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metabolic function of mutated gephyrin in a
patient with epileptic encephalopathy
Borislav Dejanovic1,*,‡,§, Tania Djémié2,3,‡, Nora Grünewald1, Arvid Suls2,3,4, Vanessa Kress1,

Florian Hetsch5, Dana Craiu6,7, Matthew Zemel8, Padhraig Gormley9,10,11,12, Dennis Lal13,14,

EuroEPINOMICS Dravet working group†, Candace T Myers8, Heather C Mefford8,

Aarno Palotie9,12,15,16,17,18,19, Ingo Helbig20,21, Jochen C Meier5, Peter De Jonghe2,3,22,

Sarah Weckhuysen2,3,23,24,**,§ & Guenter Schwarz1,10,11,***,§

Abstract

Synaptic inhibition is essential for shaping the dynamics of
neuronal networks, and aberrant inhibition plays an important
role in neurological disorders. Gephyrin is a central player at inhi-
bitory postsynapses, directly binds and organizes GABAA and
glycine receptors (GABAARs and GlyRs), and is thereby indispens-
able for normal inhibitory neurotransmission. Additionally,
gephyrin catalyzes the synthesis of the molybdenum cofactor
(MoCo) in peripheral tissue. We identified a de novo missense
mutation (G375D) in the gephyrin gene (GPHN) in a patient with
epileptic encephalopathy resembling Dravet syndrome. Although

stably expressed and correctly folded, gephyrin-G375D was non-
synaptically localized in neurons and acted dominant-negatively
on the clustering of wild-type gephyrin leading to a marked
decrease in GABAAR surface expression and GABAergic signaling.
We identified a decreased binding affinity between gephyrin-
G375D and the receptors, suggesting that Gly375 is essential for
gephyrin–receptor complex formation. Surprisingly, gephyrin-
G375D was also unable to synthesize MoCo and activate MoCo-
dependent enzymes. Thus, we describe a missense mutation that
affects both functions of gephyrin and suggest that the identified
defect at GABAergic synapses is the mechanism underlying the
patient’s severe phenotype.
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Introduction

With a burden of 68 million people affected worldwide, epilepsy is

one of the most common neurological disorders (Ngugi et al, 2010).

The disease is characterized by recurrent spontaneous seizures which

are provoked by a disturbed balance between excitatory and inhibi-

tory cerebral activity leading to hyperexcitability (Schwartzkroin,

2012). Epileptic encephalopathies (EEs) are very severe forms of

epilepsy, which are associated with cognitive impairment and usually

have an early onset (Cross & Guerrini, 2013). One of the best-defined

phenotypes within the EEs is Dravet syndrome. Patients present with

febrile seizures in the first year of life, and as the disease progresses,

other seizure types such as myoclonic and tonic–clonic seizures

become more prominent. In most patients, the epilepsy is refractory

and developmental delay occurs soon after seizure onset (Dravet,

2011). Besides structural and metabolic defects, EEs can be caused by

genetic alterations. Most of these EEs present as monogenic disorders

due to de novo mutations (EuroEPINOMICS-RES Consortium et al,

2014; Allen et al, 2013; Veeramah et al, 2013). Patients with EEs are

severely disabled and therefore mostly present as sporadic cases, not

transmitting mutations to next generations. About 80% of patients

with Dravet syndrome, for example, carry a de novo mutation in the

gene SCN1A (Parihar & Ganesh, 2013). In this study, we performed

whole exome sequencing (WES) on a patient with a Dravet-like

syndrome (not carrying an SCN1A mutation) and his parents and

identified a heterozygous de novo missense mutation in the gephyrin

gene (GPHN).

Gephyrin is the major postsynaptic scaffolding protein at inhibi-

tory synapses (Fritschy et al, 2008). It directly interacts with subu-

nits of glycine and GABAA receptors (GlyRs and GABAARs), major

components of fast inhibitory transmission, and regulates clustering

and diffusion of these receptors (Luscher et al, 2011; Choquet &

Triller, 2013). Gephyrin forms multimeric complexes at postsynaptic

membranes (Dejanovic et al, 2014b; Tyagarajan & Fritschy, 2014),

which is essential for normal inhibitory signaling (Calamai et al,

2009). The protein is composed of three functional domains

(Fig 1A): (i) a N-terminal G-domain that facilitates gephyrin trimer-

ization; (ii) a central (C-)domain that is highly modified by post-

translational regulation and interacts with a number of neuronal

proteins; and (iii) a C-terminal E-domain that binds to GlyRs and

GABAARs using a common binding site (Tyagarajan & Fritschy,

2014). Besides its synaptic function, gephyrin has a second, meta-

bolic function: it catalyzes the last two steps in the biosynthesis of

the highly conserved molybdenum cofactor (MoCo), a reaction that

requires the G- and E-domain of gephyrin (Belaidi & Schwarz,

2013). MoCo in humans is required for the activity of four molybdo

enzymes that catalyze redox reactions (Schwarz et al, 2009). MoCo

deficiency in humans is a severe autosomal recessive metabolic

disorder characterized by untreatable neonatal seizures starting at

birth, neuronal loss and ultimate death in the first years of life,

mainly caused through accumulation of toxic sulfite due to the loss

of activity of sulfite oxidase (Schwarz et al, 2009).

A

B C

Figure 1. Localization of the identified GPHN mutation (NM_001024218; NP_001019389).

A Protein and genetic structure including the different gephyrin domains and genomic location of the gene with an indication of the different exons. The position of the
mutation identified in this study is indicated on the protein level, affecting the E-domain and on the genomic level, affecting exon 12.

B Multiple alignment of gephyrin and homologous proteins from various species from different kingdoms of life (aligned using Clustal Omega).
C Co-crystal structure of gephyrin E-domain (blue) and bound GlyR b-loop (red, PDB code 2FTS (Kim et al, 2006)). The mutated gephyrin Gly375 residue is shown in

orange.
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Given the importance of gephyrin in the organization of inhibi-

tory synapses, it is not surprising that gephyrin dysfunction can lead

to epilepsy. Previously, we have identified stress-induced irregular

splicing of GPHN resulting in the expression of truncated gephyrin

variants in patients with temporal lobe epilepsy (Forstera et al,

2010). More recently, we and others have identified large deletions

in GPHN in patients with different neurological disorders such as

idiopathic generalized epilepsy (IGE), autism, schizophrenia and

seizures (Lionel et al, 2013; Dejanovic et al, 2014a). In the present

study, we identified a de novo heterozygous missense mutation in

GPHN in a patient with Dravet-like syndrome. Our subsequent func-

tional characterization of this novel gephyrin mutation identified the

first alteration in gephyrin that disrupts two of its primary functions

in a residue-specific manner. In addition, our study provides novel

insights into the mechanism of gephyrin-mediated clustering of inhi-

bitory neuroreceptors.

