is the co-variance of the residual effect
of the GEBV and the residual effect of the phenotypic
trait.
The fitted bi-variate model for all other phenotypic

traits and their respective GEBV was:
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with random effects assumed to be multivariate normally
distributed with
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For phenotypic traits, contemporary group was the only
fixed effect, and for GEBV only the mean was fitted as
a fixed effect. Note that the residual covariance was fit-
ted only for the combinations of GEBV and phenotypic
traits where a subset of the individuals had observations
on both, the GEBV and the phenotypic trait.

Software
Imputation was done with Beagle [17] without exploiting
any parent-offspring pair/parent-offspring trio structure.
The number of iterations in Beagle was set to 30. Pre-
and post-analysis data manipulation was done with R [19]
and Sweave [20]. REML analyses were carried out with
WOMBAT [21].

Results
Raw data
Table 2 summarises the results for all phenotypic traits
across breeds for the following parameters: number of
observations, mean, standard deviation and number of
animals that are in common between the phenotypic
dataset and the training population. The number of obser-
vations for growth traits exceeded those for the diffi-
cult and expensive-to-measure carcass traits for all three
breeds. Large numbers of records for live animal ultra-
sound scan traits were available for the Angus breed only,
whereas for the Brahman and Limousin breeds records
of these traits were almost as limited as those for car-
cass traits. An overlap between the phenotypic dataset
and the training dataset was found for the Angus breed
only, which means that in this case the datasets were
not totally independent. However, only for p.CRIB, could
the proportion of training individuals used in the phe-
notypic dataset (573 of 1203 phenotypic observations)
have caused an upward biased accuracy. For all other
traits, this proportion was zero or negligible due to more
phenotypic records and less training individuals in the
phenotypic dataset. As mentioned above, none of the
genotyped validation animals were used in the training
population. However, the mean, minimum and maximum
relationships between the validation individuals and those
training individuals of the same breed, based on a pedi-
gree constructed for these animals three generations back,
were equal to 0.014, 0.0 and 0.57 for Angus, and 0.008,

0.0 and 0.57 for Brahman. Note that the mean relation-
ship includes only training individuals of the same breed
as the target population. Thus, for mixed-breed training
populations, this number is even smaller when all train-
ing individuals are included, and if the training population
and the target population represent different breeds, all
three parameters are equal to 0.

Heritabilities of genomically estimated breeding values
Table 3 summarises heritabilities (h2) and their standard
errors for all GEBV. Across traits and PE high h2 of almost
1 with the lowest standard errors were found consistently
for the Angus breed only. For the Brahman breed, in
most cases the h2 values were below 0.9. Across traits,
the lowest h2 values were always estimated for the GEBV
calculated from the ANGUS PE, followed by those from
the BOSTAURUS PE and BRAHMAN PE. The highest
h2 were almost exclusively estimated for ALL PE GEBV,
except for g.WW which was below 0.9. In most cases, the
standard errors of h2 for the Brahman breed GEBV were
above 0.1, and therefore about five times as large as those
for Angus, which reflects the size of the Brahman sam-
ple. The lowest h2 across traits and PE were found for the
Limousin breed with most values below 0.6 and the low-
est estimates equal to 0.42 for g.SRIB from ALL PE. In
contrast to Brahman, no generally superior or inferior PE
could be identified for Limousin. Heritabilities from the
uni-variate analysis were not different to those from the
bi-variate analysis (results not shown).

Genetic correlations betweenGEBV and phenotypic traits
Table 4 summarises the genetic correlations (rg) between
GEBV and phenotypic traits for the Australian Angus
breed. The highest rg (0.53) was found for p.CRIB :g.CRIB
derived from BOSTAURUS PE, the lowest (-0.01) for
p.BP8 :g.SP8 derived from BRAHMAN PE, but most
values were below 0.2. Across all traits, ALL PE and
BOSTAURUS PE yielded the highest rg followed by
ANGUS and BRAHMAN PE, where the ALL PE results
almost mirrored those from ANGUS and BOSTAU-
RUS PE. BRAHMAN PE was inferior for carcass traits,
whereas for growth traits (except p.FW :g.FW) differences
between rg of GEBV from different PE were small. As a
result of the number of phenotypic observations, stan-
dard errors of rg for growth traits were below 0.1, but
much larger for carcass traits for which fewer data were
available.
For the Limousin breed, rg varied more than for the

