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Abstract Genetic algorithm (multiparameter linear

regression; GA-MLR) and genetic algorithm–artificial

neural network (GA-ANN) global models have been used

for prediction of the toxicity of phenols to Tetrahymena

pyriformis. The data set was divided into 150 molecules for

training, 50 molecules for validation, and 50 molecules for

prediction sets. A large number of descriptors were cal-

culated and the genetic algorithm was used to select

variables that resulted in the best-fit to models. The six

molecular descriptors selected were used as inputs for the

models. The MLR model was validated using leave-one-

out, leave-group-out cross-validation and external test set.

A three-layered feed forward ANN with back-propagation

of error was generated using six molecular descriptors

appearing in the MLR model. Comparison of the results

obtained using the ANN model with those from the MLR

revealed the superiority of the ANN model over the MLR.

The root mean square error of the training, validation, and

prediction sets for the ANN model were calculated to be

0.224, 0.202, and 0.224 and correlation coefficients (r2) of

0.926, 0.943, and 0.925 were obtained. The improvements

are because of non-linear correlations of the toxicity of the

compounds with the descriptors selected. The prediction

ability of the GA-ANN global model is much better than

that of previously proposed models.
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Introduction

Toxicological assessment of phenolic compounds is

essential for risk-assessment purposes. Compounds with a

single aromatic ring substituted with a hydroxyl group (the

phenols) are ubiquitous in nature and are used in many

industries including those involving textiles, leather, paper,

and oil. They are also commonly used food additives and

frequently utilized in agriculture [1]. There has therefore

been great interest in assessing the toxicity of such com-

pounds. The impact of the potential hazard of untested

chemicals, a challenge confronting national and interna-

tional regulatory agencies [2–5], can be measured by

experimental investigations, but this approach is both quite

expensive and time-consuming. This has meant that the

development of computational methods as an alternative

tool for predicting the properties of chemicals has been a

subject of intensive study. Among computational methods

quantitative structure–activity relationships (QSAR) have

found diverse applications for predicting compounds’

properties, including biological activity prediction [6],

physical property prediction [7], and toxicity prediction

[8, 9]. QSPR/QSAR models are essentially calibration

models in which the independent variables are molecular

descriptors that describe the structure of molecules and the

dependent variable is the property/activity of interest. In

QSAR studies, techniques which can be used for model

construction, for example multiple linear regression (MLR)

and artificial neural networks (ANN), have been used for

inspection of linear and nonlinear relationships between the

activity of interest and molecular descriptors. Artificial

neural networks have become popular in QSPR/QSAR

models because of their success where complex non-linear

relationships exist amongst data [10, 11]. An ANN is

formed from artificial neurons connected with coefficients
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(weights), which constitute the neural structure and are

organized in layers. The layers of neurons between the

input and output layers are called hidden layers. Neural

networks do not need explicit formulation of the mathe-

matical or physical relationships of the problem handled.

These give ANNs an advantage over traditional fitting

methods for some chemical applications. For these reasons,

in recent years ANNs have been applied to a wide variety

of chemical problems [12–20]. Application of these tech-

niques usually requires selection of variables to build

well-fitting models. Nowadays, genetic algorithms (GA)

are well-known as interesting and more widely used

methods for variable selection [21–23]. GA are stochastic

methods used to solve optimization problems defined by

fitness criteria, by applying the evolution hypothesis of

Darwin and different genetic functions, i.e., crossover and

mutation.

QSAR models have been used to predict the toxicity of

phenols [1, 24, 25]. Two approaches have been suggested

in this modeling and in similar QSAR modeling. The first

of these is the development of ‘‘global’’ models which are

defined as QSAR models that cover a number of different

mechanisms of action for a given toxicological endpoint.

The use of the term ‘‘global model’’ in this study is distinct

from that used to define QSAR models based on chemicals

with similar modes of action allowing interspecies corre-

lations. The second is the development of a number of

‘‘local’’ models, each covering a single mechanism of

action present in the database [26]. Very recently, Enoch

et al. [26] used a global QSAR method for prediction of the

toxicity of phenols. The ability of the proposed global

QSAR model to predict the toxicity of phenols is poor

(correlation coefficients (r2) of the model are 0.71 and 0.73

for training and test sets) [26].

In order to predict accurately the toxicity of these

compounds, in this work genetic algorithm–multiparameter

linear regression (GA-MLR) and genetic algorithm–artifi-

cial neural network (GA-ANN) global models were used to

generate QSAR models between the descriptors and tox-

icity of 250 phenols with diverse chemical structures. The

results obtained were compared with each other, with those

from previous work [26], and with the experimental values.

Results and discussion

For selection of the most important descriptors the genetic

algorithm technique was used. To select the optimum

number of descriptors, the influences of the number of the

descriptors were investigated for one to ten descriptors.

The R2 value can be generally increased by adding

the additional predictor variables to the model, even if the

added variable does not contribute to the reduction of the

unexplained variance of the dependent variable. Therefore,

the R2 usage requires special attention. For this reason, it is

better to use another statistical parameter, called the

adjusted R2 (Radj
2 ), were Radj

2 is defined by Eq. 1.