Results

Whole exome sequencing and follow-up screenings

Whole exome sequencing of a patient with Dravet-like syndrome

and his unaffected parents and downstream analysis only revealed a

single de novo variant: a heterozygous missense mutation,

c.1,124G>A, p.Gly375Asp in GPHN (NM_001024218, Fig 1A). We

validated the mutation and confirmed the de novo status using

classical Sanger sequencing. The nucleotide and the corresponding

amino acid are both highly conserved (GERP: 5.77; Fig 1B). The

mutation is not present in control databases (1000 Genomes Project,

Exome Variant Server, dbSNP, in-house data), and only two other

missense variants in the same exon have been detected in > 33,600

European individuals (ExAc Browser). The p.Gly375Asp mutation is

predicted to be damaging by prediction programs (Polyphen-2: prob-

ably damaging [1], SIFT: damaging [0], MutationTaster: disease

causing [1]). On a structural level, the mutation is located in the E-

domain (Fig 1C). Recessive analyses of the data did not lead to the

identification of any recessive variants in the patient. The screening

of follow-up cohorts using the Multiplex Amplification of Specific

Targets for Resequencing (MASTR) and the molecular inversion

probes (MIP) technology did not lead to the identification of addi-

tional cases with mutations in GPHN.

Clinical description of the patient with a de novo
gephyrin-G375D mutation

The patient is a 21-year-old man, born from non-consanguineous

parents from Caucasian origin. He was born at 39 weeks after a

spontaneous delivery following an imminent abortion at 38 weeks.

Birth parameters were normal as was development during the first

year of life. Head control was present at 4 months, he sat indepen-

dently at 8 months, and he walked at 1 year and 3 months. At the

age of 11 months, he had his first simple febrile seizure. Since then,

he showed generalized tonic–clonic seizures, myoclonic seizures,

right or left hemiclonic seizures, atypical absences, and focal

dyscognitive seizures, all with or without fever. Phenobarbital was

ineffective, but seizures were eventually controlled by carba-

mazepine. Every attempt to stop or reduce the medication led to

seizure recurrence. EEG during the disease course showed focal

sharp slow waves right or left and multifocal discharges. Soon after

epilepsy onset, developmental delay was noted. At the age of

18 years, he had severe intellectual disability (ID) with an IQ of 33.

MRI of the brain and neurological examination were normal. This

patient was diagnosed with Dravet-like syndrome.

Gephyrin-G375D mutation alters gephyrin distribution and
clustering in neurons

Malfunction of either of the two known functions of gephyrin could

contribute to seizures and epileptogenesis (Forstera et al, 2010;

Reiss et al, 2001; Dejanovic et al, 2014a). To evaluate whether the

mutation influences the postsynaptic clustering of gephyrin, we

expressed GFP-tagged wild-type (WT) gephyrin or gephyrin carrying

the p.Gly375Asp mutation (termed GFP-G375D) in primary

hippocampal neurons and evaluated its cellular distribution after

four days of expression (Fig 2A). GFP-gephyrin formed postsynaptic

clusters along the dendrites and cell body. Strikingly, GFP-G375D

was diffusively distributed in neurons and filled all cellular compart-

ments including spine heads, the morphological structures of excita-

tory synapses (Fig 2A). Only a minor fraction of GFP-G375D formed

clusters (Fig 2B), which, however, were mainly non-synaptically

localized and did not co-localize with the presynaptic marker

protein VGAT (Fig 2C and D). Together, these results suggest that

the mutation leads to loss-of-clustering function of the mutant

gephyrin.

Given that gephyrin oligomerizes at postsynaptic sites, we

wondered whether gephyrin-G375D influences the clustering of WT-

gephyrin. We used a well-established monoclonal antibody against

gephyrin (3B11) (Smolinsky et al, 2008), which did not recognize

GFP-G375D in immunocytochemistry and Western blot assays

(Fig EV1A and B), and was therefore used to selectively detect

endogenous gephyrin in hippocampal neurons (Fig 3A). Compared

to non-transfected neighboring neurons or GFP-expressing control

neurons, the number of endogenous gephyrin clusters in GFP-

G375D-expressing neurons was significantly decreased (Fig 3B).

Additionally, remaining endogenous gephyrin clusters were signifi-

cantly decreased in size (Fig 3C), suggesting that GFP-G375D acts

dominant-negatively on the WT protein in the patient, thereby prob-

ably impairing scaffold formation at inhibitory synapses.

Gephyrin-G375D mutation impairs GABAAR
clustering and signaling

Postsynaptic gephyrin clustering is essential for normal anchoring

and dynamics of GABAARs. We used cell-surface immunostaining of

living hippocampal neurons co-expressing myc-tagged WT-gephyrin

or G375D and pHluorin-tagged GABAAR c2 subunit (Reinthaler

et al, 2015) (Fig 4A). The size and fluorescence intensity of cell-

surface-expressed c2-containing GABAAR clusters were significantly

decreased in myc-G375D-expressing neurons compared to neurons

expressing myc-WT-gephyrin (Fig 4A–C). The fluorescence of total

c2 subunits (as measured by pHluorin fluorescence) remained

unchanged (Fig 4A and D). The presence of myc-G375D, however,

did not influence the density of surface c2 clusters (Fig 4E).

To assess the functional consequence of the G375D substitution

on GABAergic synapses, we recorded miniature inhibitory
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postsynaptic currents (mIPSCs) in hippocampal neurons expressing

GFP-gephyrin or GFP-G375D (Fig 4F). Mean mIPSC amplitudes as

well as the median frequency were significantly reduced in neurons

expressing GFP-G375D as compared to neurons expressing GFP-

gephyrin (Fig 4G and H). In line with the neuronal cell-surface

staining, decreased amplitude in gephyrin-G375D-expressing

neurons can be attributed to a decreased number of postsynaptic

GABAARs. The reduction in frequency may reflect a loss of

GABAARs at a subgroup of inhibitory postsynapses.

Taken together, our cellular and electrophysiological data

suggest that the G375D substitution abolishes postsynaptic cluster-

ing of gephyrin, which exerts dominant-negative effects on GABA-

ergic postsynaptic protein scaffolds and GABAAR signaling.

Gephyrin-G375D is properly folded and stably expressed in
eukaryotic cells

We further wanted to understand the underlying mechanism of

impaired gephyrin-G375D postsynaptic clustering. We analyzed

whether gephyrin-G375D was able to interact with collybistin, a

RhoGEF protein essential for membrane trafficking and postsynaptic

clustering of gephyrin (Papadopoulos et al, 2007). Upon co-

expression of GFP-gephyrin or GFP-G375D with mCherry-tagged

collybistin II (CBII) in HEK293 cells, similar amounts of CBII were

co-immunoprecipitated using GFP antibodies (Fig EV2A). Further-

more, CBII co-localized with GFP-gephyrin and GFP-G375D in COS7

cells and induced the formation of submembranous gephyrin micro-

clusters (Fig EV2B and C). Although we noted that compared to

GFP-gephyrin, less GFP-G375D-expressing cells formed CBII-

induced submembranous microclusters (Fig EV2C), we conclude

that this effect is not responsible for the severe cluster deficiency

observed in neurons and gephyrin–CBII interaction seemed to be

intact in the mutant.