Angus breed, and their standard errors were much greater
(see Table 5). Across traits and PE rg varied from 0.63
to -0.69 for p.CP8 :g.CP8 estimated fromBOSTAURUS PE
and BRAHMANPE, respectively. No clear pattern regard-
ing superior or inferior PE could be identified because rg
varied considerably within traits across PE. For example,
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Table 3 Heritabilities (upper) and standard errors (lower) of GEBV

Trait1 Angus (n2 = 1487) Limousin (n = 721) Brahman (n = 400)

ALL3 An4 Bt5 Br6 ALL An Bt Br ALL An Bt Br

g.WW 0.95 1.00 0.98 0.99 0.61 0.50 0.59 0.65 0.71 0.64 0.71 0.84

g.YW 0.96 0.99 0.96 0.99 0.56 0.46 0.42 0.70 0.99 0.68 0.74 0.96

g.FW 0.96 0.99 0.98 1.00 0.43 0.58 0.57 0.58 0.97 0.77 0.86 0.87

g.SEMA 0.97 0.98 0.99 0.97 0.76 0.78 0.47 0.59 0.92 0.88 0.86 0.89

g.SRIB 1.00 1.00 1.00 1.00 0.42 0.49 0.46 0.58 1.00 0.85 0.99 0.99

g.SP8 0.97 0.97 0.97 0.96 0.56 0.57 0.62 0.58 0.97 0.78 0.88 0.87

g.CRIB 0.98 1.00 0.99 1.00 - - - - 0.96 0.96 1.00 0.99

g.CP8 0.97 0.99 0.96 1.00 0.46 0.66 0.54 0.66 0.96 0.94 0.81 0.87

g.CIMF 0.99 1.00 1.00 1.00 0.65 0.54 0.76 0.59 0.90 0.83 0.92 0.92

g.CWT 0.95 1.00 0.93 1.00 0.47 0.50 0.56 0.60 - - - -

g.WW 0.03 0.02 0.03 0.03 0.10 0.10 0.10 0.09 0.15 0.14 0.12 0.13

g.YW 0.03 0.03 0.03 0.03 0.10 0.10 0.10 0.09 0.11 0.14 0.13 0.11

g.FW 0.03 0.02 0.03 0.03 0.11 0.10 0.10 0.09 0.11 0.13 0.12 0.12

g.SEMA 0.03 0.03 0.03 0.03 0.07 0.07 0.09 0.09 0.11 0.13 0.12 0.12

g.SRIB 0.03 0.03 0.03 0.03 0.10 0.10 0.11 0.09 0.08 0.13 0.11 0.09

g.SP8 0.03 0.03 0.03 0.04 0.10 0.10 0.10 0.10 0.10 0.14 0.13 0.12

g.CRIB 0.03 0.03 0.03 0.03 - - - - 0.10 0.10 0.10 0.09

g.CP8 0.03 0.03 0.03 0.03 0.10 0.09 0.10 0.08 0.09 0.11 0.13 0.09

g.CIMF 0.02 0.02 0.02 0.03 0.09 0.09 0.08 0.09 0.10 0.13 0.11 0.11

g.CWT 0.04 0.02 0.04 0.03 0.10 0.10 0.10 0.09 - - - -

1for trait abbreviations see Table 1, 2number of individuals with a GEBV, 3prediction equation derived on a mixed-breed training population, 4prediction equation
derived on a training population of Angus individuals, 5prediction equation derived on a training population of Bos taurus individuals, 6prediction equation derived
on a training population of Brahman individuals, - : for Limousin cattle no data were available.

rg of p.WW :g.WW was -0.02 from ALL PE, 0.22 from
ANGUS PE, 0.08 from BOSTAURUS PE and -0.03 from
BRAHMAN PE.
Table 6 summarises the GEBV rg for Australian