R2
adj ¼ 1� 1� R2

� � n� 1

n� p� 1

� �
ð1Þ

Radj
2 is interpreted similarly to the R2 value, considering the

number of degrees of freedom also. It is adjusted by

dividing the residual sum of squares and total sum of

squares by their respective degrees of freedom. The Radj
2

value diminishes if an added variable to the equation does

not reduce the unexplained variance [27]. Subsequently,

Radj
2 is used to compare models with different numbers of

predictor variables.

Another statistical parameter is the standard error of the

estimate(s) that measures the dispersion of the observed

values about the regression line. When the s value is low,

the reliability of the prediction is higher. Figure 1 shows

plots of R2, Radj
2 , and s for the training set as a function of

the number of descriptors for the 1–10 descriptors in the

models. R2 and Radj
2 increased with increasing number of

descriptors. However, the values of s decreased with

increasing number of descriptors. As models with 7–10

descriptors did not significantly improve the statistics of

the models, it was determined that the optimum subset size

had been achieved with a maximum of 6 descriptors.

The selected variables and the correlation matrix of

the descriptors are listed in Table 1, from which it can be

seen that the correlation coefficient value of each pair of

descriptors was less than 0.65, which meant that the

selected descriptors are independent.

To examine the relative importance, and the contribu-

tion of each descriptor in the model, for each descriptor the
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Fig. 1 Influences of the number of descriptors on R2 (filled circle),

Radj
2 (open circle), and s (filled triangle) of the regression model
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value of the mean effect (MF) was calculated. This cal-

culation was performed by use of Eq. 2.

MFj ¼
bj

Pi¼n
i¼1 dijPm

j bj

Pn
i dij

ð2Þ

MFj represents the mean effect for the considered

descriptor j, bj is the coefficient of the descriptor j, dij

stands for the value of the target descriptors for each

molecule, and m is the descriptor’s number in the model.

The MF value indicates the relative importance of a

descriptor, compared with the other descriptors in the

model. Its sign shows the direction of variation in the

toxicity values as a result of the increase (or reduction) of

the descriptor values. The mean effect values are -0.043,

1.071, -0.081, 0.035, -0.004, and 0.023 for Xt, MATS1m,

PJI3, Mor23u, nCs, and H-046. By interpreting the

descriptors contained in the model, it is possible to gain

useful chemical insights into the toxicity of phenols. For

this reason, an acceptable interpretation of the QSAR

results is provided below.

The first descriptor which has appeared in the model is

Xt (total structure connectivity index). Connectivity indices

are among the most popular topological indices and are

calculated from the vertex degree of the atoms in the

H-depleted molecular graph. Xt is a connectivity index

contemporarily accounting for all the atoms in the graph.

Also the total structure connectivity index is the square root

of the simple topological index that is proposed for mea-

suring molecular branching [28]. The mean effect of Xt has

a negative sign, which indicates that an increase in the

molecular branch leads to a decrease in its pIG50 value.

The second descriptor is MATS1m (Moran autocorre-

lation—lag 1/weighted by atomic masses), which is a 2D

autocorrelation descriptor. In this descriptor the Moran

coefficient is a distance-type function, and is any physi-

cochemical property calculated for each atom of the

molecule, for example atomic mass, polarizability, etc. The

Moran coefficient usually takes a value in the interval [-1,

?1]. Positive autocorrelation corresponds to positive val-

ues of the coefficient whereas negative autocorrelation

produces negative values. Therefore, the molecule atoms

represent a set of discrete points in space and the atomic

property is the function evaluated at those points. The

physicochemical property in this case is the atomic mass.

MATS1m has a positive sign, illustrating a greater mean

effect value than that of the other descriptors, which indi-

cates that this descriptor had a significant effect on the

toxicity and that the pIG50 value is directly related to this

descriptor. Hence, it was concluded that by increasing the

molecular mass the value of this descriptor increased,

causing an increase in its pIG50 value.

The third descriptor is PJI3 (3D Petijean shape index),

which is a geometrical descriptor. The Petitjean shape

index is a topological anisometry descriptor also called a

graph-theoretical shape coefficient that is calculated from

the topological radius and the topological diameter

obtained from the distance matrix representing the con-

sidered molecular graph. PJI3 has a negative sign, which

indicates that the pIG50 is inversely related to this

descriptor.

Mor23u is the fourth descriptor appearing in the model.

It is a 3D-MoRSE descriptor. 3D MoRSE descriptors (3D

molecule representation of structures based on electron

diffraction) are derived from infrared spectra simulation

using a generalized scattering function [28]. This descriptor

was proposed as signal 23/unweighted. Mor23u has a

positive sign, which indicates that the pIG50 is directly

related to this descriptor.

The fifth descriptor is nCs which is one of the functional

groups. nCs represents the number of total secondary

C(sp3). The mean effect of nCs has a negative sign, which

indicates that an increase in the number of secondary

C(sp3) of the molecule leads to a decrease in its pIG50

value.

The final descriptor of the model was the H-046 (H

attached to C0 (sp3)). It is one of the atom-centered frag-

ment descriptors that describe each atom by its own atom

type and the bond types and atom types of its first neigh-

bors. This descriptor represents the first neighbor

(hydrogen) of carbon atoms. This descriptor has a positive

sign, which indicates that the pIG50 is directly related to

this descriptor.

In summary, it is concluded that the molecular branch-

ing, the molecular mass, the molecular shape, the number

of secondary C(sp3) of molecules, and the first neighbor

(hydrogen) of carbon atoms are of major importance in the

toxicity of the compounds studied.