We next expressed GFP-G375D in HEK293 cells where expression

levels were comparable to GFP-gephyrin and no degradation was

detected, suggesting that gephyrin-G375D is expressed as a stable

and properly folded protein in eukaryotic cells (Fig 5A). In line with

these results, the folding and secondary structure of 6His-tagged

gephyrin-G375D, expressed and purified from E. coli cells, was very

similar to that of 6His-tagged gephyrin as measured by circular

A B

C D

Figure 2. Expression of WT-gephyrin and gephyrin-G375D in primary neurons.

A Representative images of GFP-gephyrin and GFP-G375D, expressed in hippocampal neurons at 9 + 4 days in vitro. Inset shows higher magnification. Scale bar,
20 lm.

B Relative distribution of cluster density of gephyrin variants on dendrites from transfected neurons. Number of gephyrin clusters in each dendrite is normalized to
20 lm segments.

C Representative segments of dendrites expressing GFP-gephyrin or GFP-G375D and immunostained with the presynaptic marker VGAT. Arrowheads show co-
localization of gephyrin and VGAT clusters. Scale bar, 10 lm.

D Quantification of co-localization between gephyrin and VGAT clusters (gephyrin-VGAT 77.4 � 2.9%, G375D-VGAT 30 � 4.4%). 31 GFP-gephyrin and 30 GFP-G375D
neurons from three independent cultures were used for quantifications. Results are expressed as mean � SEM and data were analyzed by t-test.
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dichroism (CD) spectroscopy (Fig 5B). We next wondered whether

oligomerization of gephyrin is affected by the mutation and

performed size-exclusion chromatography with purified full-length

gephyrin and isolated gephyrin E-domain. Both 6His-gephyrin and

6His-G375D eluted at the size corresponding to a trimer (elution

approximated 250 kDa, monomer is 83 kDa) and the E-domain as

dimers (elution approximated 105 kDa, monomer is 48 kDa,

Fig 5C), which is in agreement with the literature (Saiyed et al,

2007). Also, when we co-expressed myc-tagged WT-gephyrin with

GFP-gephyrin or GFP-G375D in HEK293 cells, similar amounts of

GFP-tagged gephyrins were co-immunoprecipitated with myc-

specific antibodies (Fig 5D), suggesting that self-oligomerization of

gephyrin was intact (Fig 5D).

Gephyrin-G375D binds GABAAR and GlyR with reduced affinity

As the biophysical and biochemical properties of gephyrin-G375D

were not notably impaired by the mutation, we speculated that the

mutation might influence the interaction between gephyrin and

the inhibitory neuroreceptors. Although Gly375 is not localized in

the known binding site for GlyRs and GABAARs (Fig 1C), gephyrin–

receptor interaction might be more complex than initially antici-

pated (Maric et al, 2014b). We therefore wondered whether the

binding toward GABAARs is decreased. We synthesized a biotiny-

lated peptide containing residues 373–424 of the cytoplasmic loop of

the GABAAR a3-subunit (Fig 6A), which has been shown to have

the highest binding affinity among the gephyrin-interacting GABAAR

subunits (Maric et al, 2011). The peptide was immobilized to

NeutrAvidin beads and used to pull-down purified 6His-tagged

gephyrin or 6His-tagged G375D. Compared to 6His-tagged gephyrin,

a significantly smaller fraction of 6His-tagged G375D was co-sedi-

mented by the a3-loop (Fig 6B). To confirm these qualitative

results, we performed surface plasmon resonance (SPR)-based inter-

action studies (Kowalczyk et al, 2013) and coupled the biotinylated

a3-loop to a streptavidin SPR sensor chip. Purified 6His-tagged

gephyrin and 6His-tagged G375D were passed over the chip at

increasing concentrations, and response units derived from interact-

ing proteins were determined (Fig 6C). The dissociation constants

(KD) obtained from three independent experiments for WT-gephyrin

and gephyrin-G375D were 3.0 � 0.9 and 7.8 � 1.4 lM, respec-

tively, demonstrating a significantly reduced affinity for the

gephyrin-G375D variant (n = 3, P = 0.032, t-test, Fig 6D). The dif-

ference in the maximal response units (Fig 6D; WT-gephyrin

3,426 � 556, gephyrin-G375D 965 � 403, n = 3, P = 0.021, t-test)

further showed that the amount of bound 6His-tagged G375D was

less than 30% of that of 6His-gephyrin, which mirrors the results

from our pull-down experiments.

Knowing that all GABAAR and GlyR subunits share a common

binding site on gephyrin (Maric et al, 2011; Kowalczyk et al, 2013;

Fig 1C), we next asked whether the mutation also impairs the inter-

action with GlyRs. We used isothermal titration calorimetry (ITC) to

measure the binding affinity between gephyrin and the cytoplasmic

loop of the GlyR b-subunit (GlyR-bL), which binds gephyrin with

high affinity (Schrader et al, 2004; Maric et al, 2011). As reported

previously, we identified two binding sites between GlyR-bL and

6His-gephyrin: one high-affinity binding site with a KD of

0.02 � 0.004 lM and one low-affinity binding site with a KD of

2.93 � 0.49 lM (Fig 6E) (Specht et al, 2011; Herweg & Schwarz,

2012). Interestingly, for 6His-tagged G375D, we only detected one

binding event with a KD of 0.39 � 0.10 lM, suggesting that the

mutation leads to the loss of the low-affinity binding site and affects

the binding affinity of the high-affinity binding site. Moreover,

the decreased stoichiometry of 6His-G375D/GlyR-bL interaction

suggests a much lower occupancy for gephyrin-G375D compared to

WT-gephyrin (Fig 6E). Together, these results suggest that Gly375 is

essential for gephyrin–receptor interaction and the replacement of

Gly375 to aspartate severely impairs the interaction between

gephyrin and GABAARs/GlyRs.

Gephyrin-G375D lacks MoCo synthesis activity

As gephyrin exhibits a second, equally crucial, metabolic function

catalyzing the last two steps of MoCo biosynthesis (Fig 7A), we

wondered if this catalytic function is also influenced by the G375D

mutation. In the absence of any biological samples from the patient,

we used an in vitro assay that we recently developed to measure the

A B C

Figure 3. Gephyrin-G375D acts dominant-negatively on postsynaptic clustering of WT gephyrin in neurons.