Brahman, which varied across traits and PE from 0.7
(p.CRIB :g.CRIB from ALL PE) to -0.5 (p.CIMF :g.CIMF
from ANGUS PE). However, negative rg were exclusively
found in ANGUS and BOSTAURUS PE. Moreover, results
from ALL PE almost mirrored those from BRAHMAN
PE, whereas ANGUS and BOSTAURUS PE yielded much
smaller or even negative rg. Standard errors decreased
with the availability of more phenotypic data (low for
carcass traits and high for growth traits), and were sim-
ilar across PE, except for most carcass traits, for which
standard errors from ANGUS and BOSTAURUS PE were
double those from ALL and BRAHMAN PE.

Discussion
Genetic correlations
Across-breed PE were derived by the Beef CRC to facili-
tate the implementation of GS in the Australian beef cattle
industry, which is made difficult by the large number
of breeds, small numbers of individuals with genotypes

and/or phenotypes per breed and their unequal distri-
bution across breeds, and the widespread use of cross-
breeds. It has been proposed that PE derived from large
mixed-breed samples may circumvent these problems.
Moreover, the power of detection of SNPs in high LDwith
a QTL that affects the phenotype of interest is expected to
increase when mixed-breed data is used [8,22].
Accuracy of GEBV derived fromBeef CRC PE in a 5-fold

cross-validation approach were published by [7]. Since
Beef CRC prediction equations were developed for appli-
cation in the Australian commercial beef cattle seed stock
herds, the aim of this work was to validate accuracies
in these herds via a bi-variate REML approach. In addi-
tion, estimated parameters are a precondition for blend-
ing estimated breeding values with GEBV. Accuracies of
GEBV from ALL PE for Australian Angus were calculated
as REML genetic correlations between GEBV and their
phenotypic target traits, and were found to be consider-
ably different to those given by [7]. For instance cross-
validation accuracies of g.WW, g.YW, g.SRIB and g.SP8
for the Angus breed were reported to be equal to 0.27,
0.42, 0.42 and 0.5 respectively, while the values estimated
in our study were 0.09, 0.08, 0.26 and 0.25 respectively.
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Table 4 Correlation|standard error between the direct
additive genetic component of the phenotypic trait and
GEBV from different prediction equations for Australian
Angus Cattle

Phenotypic1 GEBV1 ALL2 ANG3 BT4 BRA5

p.WW g.WW 0.09|0.06 0.07|0.05 0.10|0.06 0.11|0.06

p.YW g.YW 0.08|0.06 0.09|0.06 0.09|0.06 0.14|0.06

p.FW g.FW 0.19|0.05 0.18|0.05 0.21|0.05 0.11|0.06

p.BEMA g.SEMA 0.16|0.06 0.18|0.06 0.16|0.06 0.01|0.06

p.HEMA g.SEMA 0.15|0.05 0.10|0.05 0.13|0.05 0.09|0.06

p.BRIB g.SRIB 0.26|0.06 0.25|0.06 0.25|0.05 0.09|0.06

p.HRIB g.SRIB 0.20|0.05 0.19|0.05 0.20|0.05 0.05|0.05

p.BP8 g.SP8 0.25|0.06 0.27|0.06 0.25|0.06 -0.01|0.06

p.HP8 g.SP8 0.21|0.05 0.23|0.05 0.21|0.05 0.02|0.05

p.CRIB g.CRIB 0.51|0.21 0.36|0.17 0.53|0.21 0.12|0.35

p.CP8 g.CP8 0.36|0.20 0.27|0.17 0.34|0.19 0.12|0.23

p.CIMF g.CIMF 0.33|0.12 0.29|0.12 0.36|0.13 0.00|0.17

p.CWT g.CWT 0.25|0.15 0.30|0.12 0.25|0.14 -0.00|0.17

1for trait abbreviations see Table 1, 2prediction equation derived on a
mixed-breed training population, 3prediction equation derived on a training
population of Angus individuals, 4prediction equation derived on a training
population of Bos taurus individuals, 5prediction equation derived on a training
population of Brahman individuals.