Genetic algorithm: multiparameter linear regression

We used a GA for selection of the most relevant descrip-

tors. Multiparameter linear correlation of pIG50 values for

150 different phenolic compounds in the training set was

achieved by the GA by use of the six descriptors selected,

and the following equation was obtained:

Table 1 Correlation coefficient matrix of the selected descriptors

Xt MATS1m PJI3 Mor23u nCs H-046

Xt 1 0.183 -0.489 0.323 -0.401 -0.226

MATS1m 1 -0.528 0.396 -0.374 -0.613

PJI3 1 -0.449 0.364 0.206

Mor23u 1 -0.648 -0.287

nCs 1 0.421

H-046 1
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pIG50 ¼ �15:05 �1:66ð Þ � 15:77 �2:00ð ÞXt

þ 17:84 �1:58ð ÞMATS1m� 1:84 �0:31ð ÞPJI3

� 1:23 �0:18ð ÞMor23u� 0:12 �0:04ð ÞnCs

þ 0:14 �0:01ð ÞH� 046 ð3Þ

The model was then used to predict pIG50 values for the

compounds in the validation and prediction sets. The

prediction results are given in Table 2. The calculated

values of pIG50 for the compounds in the training,

validation, and prediction sets using the GA-MLR model

have also been plotted versus their experimental values

(Fig. 2). The correlation coefficients, r2, obtained were

0.747 for the training set, 0.721 for the validation set, and

0.516 for the prediction set. Table 3 shows the root mean

square error (RMSE) and r2 of the model for total, training,

validation, and prediction sets.

The model obtained was validated using the leave-one-

out (LOO) and leave-group-out (LGO) cross-validation

processes. For LOO cross-validation, a data point is

removed from the set and the model is recalculated. The

predicted activity for that point is then compared with its

actual value. This is repeated until each data point has been

omitted once. For LGO, 20% of the data points are

removed from the dataset and the model refitted; the values

predicted for those points are then compared with the

experimental values. Again, this is repeated until each data

point has been omitted once. The crossvalidated correlation

coefficient (Q2) was 0.620 for LGO and 0.728 for LOO.

This indicates that the regression model obtained has good

internal and external predictive power.

Genetic algorithm–artificial neural network

To process the non-linear relationships between the toxic-

ity and the descriptors the ANN modeling method

combined with GA for feature selection was employed.

The input vectors were the set of descriptors which were

selected by the GA, and therefore the number of nodes in

the input layer was dependent on the number of selected

descriptors. In the GA-MLR model it is assumed that the

descriptors are independent of each other and have truly

additive relevance to the property under study. ANNs are

particularly well-suited for QSAR/QSPR models because

of their ability to extract non-linear information present in

the data matrix. For this reason the next step in this work

was generation of the ANN model. There are no rigorous

theoretical principles for choosing the proper network

topology; so different structures were tested in order to

obtain the optimum number of hidden neurons and training

cycles [17–20]. Before training the network, the number of

nodes in the hidden layer was optimized. In order to

optimize the number of nodes in the hidden layer, several

Table 2 Experimental values of the toxicity of phenols to Tetrahymena pyriformis

(pIG50) and the values calculated by the GA-MLR and GA-ANN global models

No. Compound pIG50 (exp) MLR ANN

Training

1 4-Hydroxyphenylacetic acid -1.50 0.10 -1.43

3 3-Hydroxybenzyl alcohol -1.04 -0.51 -0.97

5 3-Hydroxy-4-methoxybenzyl alcohol -0.99 0.07 -0.50

6 4-Hydroxy-3-methoxybenzylamine HCl -0.97 -0.41 -0.83

8 4-Hydroxyphenethylalcohol -0.83 -0.69 -0.86

10 3-Hydroxybenzoic acid

(3-carboxylphenol)

-0.81 0.45 -0.27

11 4-Hydroxybenzamide -0.78 -0.33 -0.76

13 Resorcinol -0.65 -0.14 -0.05

15 2,4,6-Tris(dimethylaminomethyl)phenol -0.52 -0.52 -0.54

16 3-Aminophenol (3-hydroxyaniline) -0.52 -0.40 -0.82

18 2-Methoxyphenol (guaiacol) -0.51 -0.24 -0.17

20 5-Methylresorcinol -0.39 0.09 -0.20

21 4-Hydroxybenzylcyanide

(4-cyanomethylphenol)

-0.38 0.01 -0.64

23 2-Ethoxyphenol -0.36 -0.28 -0.28

25 4-Hydroxyacetophenone (4-acetylphenol) -0.30 -0.30 -0.30

26 3-Ethoxy-4-methoxyphenol -0.30 -0.06 -0.28

28 Salicylamide (2-hydroxybenzamide) -0.24 0.04 -0.33

30 Phenol -0.21 -0.22 -0.22

31 p-Cresol (4-methylphenol) -0.18 -0.33 -0.19

33 3-Acetamidophenol

(3-hydroxyacetanilide)

-0.16 0.10 -0.08

35 4-Methoxyphenol -0.14 -0.47 -0.17

36 Isovanillin (3-hydroxy-4-

methoxybenzaldehyde)