A Representative dendritic segment of a neuron expressing GFP-G375D and 3B11-immunostained endogenous gephyrin (red). Scale bar, 5 lm.
B, C Quantification of (B) density and (C) size of endogenous gephyrin clusters in neurons expressing GFP, GFP-G375D, or non-transfected neighboring neurons. 20 GFP-

G375 and non-transfected neurons and 15 GFP-expressing neurons from three independent cultures were used for quantifications. Results are expressed as
mean � SEM, and data were analyzed by t-test.
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amount of MoCo produced by purified gephyrins (Belaidi & Schwarz,

2013). While 6His-tagged gephyrin was able to synthesize MoCo,

6His-G375D was enzymatically inactive and unable to catalyze MoCo

biosynthesis (Fig 7B). The quantity of MoCo produced by 6His-

G375D was similar to that of 6His-tagged gephyrin-D580A, a

gephyrin mutation which was identified homozygously in a patient

with MoCo deficiency (Reiss et al, 2011). Interestingly, GFP-tagged

gephyrin-D580A expressed in hippocampal neurons formed post-

synaptic clusters and was indistinguishable from WT-gephyrin,

suggesting that both gephyrin functions act mutually independent

(Fig EV3). When 6His-gephyrin and 6His-G375D were pre-incubated

in a 1:1 ratio, 53.4 � 4.95% of gephyrin-catalyzed MoCo was synthe-

sized (Fig 7C), suggesting that, at least in vitro, gephyrin-G375D does

not act dominant-negatively on gephyrin’s MoCo function. Taken

together, the GPHN mutation G375D identified in a patient with

Dravet-like syndrome abolished the synaptic as well as the metabolic

function of gephyrin.

Discussion

We present the first patient with an infantile onset EE and a heterozy-

gous de novo mutation in the GPHN gene. In this unique case, the

missense mutation c.1,124G>A, p.G375D (NM_001024218), abol-

ishes both functions of gephyrin without affecting the structure and

folding of the protein: (i) gephyrin-G375D postsynaptic clustering

A B C

D E

GF H

Figure 4. Gephyrin-G375D decreases cell-surface expression of GABAARs and impairs postsynaptic currents.

A Representative neurons expressing myc-tagged gephyrin or G375D and pHluorin-tagged GABAAR c2. Surface-expressed c2 subunits were immunolabeled with GFP
antibodies in red, and the pHluorin fluorescence (total c2 levels) is shown in green.

B, C Size (B) and fluorescence (fl.) intensity (C) of surface-expressed c2 clusters in myc-tagged gephyrin and myc-G375D-expressing dendrites (n = 20 myc-gephyrin and
21 myc-G375D neurons in B and 18 myc-gephyrin- and myc-G375D neurons in C).

D Mean c2-pHluorin fluorescence in myc-gephyrin- and myc-G375D-expressing dendrites (n = 20 myc-tagged gephyrin- and 18 myc-G375D-expressing neurons).
E Number of surface c2 clusters on dendrites normalized to 20 lm segments (n = 18 myc-tagged gephyrin- and myc-G375D-expressing neurons).
F Representative traces of miniature recordings on cultured hippocampal neurons transfected with either GFP-gephyrin or GFP-G375D.
G mIPSC amplitudes from neurons expressing GFP-gephyrin or GFP-G375D (GFP-gephyrin 53.11 � 2.8; GFP-G375D 43.25 � 2.0 pA). Numbers show analyzed cell

numbers. Data (mean +/� SD) were analyzed by one-way ANOVA and post hoc Tukey test.
H Frequency of the mIPSCs from neurons expressing GFP-gephyrin or GFP-G375D. The horizontal line within the boxes indicates the median frequency for the

represented condition (bottom/top boundary indicates the 25th/75th percentile). Top and bottom error bars indicate the 90th and 10th percentiles, respectively.
Analysis by Mann–Whitney test.

Data information: In (B–E), at least three independent cultures were used for each experiment and results are expressed as mean � SEM; data were analyzed by t-test.
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and thus GABAergic synapse function is severely impaired and (ii)

gephyrin-G375D is unable to synthesize the molybdenum cofactor,

which is vital for the function of molybdo enzymes. Our findings

strengthen previous associations of GPHN with epilepsy and other

neurodevelopmental disorders (Forstera et al, 2010; Lionel et al,

2013; Dejanovic et al, 2014a) and expand the spectrum to an infan-

tile onset EE. Based on our findings, a severe impairment of inhibi-

tory synapses can be expected, and we suggest that the gephyrin

mutation leads to hyperexcitability of neuronal networks and

consequently seizures and abnormal neurodevelopment. Moreover,

extensive functional analyses of gephyrin-G375D provide further

insights into the molecular mechanisms of gephyrin–receptor inter-

action and its function at inhibitory synapses.

While oligomerization of gephyrin was found to be intact, we

showed a reduced binding affinity of gephyrin-G375D to GABAARs

and GlyRs. Direct interaction of gephyrin and GABAARs has just

recently been biochemically shown and is still not fully understood

(Maric et al, 2011, 2014b; Kowalczyk et al, 2013). We showed

biochemically and in neurons that efficient gephyrin-GABAAR

complex formation requires Gly375 of gephyrin. Thus, besides the

A B

C D

Figure 5. Gephyrin-G375D is stably expressed and oligomerizes with WT-gephyrin.

A Western blot of HEK293 cells expressing GFP-tagged gephyrin or G375D using GFP-specific and polyclonal gephyrin antibodies. Note that both gephyrin variants are
stably expressed and show no degradation in the cells. Asterisk in the poly-gephyrin blot shows endogenous gephyrin.

B SDS–PAGE of E. coli-expressed and purified 6His-tagged gephyrins and CD spectra. Mean residue ellipticity of gephyrin and G375D shows profiles with minima at
208 nm and 222 nm.

C Size-exclusion chromatography of purified 6His-tagged gephyrin and isolated E-domain variants. Full-length gephyrins and isolated E-domains were loaded onto a
Superose 6 gel filtration column, and elution of the protein was monitored by measuring absorbance at 280 nm (mAU, milliabsorbance units).

D Co-immunoprecipitation of HEK293 cell lysates expressing myc-tagged gephyrin together with GFP-tagged gephyrin or G375D using myc-specific antibodies. Control
IgG were used to show specificity of the assay.
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A B

C

E

D

Figure 6. Gephyrin-G375D has a significantly decreased binding affinity toward GlyRs and GABAARs.

A Schematic representation of GABAAR a3-subunit with residues of the cytoplasmic loop that were synthesized and used as a biotinylated peptide for downstream
applications. Gephyrin core-binding motif is shown in red.

B Representative pull-down experiment and quantification of 6His-tagged gephyrin and G375D using immobilized a3-peptide. 6His-tagged gephyrin variants were
expressed in E. coli cells, purified to homogeneity, and incubated with a3-peptides immobilized to NeutrAvidin beads. n = 3, normalized to 6His-tagged gephyrin.
38.9 � 1.5% G375D were pulled down. Analyzed by t-test.