On the contrary, cross-validation accuracies for g.SEMA,
g.CIMF and g.CWT reported by [7] were equal to those
found here (0.15 vs. 0.15, 0.31 vs. 0.33) or lower (0.16 vs.
0.25). However, the standard errors of our results do not
allow us to draw an unambiguous conclusion on whether

Table 5 Correlation|standard error between the direct
additive genetic component of the phenotypic trait and
GEBV from different prediction equations for Australian
Limousin cattle

Phenotypic1 GEBV1 ALL2 ANG3 BT4 BRA5

p.WW g.WW -0.01|0.09 0.22|0.10 0.08|0.10 -0.03|0.09

p.YW g.YW -0.15|0.10 0.02|0.11 0.06|0.11 -0.11|0.09

p.FW g.FW -0.03|0.11 -0.01|0.10 -0.03|0.10 0.06|0.10

p.BEMA g.SEMA 0.28|0.14 -0.29|0.13 -0.01|0.19 0.01|0.16

p.HEMA g.SEMA -0.29|0.16 -0.59|0.10 -0.25|0.17 -0.25|0.16

p.BRIB g.SRIB -0.40|0.19 -0.14|0.17 -0.36|0.17 -0.23|0.16

p.HRIB g.SRIB 0.40|0.13 -0.38|0.11 -0.06|0.17 -0.42|0.11

p.BP8 g.SP8 -0.13|0.16 -0.27|0.12 -0.24|0.13 -0.20|0.15

p.HP8 g.SP8 0.08|0.16 0.01|0.15 0.02|0.15 -0.05|0.15

p.CP8 g.CP8 0.08|0.36 -0.14|0.29 0.63|0.28 -0.69|0.18

p.CIMF g.CIMF 0.47|0.25 -0.26|0.30 -0.04|0.24 0.23|0.30

p.CWT g.CWT 0.24|0.29 0.06|0.31 0.34|0.28 0.17|0.29

1for trait abbreviations see Table 1, 2prediction equation derived on a
mixed-breed training population, 3prediction equation derived on a training
population of Angus individuals, 4prediction equation derived in a training
population of Bos taurus individuals, 5prediction equation derived on a training
population of Brahman individuals.

Table 6 Correlation|standard error between the direct
additive genetic component of the phenotypic trait and
GEBV from different prediction equations for Australian
Brahman cattle

Phenotypic1 GEBV1 ALL2 ANG3 BT4 BRA5

p.WW g.WW 0.27|0.10 0.07|0.11 0.15|0.10 0.23|0.09

p.YW g.YW 0.19|0.10 0.14|0.11 0.14|0.11 0.20|0.09

p.FW g.FW 0.20|0.09 -0.17|0.11 -0.07|0.10 0.20|0.10

p.BEMA g.SEMA -0.08|0.22 0.19|0.26 -0.24|0.26 -0.17|0.23

p.HEMA g.SEMA -0.04|0.24 -0.23|0.26 -0.10|0.27 -0.06|0.26

p.BRIB g.SRIB 0.45|0.17 -0.08|0.23 0.01|0.22 0.41|0.17

p.HRIB g.SRIB 0.18|0.22 -0.29|0.26 -0.14|0.25 0.19|0.23

p.BP8 g.SP8 0.34|0.20 -0.08|0.21 -0.16|0.21 0.24|0.20

p.HP8 g.SP8 0.32|0.21 0.20|0.23 -0.09|0.23 0.30|0.21

p.CRIB g.CRIB 0.70|0.20 0.10|0.46 0.44|0.43 0.65|0.21

p.CP8 g.CP8 0.57|0.19 0.46|0.30 0.44|0.34 0.34|0.24

p.CIMF g.CIMF 0.56|0.27 -0.50|0.37 -0.20|0.41 0.36|0.25

1for trait abbreviations see Table 1, 2prediction equation derived on a
mixed-breed training population, 3prediction equation derived an a training
population of Angus individuals, 4prediction equation derived on a training
population of Bos taurus individuals, 5prediction equation derived on a training
population of Brahman individuals.