-0.14 0.38 0.02

38 3,5-Dimethoxyphenol -0.09 0.31 -0.09

40 4-Aminophenol (4-hydroxyaniline) -0.08 -0.56 -0.15

41 3-Cyanophenol -0.06 0.27 0.29

43 Methyl 3-hydroxybenzoate -0.05 -0.04 -0.51

45 4-Hydroxy-3-methoxybenzonitrile -0.03 0.33 0.09

46 4-Ethoxyphenol 0.01 -0.41 -0.16

48 4-Fluorophenol 0.02 0.30 0.08

50 50-Fluoro-20-hydroxyacetophenone 0.04 0.02 0.15

51 40-Hydroxypropiophenone 0.05 -0.21 0.08

53 2-Hydroxyacetophenone 0.08 -0.25 -0.18

55 Methyl 4-hydroxybenzoate 0.08 0.16 0.05

56 3-Hydroxybenzaldehyde 0.09 0.18 -0.05

58 40-Hydroxypropiophenone 0.12 -0.21 0.08

60 3,4-Dimethylphenol 0.12 0.36 0.07

61 4-Chlororesorcinol 0.13 0.65 -0.27

63 2-Ethylphenol 0.16 0.10 0.12

65 Salicylhydrazide 0.18 0.30 0.33

66 2-Chlorophenol 0.18 0.76 0.09

68 40-Hydroxy-20-methylacetophenone 0.19 0.04 0.38

70 3-Ethylphenol 0.23 0.17 0.20

71 Salicylaldoxime 0.25 0.13 0.22

73 3,4-Dinitrophenol 0.27 0.84 0.34

75 2,3,6-Trimethylphenol 0.28 0.64 0.28

76 2,4,6-Trimethylphenol 0.28 0.84 0.27
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Table 2 continued

No. Compound pIG50 (exp) MLR ANN

78 20-Hydroxy-50-methylacetophenone 0.31 0.19 0.20

80 5-Hydroxy-2-nitrobenzaldehyde 0.33 0.73 0.63

81 2-Allylphenol 0.33 0.22 0.33

83 2,3,5-Trimethylphenol 0.36 0.73 0.38

85 4-Methylcatechol 0.37 0.34 0.32

86 o-Vanillin (3-methoxysalicylaldehyde) 0.38 0.26 0.03

88 3-Fluorophenol 0.38 0.40 0.36

90 4-Allyl-2-methoxyphenol (eugenol) 0.42 0.53 0.42

91 Salicylaldehyde

(2-hydroxybenzaldehyde)

0.42 0.34 0.68

93 5-Amino-2-methoxyphenol 0.45 -0.12 -0.49

95 2,6-Difluorophenol 0.47 0.99 0.39

96 Hydroquinone 0.47 -0.12 0.13

98 Ethyl 3-hydroxybenzoate 0.48 0.33 0.34

100 3-Nitrophenol 0.51 0.61 0.80

101 4-Cyanophenol 0.52 0.05 0.52

103 2,6-Dinitrophenol 0.54 0.82 0.54

105 20-Hydroxy-40-methoxyacetophenone 0.55 0.31 0.54

106 Ethyl 4-hydroxybenzoate 0.57 0.14 0.41

108 5-Methyl-2-nitrophenol 0.59 0.95 1.05

110 2,4-Difluorophenol 0.60 0.81 0.73

111 3-Isopropylphenol 0.61 0.70 0.62

113 3-Methyl-2-nitrophenol 0.61 0.77 0.35

115 a,a,a-Trifluoro-p-cresol 0.62 1.01 0.62

116 Methyl 4-methoxysalicylate 0.62 0.31 0.90

118 4-Propylphenol 0.64 0.40 0.54

120 2-Nitroresorcinol 0.66 0.94 1.35

121 2-Nitrophenol 0.67 0.86 0.54

123 2-Chloro-4,5-dimethylphenol 0.69 1.14 1.12

125 4-Chloro-2-methylphenol 0.70 0.82 0.63

126 20-Hydroxy-40,50-dimethylacetophenone 0.71 0.25 0.96

128 2,6-Dichlorophenol 0.74 1.38 0.97

130 2-Methoxy-4-propenylphenol 0.75 0.55 0.75

131 Catechol 0.75 0.17 0.80

133 3-Chloro-5-methoxyphenol 0.76 0.53 0.76

135 5-Chloro-2-hydroxyaniline

(2-amino-4-chlorophenol)