C Representative SPR sensograms of 6His-gephyrin and 6His-G375D binding to immobilized GABAAR a3-peptide. Response units are plotted against time. Injected
gephyrin concentrations were 0.5, 2, 10, 25, and 40 lM.

D SPR binding isotherms of a representative experiment as in (C). Calculated KD values of 3.2 and 10 lM for gephyrin and G375D, respectively, are indicated by vertical
lines. The experiment was repeated three times with two independently purified protein batches and two sensor chips.

E Representative ITC binding isotherms of the cytoplasmic loop of the GlyR b-subunit (GlyR-bL, residue 378–426) and 6His-tagged gephyrin or G375D. The GlyR-bL-
gephyrin binding data (black) were fitted in a two-side model, whereas G375D binding could only be fitted to a single binding site. Dissociation constants KD and
stoichiometry (N = number of binding sites) are given for each binding component. n = 5 from two independently purified protein batches. Results are expressed as
mean � SEM.
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described common receptor-binding site (Fig 1C), additional regions

of gephyrin are necessary for enhanced binding affinity of receptors,

as already suggested by others (Maric et al, 2011, 2014b). Our thermo-

dynamic studies furthermore showed a bimodal binding of GlyR-bL
and WT-gephyrin, containing a high-affinity and a low-affinity binding

site (Schrader et al, 2004; Specht et al, 2011; Herweg & Schwarz,

2012). As the low-affinity binding site is lost in gephyrin-G375D, we

conclude that Gly375 is likely an integral part of this binding site.

In neurons, the decreased receptor-binding affinity resulted

in diminished gephyrin cluster formation with mutant gephyrin

exerting a dominant-negative effect on WT-gephyrin clustering and a

significantly decreased size of postsynaptic GABAAR clusters. Accord-

ingly, neurons expressing gephyrin-G37D had a decreased GABAergic

inhibition, reflected by smaller and less frequent mIPSCs. This

suggests an interdependent structural function of the receptors and

gephyrin, where not only postsynaptic clustering of GABAARs

requires efficient binding to gephyrin, but also conversely gephyrin

cluster formation is dependent on the efficient binding to GABAARs.

In agreement with this finding, deletion of the gephyrin-associated

GABAAR subunits a1, a2, a3, or c2 leads to loss of postsynaptic

gephyrin clusters in vivo (Schweizer et al, 2003; Kralic et al, 2006;

Panzanelli et al, 2011). Congruently, following postsynaptic long-term

potentiation of inhibition, which requires the synaptic recruitment of

gephyrin and GABAARs, receptors and gephyrin are simultaneously

accumulating at synapses (Petrini et al, 2014). Thus, we propose that

the intrinsic property of gephyrin–GABAAR interaction is essential for

their postsynaptic clustering and GABAergic synapse formation. To

this end, it is very likely that the G375D substitution ultimately

decreases the interaction of all relevant gephyrin–receptor complexes.

In addition to the synaptic dysfunction, we showed that

gephyrin-G375D is unable to synthesize MoCo. Structural studies of

MoeA, an E. coli protein homologous to the gephyrin E-domain,

identified the putative active center of the enzyme. It harbors

several highly conserved residues including the glycine correspond-

ing to gephyrin Gly375 (Xiang et al, 2001). A mutation of the

residue immediately upstream of this glycine abolished the activity

of MoeA (Nichols et al, 2007). Together with our data, this suggests

that Gly375 is part of the active site of gephyrin and essential for the

final step in MoCo synthesis (Llamas et al, 2006).

Previous studies have shown that heterozygous exon-disrupting

deletions in GPHN are a risk factor for epilepsy (Lionel et al, 2013;

Dejanovic et al, 2014a). However, they have an incomplete pene-

trance and their expression strongly depends on the genetic back-

ground (Lionel et al, 2013; Dejanovic et al, 2014a). Similarly,

heterozygous gephyrin knockout mice have no obvious acute

behavioral phenotype (Feng et al, 1998). Some exon-disrupting

deletions in IGE patients result in the expression of truncated

gephyrin variants that, similarly to gephyrin-G375D, act dominant-

negatively on postsynaptic gephyrin clustering (Dejanovic et al,

2014a). Compared to these IGE patients, our patient has a much

more severe phenotype suggesting that gephyrin-G375D has a more

deleterious effect than truncating mutations. A possible explanation

is that the properly folded and stably expressed mutant gephyrin

probably has the ability to interact with all its regular binding

partners. Thus, it has the potential to decrease the clustering and

concentration of a number of postsynaptic proteins other than

GABAARs and GlyRs, thereby acting dominant-negatively on down-

stream pathways. This would most likely impede plasticity and

regulation of gephyrin scaffolds, which are essential for normal

development of neuronal inhibitory circuits (van Versendaal et al,

2012; Dejanovic et al, 2014b; Petrini et al, 2014).

The reduced amount of cell-surface expressed GABAARs in the

presence of gephyrin-G375D exerts a functionally convergent effect

similar to that observed by mutations of genes encoding core

components of GABAergic postsynapses, for example, GABAAR

subunits and collybistin. Mutations in several GABAAR subunit-

encoding genes, including the synaptic subunits GABRA1, GABRB3,

and GABRG2 that associate with gephyrin, have been identified in

epilepsy syndromes of different degrees of severity (Macdonald

et al, 2012; Reinthaler et al, 2015). Furthermore, mutations in

ARHGEF9 encoding the protein collybistin have previously been

linked to seizures and EEs (Harvey et al, 2004; Kalscheuer et al,

2009). On the molecular level, mutations in these postsynaptic

proteins lead to reduced GABAergic signaling, which in turn leads

to a lack of neuronal inhibition promoting epileptogenesis. Although

dysfunction of gephyrin probably also affects GlyR clustering, this

seems to have no significant clinical consequences as the typical

symptom of glycinergic defects, hyperekplexia, is missing as already

observed in patients with heterozygous GPHN deletions (Lionel

et al, 2013; Dejanovic et al, 2014a).

Genetic screenings of GPHN in follow-up cohorts of patients with

different types of EEs, including Dravet syndrome, did not lead to

the identification of additional mutations. Therefore, GPHN muta-

tions seem a rare cause of EEs. Nevertheless, the identification of

the de novo GPHN mutation in a patient with a Dravet-like syndrome

is intriguing, since the GABAergic synapse is a well-known major

pathway for this phenotype: mutations in SCN1A, mainly expressed

in inhibitory GABAergic interneurons, GABRA1, and GABRG2, all

have previously been linked to Dravet syndrome (Hirose, 2014).

The discovery of a mutation in GPHN is also in agreement with the

observation that de novo mutations in EEs mainly affect genes

A B C

Figure 7. Gephyrin-G375D is catalytically inactive and unable to
synthesize MoCo.