the latter three estimates are significantly different from
0. For the Brahman breed, accuracies published by [7] for
g.WW, g.YW and g.SEMA were also considerably higher
than those obtained from ALL PE. In contrast, for g.SP8
and g.CIMF, ALL PE yielded higher accuracies (0.34 vs.
0.19, 0.56 vs. 0.27). However, for these GEBV the standard
errors do not support the conclusion that accuracies are
significantly different from 0. One possible reason for the
differences is the genetic distance between our validation
dataset and the training dataset. The Beef CRC collection
of genotypes started in the early 2000. Thus, the distance
between some validation and training genotypes might
represent several generations. Moreover, some genotypes
were collected from special selection lines [7].
Compared with the range of results published in other

studies, the accuracies of GEBV for Australian Angus pre-
sented here are generally at the lower end of the range
[13,14,23-25]. For example accuracies of GEBV that are
commercially available from Igenity (www.igenity.com)
for growth traits, carcass marbling and carcass weight in
Australian/American Angus were generally higher than
0.4 [23,25]. In contrast, especially for growth traits, our
values were lower than 0.1 except the accuracy of g.FW.
The same applies to GEBV that are commercially available
from Zoetis (www.Zoetis.com) [23,24]. In all the studies
cited above, GEBV were evaluated within-breed only, but
Beef CRC PE were derived across indicine and taurine
breeds. Studies on beef cattle across-breed predictions
are limited [14,15], but accuracies of g.CIMF and g.WW

www.igenity.com
www.Zoetis.com
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reported here were in the same range than those in [15].
However, accuracies of g.YWwas∼ 0.1, whereas results of
both the latter citations were between 0.3 and 0.45. More-
over, [14] found an accuracy of g.WW of 0.36, compared
to our result of 0.09 from ALL PE. Differences between
accuracies obtained from different PE were minor except
between the BRAHMAN PE and the other three PE. The
small differences in accuracies obtained from the ANGUS
and BOSTAURUS PE may result from the Bos taurus
training set consisting of almost 50% Angus individu-
als [7]. However, the addition of indicine breeds to the
training set, which represented about 60% of the ALL
PE training set, had small positive effects on the accu-
racies of almost all GEBV. In contrast, the BRAHMAN
PE performed worst in the Angus breed for most traits,
which combined to the results from ALL PE, reinforces
the empirical finding that the target breedmust be amem-
ber of the training population [14]. However, given the
high standard errors, in general differences between accu-
racies obtained from different PE for a given trait were not
statistically significant.
Accuracies of GEBV from ALL PE for the Limousin

breed reflect that no pure-breed Limousin individuals
were part of the training population. Generally, accuracies
reported here do not show any consistent pattern within
traits across PE. In contrast, accuracies for the American
Limousin population from within-breed predictions were
equal to ∼0.4, and for yearling weight, they even reached
0.76 [26]. Moreover, accuracies of GEBV predicted from
PE derived from a cross-breed population that consisted
of only about 7% Limousin genome were between 0.2 and
0.65 depending on the trait [15].
For the Brahman breed, the only pure-breed Bos indi-

cus cattle in the training population, the ALL PE yielded
the highest accuracies for most GEBV, followed by the
BRAHMAN PE, whereas the ANGUS and BOSTAURUS
PE yielded negative results in most cases. The poor per-
formance of the BOSTAURUS and ANGUS PE is in line
with the poor performance of the BRAHMAN PE in
the Angus breed, which reflects the need of having all
predicted breeds in the training population. The better
performance of the ALL PE compared to the BRAHMAN
PE might result from additional information embedded in
the LD between certain SNPs and QTL across Bos taurus
and Bos indicus sub-species, in conjunction with a higher
power of detection due to an increased training popula-
tion size [8,22]. However, the standard errors of the accu-
racies do not allow for a statistically based preference of a
certain PE.