0.78 0.55 0.67

136 4-Chloro-3-methylphenol 0.80 0.75 0.86

138 2,6-Dichloro-4-fluorophenol 0.80 1.56 0.91

140 1,2,3-Trihydroxybenzene 0.85 0.49 0.87

141 3-Chlorophenol 0.87 0.60 0.31

143 4-Amino-2-nitrophenol 0.88 0.71 0.84

145 6-Amino-2,4-dimethylphenol 0.89 0.59 0.94

146 4-tert-Butylphenol 0.91 1.18 0.94

148 3-Fluoro-4-nitrophenol 0.94 0.72 0.93

150 2,5-Dinitrophenol 0.95 1.40 0.61

151 2,20,4,40-Tetrahydroxybenzophenone 0.96 1.08 1.04

153 4-sec. Butylphenol 0.98 0.86 0.85

155 3-Hydroxydiphenylamine 1.01 1.19 0.97

156 4-Hydroxybenzophenone 1.02 1.27 1.13

158 2,4-Dichlorophenol 1.04 1.11 1.48

160 4-Chlorocatechol 1.06 0.72 0.97

Table 2 continued

No. Compound pIG50 (exp) MLR ANN

161 Benzyl 4-hydroxyphenyl ketone 1.07 1.30 1.01

163 4-Chloro-3-ethylphenol 1.08 0.98 1.03

165 2-Phenylphenol 1.09 1.27 1.30

166 3-Iodophenol 1.12 0.90 1.12

168 3-Chloro-4-fluorophenol 1.13 1.02 1.09

170 3-Bromophenol 1.15 0.79 1.15

171 6-tert-Butyl-2,4-dimethylphenol 1.16 1.31 1.20

173 2,3,5,6-Tetrafluorophenol 1.17 1.73 1.42

175 2-Amino-4-chloro-5-nitrophenol 1.17 1.03 1.04

176 4-Chloro-3,5-dimethylphenol 1.20 1.15 1.21

178 4-tert-Pentylphenol 1.23 1.23 1.38

180 Chlorohydroquinone 1.26 0.75 0.78

181 4-Bromo-3,5-dimethylphenol 1.27 1.50 0.99

183 4-Bromo-6-chloro-o-cresol 1.28 1.64 1.32

185 p-Cyclopentylphenol 1.29 1.20 1.58

186 2-tert-Butylphenol 1.30 1.00 0.92

187 2-tert-Butyl-4-methylphenol 1.30 1.40 1.30

190 2-Hydroxydiphenylmethane 1.31 1.09 1.29

191 Butyl 4-hydroxybenzoate 1.33 0.92 1.35

193 3-Phenylphenol 1.35 1.32 1.42

195 n-Pentyloxyphenol 1.36 0.95 1.33

196 4-Fluoro-2-nitrophenol 1.38 1.11 1.06

198 2,4-Dibromophenol 1.40 1.46 1.49

200 2,3-Dimethylhydroquinone 1.41 0.82 1.31

201 2-Hydroxy-4-methoxybenzophenone 1.42 1.06 1.42

203 4-Amino-2,3-dimethylphenol HCl 1.44 0.65 1.21

205 Benzyl 4-hydroxybenzoate 1.55 1.43 1.57

206 3,5-Dichlorosalicylaldehyde 1.55 1.44 1.55

208 3,5-Dichlorophenol 1.57 1.24 1.69

210 4-Bromo-2-fluoro-6-nitrophenol 1.62 1.56 1.92

211 4-Hexyloxyphenol 1.64 1.42 1.76

213 3,5-Dibromosalicylaldehyde 1.64 1.72 1.39

215 4-Chloro-6-nitro-m-cresol 1.64 1.42 1.46

216 4-Nitro-3-(trifluoromethyl)-phenol 1.65 1.53 1.69

218 Tetrachlorocatechol 1.70 2.30 1.88

220 4,6-Dinitro-o-cresol (4,6-dinitro-

2-methylphenol)

1.72 1.51 1.58

221 3-Methyl-4-nitrophenol 1.73 0.83 1.27

223 2,4-Dichloro-6-nitrophenol 1.75 1.52 1.87

225 4-Hexylresorcinol 1.80 1.74 1.72

226 2,6-di-tert-Butyl-4-methylphenol (BTH) 1.80 1.98 1.72

228 4-Chloro-2-isopropyl-5-methylphenol 1.85 1.55 1.81

230 4-Bromo-2-nitrophenol 1.87 1.47 1.84

231 Phenylhydroquinone 2.01 1.38 1.74

233 4-Heptyloxyphenol 2.03 2.01 2.03

235 4-Chloro-2-nitrophenol 2.05 1.25 1.64

236 2,4,5-Trichlorophenol 2.10 1.55 2.08

238 3,5-di-tert-Butylcatechol 2.11 2.25 1.70

240 Methoxyhydroquinone 2.20 0.31 1.66

241 2,3,5,6-Tetrachlorophenol 2.22 1.95 2.20

243 3,5-Diiodosalicylaldehyde 2.34 1.96 2.29

245 4-Nonylphenol 2.47 2.98 2.55
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Table 2 continued

No. Compound pIG50 (exp) MLR ANN

246 2-Ethylhexyl 40-hydroxybenzoate 2.51 2.14 2.51

248 Nonyl 4-hydroxybenzoate 2.63 2.65 2.51

250 2,3,4,5-Tetrachlorophenol 2.71 2.11 2.37

Validation

2 1,3,5-Trihydroxybenzene -1.26 0.08 -0.92

7 2-Hydroxybenzylalcohol (salicylalcohol) -0.95 -0.01 -0.93

12 4-Hydroxy-3-methoxybenzyl alcohol -0.70 -0.27 -0.40

17 Salicylic acid -0.51 0.42 -0.23

22 3-Hydroxyacetophenone -0.38 -0.11 -0.48

27 o-Cresol (2-methylphenol) -0.30 0.14 -0.34

32 4-Hydroxy-3-methoxyphenethylalcohol -0.18 -0.31 -0.19

37 4-Hydroxy-3-methoxyacetophenone

(acetovanillone)