A Biosynthesis pathway of MoCo with all stable intermediates. Gephyrin
G- and E-domain catalyze the last two steps as depicted.

B In vitro MoCo synthesis assay using 150 pmol purified 6His-tagged
gephyrins. D580A is an activity-deficient gephyrin mutation previously
identified in MoCo-deficient patients (Reiss et al, 2011). Assays without the
addition of gephyrin (-gephyrin) or molybdenum (-Mo) served as internal
controls of the assay (see also Belaidi & Schwarz, 2013).

C Experiment as in (B) but with pre-incubation of 6His-gephyrin/G375D in a 1:1
ratio to simulate the heterozygous mutation. n = at least 3 with two
independently purified protein batches.

Data information: Results in (B, C) are expressed as mean � SEM.
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involved in synaptic transmission (EuroEPINOMICS-RES Consor-

tium et al, 2014).

Lack of MoCo and hence decreased activity of molybdo enzymes

in humans, whose function is essential for most forms of life, might

additionally contribute to the severe symptoms of the patient. MoCo

deficiency indeed shows some overlap with EE, as it is accompanied

by severe seizures and rapidly progressive encephalopathy. So far,

MoCo deficiency has only been described in patients with a

complete loss of MoCo due to recessive mutations in genes encoding

proteins involved in the biosynthesis pathway, including two

patients with homozygous GPHN mutations (Reiss et al, 2001,

2011). Parents of these two patients carried a heterozygous muta-

tion and were asymptomatic. Similarly, urinary analysis in IGE

patients with a GPHN mutation revealed excretion of normal levels

of MoCo-dependent metabolites (Lionel et al, 2013; Dejanovic et al,

2014a). Thus, the presence of one normal GPHN allele seems to be

sufficient for normal activity of molybdo enzymes. However, we

cannot exclude that during critical neurodevelopmental periods,

alterations in molybdo enzyme activity might impact neuronal

circuits and further lower the threshold for seizures. As loss-of-

function MoeA mutants show an increased binding of MoCo

(Nichols et al, 2007), gephyrin-G375D might decrease the amount

of available MoCo in the organism and thereby reduce the activity

of molybdo enzymes. We could, however, not dispose of patient’s

biological samples to proof this hypothesis.

In summary, we present a patient with Dravet-like syndrome and

a de novo mutation p.G375D in GPHN that impairs both the synaptic

and metabolic function of gephyrin. Our study strengthens previous

associations of GPHN with epilepsy and expands the phenotypic

spectrum with EEs. Novel compounds, like the recently introduced

dimeric peptides that modulate gephyrin–receptor interaction (Maric

et al, 2014a), might be promising tools to regulate GABAergic

postsynaptic stability in patients with gephyrin and GABAAR

dysfunction. A decrease in MoCo synthesis could be compensated

by administration of the precursor cyclic pyranopterin monophos-

phate (cPMP), which is the first available therapy for patients with

MoCo deficiency (Veldman et al, 2010; Schwahn et al, 2015).

Materials and Methods

Human subjects

Parents or the legal guardian of each patient included in this study

signed an informed consent form for participation. This study was

approved by the ethical committee of the local institutes. All experi-

ments conformed to the principles set out in the WMA Declaration

of Helsinki and the Department of Health and Human Services

Belmont Report.

Whole exome sequencing and data analysis

Whole exome sequencing was performed on blood-extracted DNA

of a patient with Dravet-like syndrome and his healthy parents at

the Wellcome Trust Sanger Institute (Hinxton/Cambridge, UK). This

patient was part of a larger cohort of patients with Dravet(-like)

phenotypes that were selected for WES as part of the EuroEPI-

NOMICS-RES project. As in approximately 80% of patients with

Dravet syndrome an SCN1A mutation is found, SCN1A mutations

had to be excluded upfront. 3 lg of genomic DNA was sonicated to

fragments of 150–200 bp and purified. The exome was then captured

using the SureSelect Human All Exon 50 Mb kit (Agilent), and

next-generation sequencing (NGS) was performed on a HiSeq2000

(Illumina) platform as 2 × 75 bp paired-end reads. Mapping of the

reads to the reference genome (hg19, UCSC Genome Browser) was

done using Burrows-Wheeler Aligner (BWA) (Li & Durbin, 2010).

De novo variants were called using DeNovoGear (DNG) (Conrad

et al, 2011), and the generated list of variants was further filtered

according to the following criteria: (i) read depth in all individuals

≥ 8; (ii) allele balance in the patient between 0.25 and 0.75 and in

the parents ≥ 0.95; (iii) exclusion of variants in tandem repeats and

segmental duplications; (iv) posterior probability of de novo calling

of DNG ≥ 0.5; and (5) exclusion of variants seen in > 1 individual.

We also analyzed the WES data under a recessive model. Hereto,

variants were called using Genome Analysis Toolkit (GATK) Unified

Genotyper (McKenna et al, 2010) and SAMtools (Li et al, 2009). For

the downstream analysis of the variants, we used GenomeComb

(Reumers et al, 2012), an in-house developed tool for the annota-

tion and filtering of NGS data. The dataset was further filtered using

the following criteria: (i) read depth in all individuals ≥ 8; (ii) allele

balance in the patient ≥ 0.95 and in the parents between 0.25 and

0.75 for filtering under a homozygous model and between 0.25 and

0.75 in the patient and his parents for the compound heterozygous

model; (iii) exclusion of variants in tandem repeats and segmental

duplications; and (iv) a frequency of ≤ 1% in control databases

(1000 Genomes Project, Exome Variant Server, in-house data).

Genetic follow-up screenings

In order to identify additional mutations in GPHN, we performed

targeted resequencing of GPHN using two different gene panels.

(I) For the first gene panel, we designed a MASTR assay (Multi-

plicom, http://www.multiplicom.com/multiplex-amplification-speci

fic-targets-resequencing-mastr). We used mPCR (Multplicom) to

generate primers that amplify the complete coding sequence of the

gene as well as flanking intronic regions to be able to identify splice-

site mutations. The assay consists of multiplex PCRs followed by a

labeling step, both carried out on a Veriti AB machine (Life Tech-

nologies). To guarantee an optimal amplification, all amplicons are

visually inspected after they have been size-fractionated on an ABI

3730xl DNA Analyzer (PE Applied Biosystems). The different ampli-

cons are subsequently pooled in equimolar amounts, and each

sample is labeled with a unique barcode. NGS was then carried out

on the pooled amplicons using a MiSeq sequencer (Illumina) as

2 × 300 bp paired-end reads (v3 kit, Illumina). Using this assay, we

screened 164 patients with epilepsy and ID. The generated reads

were aligned to the reference genome (hg19, UCSC Genome

Browser) using BWA, and variants were called using GATK Unified

Genotyper (McKenna et al, 2010) and SAMTools (Li et al, 2009).