Heritabilities
Low heritabilities of GEBV indicate that our results for
the Limousin breed and partly for the Brahman breed
may be affected by genotyping errors, pedigree errors or

very low relationships between individuals with GEBV.
For the Limousin and Brahman breeds, heritabilities var-
ied considerably within traits across PE (e.g. for g.WW
0.5 to 0.65 for Limousin, 0.64 to 0.84 for Brahman). Since
GEBV are linear functions of SNP genotypes, and SNP
genotypes were the same for all PE, the heritabilities of
GEBV for the same trait from different PE were expected
to be equal. This assumption holds only if genotypes are
obtained without errors, or if genotyping and imputa-
tion errors affect all SNPs equally. If some SNPs are more
affected by errors than others and the PE weight SNPs
differently, the heritabilities of GEBV for a certain trait
from different PEmay vary although the same animals and
genotypes were used. However, this is only expected to be
the case when evaluating PE in target populations because
poor genotyping/imputation quality of individuals in the
training population is accounted for by the prediction
equation via altered GEBV accuracy. Thus, if the geno-
types of validation animals were affected by imputation
errors, accuracies of GEBV may increase as a result of an
increased imputation accuracy.

Estimation of accuracies
Genomic PE are usually derived to implement GS in cer-
tain target populations by supplying the PE or GEBV to
the breeding organisations. The parameter of paramount
interest when evaluating PE or GEBV is the proportion
of the additive genetic variance of the phenotypic tar-
get trait in the target population explained by the GEBV,
where the square root of this parameter is the accuracy
of the GEBV. From the perspective of the breeding organ-
isation, this parameter can be obtained either by using
the accuracy generated during the process of generating
the PE, which assumes that this accuracy is equal to a
variance ratio, or by re-estimating this parameter in the
target population. Using the accuracy from the PE gener-
ation process bears the risk of assuming the GEBV to be
more accurate than they actually are if the genetic link to
the training population is insufficient [12], or if the train-
ing population sample size does not reflect the genetic
variability in the target population because parameters
estimated in the training population may not be valid in
the target population. This problem can be circumvented
by re-estimating the accuracy in the target population.
However, accuracies from the process of generating the
PE as well as those re-estimated in the target popula-
tion can be biased due to the method of calculation. The
accuracy of GEBV is often estimated as the correlation
between the GEBV and a response variable, which can be
breeding values, de-regressed proofs, daughter yield devi-
ations, phenotypes or scaled versions of these variables.
The co-variances necessary to calculate the correlation
are obtained from inner-space vector products of the
GEBV vector and the response variable vector [8,10,11].
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The expectation of the inner-space vector product of two
random vectors with expectation 0 is the trace of their co-
variance matrix. Assuming that the co-variance matrix is
a matrix times a scalar co-variance, the inner-space vec-
tor product will estimate the scalar co-variance correctly
only if the average diagonal element of the matrix is 1. If
the average is larger than 1, it will inflate the co-variance.
Thus, if the covariance matrix between the response vari-
able and the GEBV is the genomic relationship matrix
times their covariance, and the average diagonal element
of the genomic relationship matrix is larger than 1, the
covariance will be biased upwards, and the accuracy will
be overestimated. Moreover, genetic trends due to selec-
tion may further increase the inner-space vector product
due to a mean of the random vectors larger than 0. In
addition to the possible bias from transferring GEBV
accuracies to the target population and from the method
of calculation, the above methodology does not exploit
all available phenotypic data when deriving the PE or
when estimating the GEBV accuracy. PE using all avail-
able data can be derived by a single-step methodology
and back-solving the single-step breeding values [27-30].
However, an accuracy in the sense of the proportion of
the additive genetic variance explained by GEBV cannot
be achieved from such analysis. The REML approach used
in this article and by [13-16] overcomes several of the
above outlined shortcomings by re-estimating the accu-
racy in the target population, using as much phenotypic
data as available, allowing for sources of bias in param-
eter estimation due to relationships between individuals,
selection and inbreeding, and generating the parameter
of paramount interest, the proportion of the genetic vari-
ance of the target trait in the target population explained
by the genetic covariance between the target trait and
the GEBV.