-0.12 -0.08 -0.05

42 m-Cresol(3-methylphenol) -0.06 -0.16 -0.06

47 3-Ethoxy-4-hydroxybenzaldehyde 0.02 -0.17 -0.02

52 2,4-Dimethylphenol 0.07 0.44 0.13

57 3,5-Dimethylphenol 0.11 0.47 0.24

62 2,4-Diaminophenol 2HCl 0.13 -0.16 0.11

67 2-Fluorophenol 0.19 0.51 0.32

72 4-Hydroxybenzaldehyde 0.27 -0.02 0.35

77 3-Methylcatechol 0.28 0.14 0.58

82 5-Bromo-2-hydroxybenzylalcohol 0.34 0.86 0.31

87 Salicylhydroxamic acid 0.38 0.23 0.15

92 1,2,4-Trihydroxybenzene 0.44 0.46 0.48

97 4-Isopropylphenol 0.47 0.65 0.69

102 4-Propyloxyphenol 0.52 0.46 0.54

107 4-Methyl-2-nitrophenol 0.57 0.96 0.98

112 4-Hydroxy-3-nitrobenzaldehyde 0.61 1.00 0.73

117 2,6-Dichloro-4-nitrophenol 0.63 1.75 1.21

122 4-Bromophenol 0.68 0.62 0.71

127 3-tert-Butylphenol 0.73 1.00 0.98

132 2-Chloromethyl-4-nitrophenol 0.75 1.06 0.64

137 2-Isopropylphenol 0.80 0.57 0.60

142 2-Bromo-20-hydroxy-50-nitroacetanilide 0.87 0.91 0.89

147 3,4,5-Trimethylphenol 0.93 0.84 0.93

152 4,6-Dichlororesorcinol 0.97 1.20 0.60

157 4-Benzyloxyphenol 1.04 1.66 0.99

162 2-Fluoro-4-nitrophenol 1.07 1.06 0.93

167 2,5-Dichlorophenol 1.13 1.13 1.44

172 4-Bromo-2,6-dimethylphenol 1.17 1.49 1.04

177 2-Hydroxybenzophenone 1.23 1.06 1.14

182 2,3-Dichlorophenol 1.28 1.29 1.10

188 5-Pentylresorcinol 1.31 1.70 1.37

192 Trimethylhydroquinone 1.34 0.97 1.11

197 4-Phenylphenol 1.39 1.06 1.54

202 4-Nitrophenol 1.42 0.51 0.95

207 4-Cyclohexylphenol 1.56 1.81 1.56

212 3,5-di-tert-Butylphenol 1.64 2.44 1.70

217 Bromohydroquinone 1.68 1.11 1.47

222 3,4-Dichlorophenol 1.75 1.08 1.54

227 Tetrafluorohydroquinone 1.84 1.81 1.55

232 2,4,6-Tribromophenol 2.03 1.88 1.81

Table 2 continued

No. Compound pIG50 (exp) MLR ANN

237 4-tert-Octylphenol 2.10 2.10 2.18

242 4-(4-Bromophenyl)phenol 2.31 1.74 2.20

247 3,4,5,6-Tetrabromo-o-cresol 2.57 2.59 2.57

Prediction

4 4-Hydroxybenzoic acid

(4-carboxylphenol)

-1.02 0.08 -0.70

9 4-Acetamidophenol

(4-hydroxyacetanilide)