For the downstream analysis of the variants, we used GenomeComb

(Reumers et al, 2012).

(II) In a second set of samples, we performed targeted capturing

of all exons and 5 bp of flanking intronic sequence of the GPHN

gene using MIPs as previously described (Carvill et al, 2013).

Briefly, following hybridization and capturing, sequences are PCR-

amplified, incorporating an Illumina adaptor and a sample-specific

ª 2015 The Authors EMBO Molecular Medicine Vol 7 | No 12 | 2015

Borislav Dejanovic et al Gephyrin mutation in epileptic encephalopathy EMBO Molecular Medicine

1589

http://www.multiplicom.com/multiplex-amplification-specific-targets-resequencing-mastr
http://www.multiplicom.com/multiplex-amplification-specific-targets-resequencing-mastr


barcode to allow sample pooling. Sequencing was performed using

a HiSeq platform (Illumina). A total of 124 patients with Dravet

(-like) syndrome were screened. After mapping and variant calling,

variants were annotated using SeattleSeq. Novel nonsynonymous,

frameshift, nonsense, or splicing variants were validated in a second

experiment, and segregation analysis was performed when possible.

Validation of variants was performed using a second, targeted, inde-

pendent MIP capture followed by sequencing on a MiSeq (Illumina)

or Sanger sequencing or both.

Data deposition

The EuroEPINOMICS-RES exome sequencing data from this publica-

tion has been submitted to the European Genome phenome

Archive (https://ega.crg.eu/) and assigned the identifiers

EGAS00001000190#, EGAS00001000386#, and EGAS00001000048#.

Expression constructs

EGFP-tagged and myc-tagged gephyrin and pHluorin-tagged

GABAAR c2 have been described previously (Dejanovic et al,

2014a). 6His-tagged gephyrin and intein-tagged GlyR b-loop E. coli

expression vectors have been introduced before (Schrader et al,

2004; Reinthaler et al, 2015). Collybistin II without the auto-

inhibitory SH3-domain was cloned into the mCherry-C3 vector

(Clontech). Mutations have been generated by fusion-PCR, and

all constructs have subsequently been sequenced.

Cell culture and transfection

Primary hippocampal neurons, HEK293 and COS7 cells were

cultured as described previously (Dejanovic et al, 2014a). Neurons

were usually transfected after 9 days in vitro (DIV) using Lipofec-

tamine 2000 according to the manufacturer’s manual and cultured

for 4 additional days. HEK293 and COS7 cells were transfected with

polyethylenimine using standard protocols.

Immunostaining and quantification of cultured cells

Immunostaining and microscopy of cultured cells have been

described previously (Dejanovic & Schwarz, 2014). Briefly, images

were taken on a Nikon AZ-C2+ confocal laser scanning microscope

as z-stack with three optical sections with 0.5 lm step size.

Maximum intensity projections were created and analyzed using

NIS Elements 3.2 (NIKON) software. Usually postsynaptic clusters

of two 20 × 5 lm regions of interest per neurons were analyzed

using the analyze particles option in NIS Elements. Only clusters

between 0.09 lm² and 1.5 lm² were considered for analysis. Mean

values were compared for significance using Student’s t-test.

Following antibodies were used for immunostaining: anti-gephyrin

(1:50, clone 3B11, cell culture supernatant); anti-VGAT (1:500,

131003, Synaptic Systems). Secondary antibodies were goat-raised

AlexaFluor 488 and 568 antibodies (1:500, Invitrogen).

Western blot analysis

For immunoblotting, a standard protocol was followed and

detection was performed using chemiluminescence and an

electrochemiluminescence system with a cooled CCD camera

(Decon Science Tec). The following primary antibodies were

used and diluted in Tris-buffered saline/0.5% Tween containing

1% dry milk: anti-gephyrin (1:50, clone 3B11, cell culture super-

natant), anti-gephyrin (“Puszta serum” (Smolinsky et al, 2008))

anti-GFP (1:1,000, A-11122, Thermo Scientific), anti-myc (1:50,

clone 9E10, cell culture supernatant), and anti-mCherry (1:3,000,

PA5-34974, Thermo Scientific). Secondary antibodies (1:5,000)

were from Santa Cruz Biotechnology.

Surface immune-labeling of hippocampal neurons

Neurons transfected with myc-tagged gephyrin and pHluorin-tagged

c2 subunit were incubated with a polyclonal GFP antibody (1:200,

A-11122, Thermo Scientific, 20% goat serum in PBS) at 4°C for

40 min to prevent internalization of receptors. After extensive

washing PBS, neurons were fixed with 4% paraformaldehyde and

incubated with Alexa568 secondary antibodies (1:250, Invitrogen,

20% goat serum in PBS).

Expression and purification of recombinant proteins from E. coli

Recombinant 6His-tagged gephyrin and isolated E-domains were

expressed in E. coil and affinity-purified using nickel-nitrilotriacetic

acid resin (Ni-NTA, Thermo Scientific) as suggested by the manu-

facturer with minor modifications. Cells were lysed in PBS supple-

mented with 50 mM imidazole and protease inhibitors (Roche)

using an EmulsiFlex (Avastin) high-pressure homogenizer. After

pelleting cell debris, supernatant was incubated with Ni-NTA beads

and affinity-purified using a standard protocol and eluted in PBS

containing 250 mM imidazole. After purification, protein was

buffer-exchanged to remove imidazole.

GlyR-bL-intein was expressed in E. coli ER2566 for 14 h at

18°C and affinity-purified in 300 mM NaCl, 50 mM Tris pH 8.0

containing 1 mM EDTA using the IMPACT protein purification

system (New England Biolabs; see Schrader et al, 2004). Thiol-

induced cleavage of the GlyR-bL-intein fusion protein took place

in 150 mM NaCl, 50 mM Tris pH 7.5, 50 mM DTT, and 1 mM

EDTA for 24 h at room temperature. The GlyR-bL was separated

and enriched using semi-permeable cellulose membrane containing

devices (10 kDa and 3 kDa pore sizes) purchased from Millipore

and subsequently dialyzed against ITC buffer overnight at 4°C

(250 mM NaCl, 10 mM Tris pH 8.0, 1 mM b-mercaptoethanol).

All proteins were flash-frozen in liquid nitrogen and stored at

�80°C.