Across-breed prediction
Across-breed prediction has its theoretical basis in the
finding that the LD between SNPs persists over much
longer genome distances within breed than across breeds,
and in the assumption that trait coding QTL are the
same across breeds. Thus, mixing breeds may lead to
a sample with most advanced LD decay between QTL
and SNPs such that across all breeds in this sample only
SNPs in close proximity to the QTL are still in high LD
[6,22,31]. Up to this point, this theory is supported by
the fact that ALL PE worked best in Angus, followed by
ANGUS, BOSTAUR and BRAHMANPE.However, a con-
sequence of the above logic is that the addition of a breed
“N” to a training population of “N-1” breeds must be of
decreasing marginal benefit, because the total probabil-
ity that the LD between QTL and their adjacent SNPs
is already exploited increases with every additional indi-
vidual and/or breed. In practical terms, in a set of “N”

breeds, GEBV for breed “N” should be predictable with
high accuracy from a training set of “N-1” breeds. Vio-
lation of the equal QTL assumption does not invalidate
the marginal benefit principle. It also applies when breeds
have specific QTL alleles due to mutation or due to an
ancestral population with more than two QTL alleles, as
long as the LD phase between SNPs and negative/positive
QTL alleles is the same for all breeds in the training
population. Results in this paper, as well as those pub-
lished from other across-breed prediction trials [8,14,32],
show that all breeds in the target/validation population
must be part of the training population to obtain suffi-
cient GEBV accuracies. In the framework of the above
theory and its marginal benefit consequence, the con-
clusion would be that the Limousin and Angus breeds
are genetically more different than are the Angus and
Brahman breeds, with this difference including different
trait coding QTL, inversion of LD phases, fixed SNPs,
and SNPs in linkage equilibrium with trait coding QTL.
Since such a conclusion contradicts the phylogeny of
cattle breeds, the empirical result that across-breed PE
yield accurate GEBV only if all targeted breeds are in the
training population does not fit into the above genetic
theory.
To date, the fact that across-breed predictionworks only

if all targeted breeds are in the training population may
result from partial or total collinearity between very dis-
tant SNP genotypes. Collinearity between SNP genotypes
can be a result of a physical proximity between two SNPs
in terms of base pairs, and can persist over many gener-
ations after being induced by an ancient sampling event
(e.g. the breed formation). However, collinearity may be
also observed between distant SNP genotypes which can
be induced by a recent sampling event, for instance sam-
pling a number of individuals for genotyping of which SNP
haplotypes do not reflect the genetic diversity in the origi-
nal population, which is facilitated by the number of SNPs
usually exceeding the number of genotyped animals. Such
“genotype sampling collinearity” between SNP genotypes
in close proximity to a QTL and SNP genotypes very dis-
tant from this location will result in LD between QTL and
these very distant SNPs. When estimating SNP effects,
both types of SNPs will then compete for the effect of
the same QTL. Since this kind of collinearity is likely to
change with every single individual or breed added to the
training population, the prediction equation will change
subsequently. Howwell prediction equations can be trans-
ferred to other populations is a function of this change.
The empirical finding that targeted breeds must be mem-
bers of the training population to successfully apply the
prediction equation supports the conclusion that much of
the LD in current across-breed data sets is induced by the
sampling event which arises when individuals are chosen
for genotyping.
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Conclusions
Although accuracies of GEBV are generally low compared
to already published accuracies that are estimated within
breeds, they are in line with those derived from other
across-breed prediction trials. Thus, prediction equations
derived by the Beef CRC from a mixed-breed train-
ing population can contribute to the implementation of
genomic selection in Australian beef cattle breeding. Since
across-breed prediction equations performed equally or
better than thewithin-breed prediction equations, and the
mixed-breed dataset is likely to grow faster than the pure-
breed dataset, we recommend that breeders use predic-
tion equations from the mixed-breed training population.
However, breeding organisations should only implement
GS on the basis of Beef CRC across-breed equations if
their breed was part of the training population.
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