-0.82 -0.07 -0.63

14 2,6-Dimethoxyphenol -0.60 0.02 -0.60

19 4-(4-Hydroxyphenyl)-2-butanone -0.50 0.47 -0.35

24 3-Methoxyphenol -0.33 -0.07 -0.33

29 Ethyl 4-hydroxy-3-methoxyphenylacetate -0.23 0.47 -0.13

34 2,4,6-Trinitrophenol -0.16 1.61 0.06

39 2-Hydroxyethyl salicylate -0.08 0.20 -0.17

44 Vanillin (3-methoxy-4-hydroxybenzaldehyde) -0.03 0.20 -0.01

49 2-Cyanophenol 0.03 0.43 0.39

54 2,5-Dimethylphenol 0.08 0.22 -0.09

59 2,3-Dimethylphenol 0.12 0.32 0.12

64 Syringaldehyde 0.17 0.82 0.19

69 4-Ethylphenol 0.21 -0.01 0.18

74 3-Hydroxy-4-nitrobenzaldehyde 0.27 1.03 0.41

79 2-Bromophenol 0.33 0.95 0.65

84 2-Amino-4-tert-butylphenol 0.37 1.21 0.26

89 2-Chloro-5-methylphenol 0.39 0.66 0.69

94 2,3-Dinitrophenol 0.46 1.23 0.52

99 2-Amino-4-nitrophenol 0.48 0.81 0.73

104 4-Chlorophenol 0.55 0.42 0.55

109 2-Bromo-4-methylphenol 0.60 1.11 0.65

114 5-Bromovanillin 0.62 1.16 0.29

119 4-Nitrosophenol 0.65 0.36 0.28

124 4-Butoxyphenol 0.70 0.66 0.69

129 4-Methyl-3-nitrophenol 0.74 0.89 1.11

134 2-Methyl-3-nitrophenol 0.78 0.75 0.43

139 4-Iodophenol 0.85 0.70 0.87

144 2,20-Biphenol 0.88 1.14 0.82

149 2-Aminophenol (2-hydroxyaniline) 0.94 -0.13 0.99

154 Tetrabromocatechol 0.98 2.45 1.05

159 2,4,6-Tribromoresorcinol 1.06 2.00 1.72

164 2,4-Dinitrophenol 1.08 1.24 0.98

169 5-Fluoro-2-nitrophenol 1.13 1.00 0.72

174 4-Nitrocatechol 1.17 0.98 0.89

179 2,6-Dinitro-p-cresol 1.23 1.47 1.09

184 Tetramethylhydroquinone 1.28 1.35 1.52

189 4-Amino-2-cresol 1.31 0.18 1.31

194 2,6-Dibromo-4-nitrophenol 1.36 1.99 1.46

199 2,4,6-Trichlorophenol 1.41 1.57 2.00

204 Isoamyl 4-hydroxybenzoate 1.48 1.22 1.54

209 2-Chloro-4-nitrophenol 1.59 1.30 1.54

214 Pentafluorophenol 1.64 2.15 1.71

219 2,6-Diiodo-4-nitrophenol 1.71 2.09 1.52

224 4-Bromo-2,6-dichlorophenol 1.78 1.66 1.51
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training sessions were conducted with different numbers of

hidden nodes (from 1 to 18). The root mean square error of

training (RMSET) and validation (RMSEV) sets were

obtained at various iterations for different numbers

of neurons in the hidden layer and the minimum value of

RMSEV was recorded as the optimum value. A plot of

RMSET and RMSEV versus the number of nodes in the

hidden layer is shown in Fig. 3. It is clear that fifteen nodes

in the hidden layer is the optimum value.

This network consists of six inputs, the same descriptors

as in the GA-MLR model, and one output for pIG50. Then

an ANN with architecture 6-15-1 was generated. It is

noteworthy that training of the network was stopped when

the RMSEV started to increase, i.e., when overtraining

begins. The overtraining causes the ANN to lose its pre-

diction power [11]. Therefore, during training of the

network, it is desirable that iterations are stopped when

overtraining begins. To control the overtraining of the

network during the training procedure, the values of

RMSET and RMSEV were calculated and recorded to

monitor the extent of learning in the various iterations.

Results showed that overtraining did not occur in the

optimum architecture (Fig. 4).

Table 2 continued

No. Compound pIG50 (exp) MLR ANN

229 Methylhydroquinone 1.86 0.51 1.75

234 Pentachlorophenol 2.05 2.46 1.99

239 Tetrachlorohydroquinone 2.11 2.24 1.93

244 2,3,5-Trichlorophenol 2.37 1.53 2.20

249 Pentabromophenol 2.66 2.69 2.66

Table 3 Comparison of statistical data obtained by the GA-MLR and GA-ANN models for the toxicity (pIG50) of phenols

Model RMSEtot RMSEtrain RMSEvalid RMSEpred rtot
2 rtrain

2 rvalid
2 rpred

2

GA-MLR 0.475 0.415 0.456 0.634 0.681 0.748 0.721 0.517

GA-ANN 0.220 0.224 0.202 0.224 0.929 0.927 0.944 0.926

Subscripts: ‘‘train’’ refers to the training set, ‘‘valid’’ refers to the validation set, ‘‘pred’’ refers to the prediction set, and ‘‘tot’’ refers to the total

data set

RMSE is the root mean square error and r2 is the square of the correlation coefficient
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Fig. 3 Plot of RMSE for training (open circles) and validation (filled
circles) sets versus the number of nodes in the hidden layer
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Fig. 4 Plot of RMSE for training (open circles) and validation (filled
circles) sets versus the number of iterations
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Fig. 2 Plot of the calculated values of pIG50 from the GA-MLR

model versus the experimental values for the training (open circle),

validation (filled circle), and prediction (filled triangle) sets
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The generated ANN was then trained using the training

and validation sets for optimization of the weights and

biases. For evaluation of the predictive power of the gen-

erated ANN, an optimized network was used for prediction

of the pIG50 values in the prediction set, which were not

used in the modeling procedure (Table 2). The calculated

values of pIG50 for the compounds in the training, vali-

dation, and prediction sets using the ANN model have been

plotted versus their experimental values in Fig. 5. A plot of

the residuals for the calculated values of pIG50 in the

training, validation, and prediction sets versus their

experimental values is presented in Fig. 6. As can be seen,

the model did not show proportional and systematic error,

because the distribution of the residuals on both sides of

zero are random.

As expected, the calculated values of pIG50 are in good

agreement with the experimental values. The correlation

equation for all of the calculated values of pIG50 from the

ANN model and the experimental values is given by

Eq. 4.

pIG50 calð Þ ¼ 0:927 pIG50 expð Þ þ 0:054

r2 ¼ 0:929; RMSE ¼ 0:220; F ¼ 3257:523
� � ð4Þ

Similarly, the correlation of pIG50 (cal) versus pIG50

(exp) values in the prediction set is given by Eq. 5.

pIG50 calð Þ ¼ 0:927 pIG50 expð Þ þ 0:079

ðr2 ¼ 0:926; RMSE ¼ 0:224; F ¼ 599:075Þ
ð5Þ

Table 3 compares the results obtained using the

GA-MLR and GA-ANN models. The r2 and RMSE of the

models for the total, training, validation, and prediction sets

show the potential of the ANN model for prediction of pIG50

values of phenolic compounds using a global QSAR model.