Isothermal titration calorimetry

Isothermal titration calorimetry (ITC) measurements were

performed with recombinant 6His-tagged gephyrin or G375D and

purified GlyR b-loop residues 378–426 (GlyR-bL). ITC experiments

were performed at 25°C using a VP-ITC system with cell concentra-

tions of 20–25 lM gephyrin and syringe concentrations of

200–350 lM purified GlyR-bL. The injection volume was 3–5 ll/
3–5 s for each of 50 injections with 240 s spacing and an initial

delay of 120 s. The syringe speed was 310 rpm and the reference

power adjusted to 5 lcal/s. Raw data were analyzed with Origin 7

software.
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Pull-down assay

A peptide, corresponding to residue 373–424 of the mature GABAAR

a3-subunit (KVPEALEMKKKTPAAPAKKTSTTFNIVGTTYPINLAKDTE

FSTISKGAAPSA), has been synthesized in house and purified via

HPLC (Kowalczyk et al, 2013). The peptide was N-terminally biotiny-

lated and carried a hexanoic acid spacer before the first a3-residue.
For the pull-down assay, around 2 lM peptide, dissolved in PBS, was

incubated with NeutrAvidin beads (Pierce) for 1 h and unbound

peptides were washed away with three subsequent washing steps.

Peptide-loaded or unloaded beads were incubated with 1 lM purified

gephyrin variants for 1 h at room temperature followed by four

washing steps. Bound gephyrins were released by boiling in SDS-

loading buffer, and proteins were resolved on a 6% SDS–PAGE.

Surface plasmon resonance spectroscopy

Surface plasmon resonance (SPR) using the biotinylated GABAAR a3-
loop (373–424) peptide as ligand was performed with a Biacore-X100

system (GE Healthcare). The peptide was coupled to a streptavidin

sensor chip (500 nm thickness; Xantec Bioanalytics) with a target

level of 500 response units according to the manufacturer‘s protocol.

Coupling as well as interaction analysis was performed in PBS

containing 0.005% Tween-20 and additionally 1 mM b-mercap-

toethanol in the measurement. Purified 6His-tagged gephyrin or

6His-tagged G375D were used as analyte in a concentration range of

0–40 lM and a flow rate of 10 ll/min. The relative response units

were determined by subtraction of the responses of flow cell 1 from

the results of flow cell 2. The sensor chip with coupled peptide was

regenerated after each cycle with 1 M NaCl/50 mM NaOH.

Co-immunoprecipitation

Transfected HEK293 cells were lysed in PBS containing protease

inhibitors (Roche) by sonication. Cleared lysate was incubated with

myc- or GFP antibody-charged protein A/G sepharose beads (Santa

Cruz Biotechnology) for 2 h at room temperature. Control IgG-loaded

beads were used to show specificity of the immunoprecipitation. After

three washing steps, adsorbed proteins were eluted from the beads

by boiling in SDS-loading buffer and analyzed byWestern blotting.

Circular dichroism spectroscopy

The far-UV circular dichroism (CD) spectra from 195–260 nm were

recorded at 25°C on a J-715 CD spectropolarimeter (JASCO). Buffer

of purified gephyrin was exchanged to 10 mM potassium phos-

phate, and samples were filtered before measurement. About

0.2 mg/ml of gephyrin were used in a quartz cell of 0.1 cm path

length. Spectral acquisition was taken at a scan speed of

10 nm/min, 4 s integration time, and a bandwidth of 1 nm. An

average of 10 scans was obtained for all spectra. Data were

corrected for buffer contributions and smoothed using the software

provided by the manufacturer (System Software version 1.00).

Gel filtration of gephyrin

Around 1,500 pmol purified gephyrins or isolated E-domains were

loaded on a size-exclusion column (Superose 6) connected to an

ÄKTApurifier (GE Healthcare) and run at 0.6 ml/min with GeFi

buffer (25 mM Tris, pH 7.4, 150 mM NaCl). Elution was monitored

by measuring absorbance at 280 nm. Elution times were calculated

according to the elution profile of standard proteins of 1,400, 669,

150, and 66.4 kDa.

MoCo synthesis assay

The in vitro MoCo synthesis assay has previously been described in

detail (Belaidi & Schwarz, 2013). About 150 pmol E. coli-expressed

and purified gephyrin was used per condition. Samples without

gephyrin or without molybdenum were used as control and show

MoCo produced either chemically or by trace amounts of molybde-

num in the buffers. Proteins from two independent purifications

were used for the assay.

Electrophysiology

Hippocampal cultures from E19 Wistar rats were prepared and

transfected on DIV9 using Effectene (Qiagen) as previously

described (Winkelmann et al, 2014). Rats were handled and killed

according to the permit No. Y9002/15 given by the institutional

ethics committee of the Max-Delbrück Center for Molecular Medi-

cine (Berlin, Germany). Transfected neurons were recorded between

DIV12 and DIV15 as described (Forstera et al, 2010). An EPC-7

amplifier and Patchmaster software (HEKA) were used for patch

clamp recordings and data acquisition. Patch pipettes, made from

borosilicate glass (Science Products), had resistances of 2–6 MΩ
when filled with the intracellular solution containing (in mM) CsCl

(130), NaCl (5), CaCl2 (0.5), MgCl2 (1), EGTA (5), and HEPES (30).

The standard extracellular solution (pH 7.4) contained (in mM)

NaCl (140), KCl (5), MgCl2 (1), CaCl2 (2), HEPES-NaOH (10), and

glucose (10). Cells were clamped at a potential of �50 mV. Series

resistances (Rs), monitored by �5 mV voltage pulses (50 ms)

applied every 5 s, were between 5 and 30 MΩ. Experiments with a

more than 25% change in Rs throughout the recording were

discarded. Data were acquired with a sampling rate of 10 kHz after

filtering at 2.8 kHz. Transfected cells were identified according to

EGFP fluorescence. GABAergic mIPSCs were recorded in the pres-

ence of tetrodotoxin (TTX, 1 lM; Sigma), isolated pharmacologically

by blocking NMDA receptors with DL-aminophosphonovaleric acid

(APV, 50 lm; Sigma), AMPA receptors with 6,7-dinitroquinoxaline-

2,3-dione (DNQX, 10 lM, Sigma), and glycine receptors with

strychnine (1 lM; Sigma). Quantitative analysis of mIPSC

parameters was performed with an in-house software written in

IGOR 6.37A (WaveMetrics) by M. Semtner. Traces of current profiles

from 17 different recorded neurons (1 to 5 min long) were analyzed

for each condition. The first 50 mIPSCs from an analyzed trace were

taken for statistical analysis. Average amplitudes from the

experiments were taken for statistics, summarized as mean � SEM

for each condition. The frequency of mIPSCs was determined for

each measured cell by dividing the number of events (50) by the

analyzed time interval that had passed until 50 events were recorded.

Statistical analyses

Statistical analyses of biochemical and cellular data were evaluated

with GraphPad Prism 5 employing t-tests. A P-value of < 0.05 was
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considered significant. Significance of average mIPSC amplitudes

was tested by one-way ANOVA and post hoc Tukey test (IGOR Pro

6.37). Since frequencies of mIPSCs between different experiments

were not normally distributed, values are given as median � 25th/

75th percentile, and significance was tested performing the nonpara-

metric Kruskal–Wallis test followed by post hoc Mann–Whitney test

(IGOR Pro 6.37).

Expanded View for this article is available online.
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