As a result, it was found that a properly selected and trained

neural network could fairly represent the dependence of the

toxicity of phenols on the descriptors. The optimized neural

network could then simulate the complicated nonlinear

relationship between pIG50 value and the descriptors. The

RMSE of 0.634 for the prediction set by the GA-MLR

model should be compared with the value of 0.224 by the

GA-ANN model. As can be seen, the ability of the proposed

model to predict the pIG50 is better than the QSAR models

proposed recently [26]. It can be seen from Table 3 that

although parameters appearing in the GA-MLR model

are used as inputs for the generated GA-ANN model,

the statistics indicate substantial improvement. These

improvements are because of the non-linear correlation of

the toxicity of phenols to Tetrahymena pyriformis with the

selected descriptors.

Data and methodology

The data set of toxicity values (pIG50, or Log (1/IGC50))

for the 250 phenolic compounds used for the QSAR models

was selected from literature [1]. The data set was randomly

split into training, validation, and prediction sets (150,

50, and 50 compounds, Table 2). The z-matrices (molec-

ular models) were constructed with HyperChem 7.0 and

molecular structures were optimized using the AM1 algo-

rithm [29]. In order to calculate the theoretical descriptors,

Dragon package version 2.1 was used [30]. For this pur-

pose the output of the HyperChem software for each

compound was fed into the Dragon program and the

descriptors were calculated. As a result, a total of 1,481

theoretical descriptors were calculated for each compound

in the data sets (250 compounds).
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Fig. 6 Plot of the residuals for calculated values of pIG50 from the

GA-ANN model versus their experimental values for the training

(open circles), validation (filled circles), and prediction (filled
triangles) sets

-2

-1

0

1

2

3

4

-2 -1 0 1 2 3 4
pIG50 (exp)

pI
G

(c
al

)
50

Fig. 5 Plot of the calculated values of pIG50 from the GA-ANN

model versus their experimental values for the training (open circles),

validation (filled circles), and prediction (filled triangles) sets
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The theoretical descriptors were reduced by the fol-

lowing procedure:

1 descriptors that were constant were eliminated (394

descriptors); and

2 to reduce the redundancy existing in the descriptors, the

correlation of the descriptors with each other and with

pIG50 of the molecules were examined, and collinear

descriptors (R [ 0.9) were detected. Among the col-

linear descriptors, that with the highest correlation with

toxicity values was retained, and the others were

removed from the data matrix (703 descriptors).

The genetic algorithm (GA)

To select the most relevant descriptors, evolution of the

population was simulated [31–35]. Each individual of the

population defined by a chromosome of binary values

represented a subset of descriptors. The number of genes

on each chromosome was equal to the number of

descriptors. The population of the first generation was

selected randomly. A gene took a value of 1 if its corre-

sponding descriptor was included in the subset; otherwise,

it took a value of zero. The number of genes with a value of

1 was kept relatively low to furnish a small subset of

descriptors [35], that is, the probability of generating 0 for

a gene was set greater (at least 60%) than that of generating

1. The operators used here were crossover and mutation.

The probability of the application of these operators was

varied linearly with generation renewal (0–0.1% for

mutation and 60–90% for crossover). The population size

was varied between 50 and 250 for different GA runs. For a

typical run, the evolution of the generation was stopped

when 90% of the generations took the same fitness [21].

The GA program was written in Matlab 6.5 [36].

The artificial neural network (ANN)

A feed-forward artificial neural network with a back-

propagation (BP) of error algorithm was used to process

the non-linear relationship between the selected descriptors

and the toxicity (pIG50). The number of input nodes in the

ANN was equal to the number of descriptors appearing in

the MLR model. The ANN model is confined to a single

hidden layer, because a network with more than one hidden

layer would be harder to train. A three-layer network with a

sigmoidal transfer function was designed. The initial

weights were randomly selected between 0 and 1. Opti-

mization of the weights and biases was carried out

according to Levenberg–Marquardt algorithms for BP of

error, which, although requiring far more extensive com-

puter memory, are significantly faster than other algorithms

based on gradient descent [37]. The data set was randomly

divided into three groups: a training set, a validation set,

and a prediction set consisting of 150, 50, and 50 mole-

cules. The training and validation sets were used for

generation of the model and the prediction set was used for

evaluation of the generated model. The performances of

the training, validation, and prediction of models were

evaluated as the root mean square error (RMSE), which is

defined by Eq. 6.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

i¼1

ðPexp
i � Pcal

i Þ
2

N

vuut ð6Þ

where Pi
exp and Pi

cal are experimental values of pIG50 and

calculated with the models and N denotes the number of

data points. The residual is defined by Eq. 7.

Residual ¼ Pexp
i � Pcal

i : ð7Þ

The processing of the data was carried out using Matlab

6.5 [38]. The neural networks were implemented using

Neural Network Toolbox Ver. 4.0 for Matlab [39].

Conclusion

In this study, linear (GA-MLR) and nonlinear (GA-ANN)

global QSAR models were used to construct quantitative

relationships between the toxicity of phenols to Tetrahymena

pyriformis and their calculated descriptors. Comparison of

the results obtained by use of the GA-ANN and the GA-MLR

confirmed the superiority of the GA-ANN model as a more

powerful method to predict pIG50. A suitable model with

high statistical quality and low prediction errors was

eventually derived. Because the improvement of the results

obtained by use of the non-linear model (GA-ANN) is

substantial, it can be concluded there is a non-linear corre-

lation between the descriptors and the pIG50 values of the

phenols.

Open Access This article is distributed under the terms of the

Creative Commons Attribution Noncommercial License which per-

mits any noncommercial use, distribution, and reproduction in any

medium, provided the original author(s) and source are credited.
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