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ABSTRACT
The delta-lognormal distribution is a combination of binomial and lognormal distri-
butions, and so rainfall series that include zero and positive values conform to this
distribution. The coefficient of variation is a good tool for measuring the dispersion
of rainfall. Statistical estimation can be used not only to illustrate the dispersion of
rainfall but also to describe the differences between rainfall dispersions from several
areas simultaneously. Therefore, the purpose of this study is to construct simultaneous
confidence intervals for all pairwise differences between the coefficients of variation
of delta-lognormal distributions using three methods: fiducial generalized confidence
interval, Bayesian, and the method of variance estimates recovery. Their performances
were gauged by measuring their coverage probabilities together with their expected
lengths via Monte Carlo simulation. The results indicate that the Bayesian credible
interval using the Jeffreys’ rule prior outperformed the others in virtually all cases.
Rainfall series from five regions in Thailand were used to demonstrate the efficacies of
the proposed methods.

Subjects Statistics, Computational Science, Natural Resource Management, Ecohydrology
Keywords Bayesian, Coefficient of variation, Fiducial generalized confidence interval, Rainfall,
Delta-lognormal distribution

INTRODUCTION
Thailand is located in Southeast Asia and is classed as a tropical area. It is influenced by
both the southwest and northeast monsoons. The southwest monsoon crosses Thailand
between mid-May to mid-October (the rainy season) and brings moist air from the Indian
Ocean that causes clouds and heavy rain. The northeast monsoon crosses Thailand from
mid-October tomid-February (the winter season) causing cold and dry weather.Moreover,
the South receives additional heavy rainfall due to moisture coming in from the Gulf of
Thailand. The season changes from mid-February to mid-May (the summer season)
due to uncertainty in the weather and is influenced by tropical cyclones in the South
China Sea, and thus, the weather is generally hot and dry but often with heavy rain and
thunderstorms (Thai Meteorological Department, 2015). Thailand often endures flooding
due to thunderstorms, which can take lives and damage property, especially on farms due to
Thailand being an agricultural country. Thailand is divided into five regions according to its
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Table 1 The provinces of each regions in Thailand.

Regions Provinces

Northern Chiang Rai, Mae Hong Son, Chiang Mai, Phayao, Lamphun, Lampang, Phrae, Nan,
Uttaradit, Phitsanulok, Sukhothai, Tak, Phichit, Kamphaeng Phet, Phetchabun

Northeastern Nong Khai, Bueng Kan, Loei, Udon Thani,Nong Bua Lam Phu, Nakhon Phanom,
Sakon Nakhon, Mukdahan, Khon Kaen, Kalasin, Maha Sarakham, Roi Et,
Chaiyaphum, Yasothon, Amnat Charoen, Ubon Ratchathani, Sri Sa Ket,
Nakhon Ratchasima, Buri Ram, Surin

Central Nakhon Sawan, Uthai Thani, Chai Nat, Sing Buri, Lop Buri, Ang Thong, Sara buri,
Suphan Buri, Ayutthaya, Pathum Thani, Kanchanaburi, Ratchaburi, Nakhon Pathom,
Nonthaburi, Bangkok Metropolis, Samut Prakan, Samut Sakhon, Samut Songkhram

Eastern Nakhon Nayok, Prachin Buri, Sra Kaeo, Chachoeng Sao, Chon Buri, Rayong,
Chanthaburi, Trat

Southern Phetchaburi, Prachuap Khiri Khan, Chumphon, Surat Thani, Nakhon Si Thammarat,
Phatthalung, Songkhla, Pattani, Yala, Narathiwat, Ranong, Phang Nga, Krabi, Phuket
Trang, Satun

climate pattern and meteorological conditions (Table 1) (Thai Meteorological Department,
2015). Therefore, it is important to investigate rainfall dispersion in each area to gain
preliminary information for formulating policies to mitigate such incidents.

There have been numerous studies on rainfall series that have used the delta-lognormal
distribution. Fukuchi (1988) derived the distribution of correlation coefficients of rainfall
rates from two areas as bivariate lognormal (delta-lognormal). Kedem (1990) showed that
the average rain rate over an area follows a delta-lognormal distribution. Shimizu (1993)
and Kong et al. (2012) presented the maximum likelihood estimation of the parameters of
rainfall series containing zeros that followed a bivariate lognormal distribution. Moreover,
examples of rainfall series that conform to a delta-lognormal distribution can be founded
in various studies by Maneerat, Niwitpong & Niwitpong (2019a); Maneerat, Niwitpong
& Niwitpong (2019b); Maneerat, Niwitpong & Niwitpong (2020a); Maneerat, Niwitpong
& Niwitpong (2020b); Yosboonruang, Niwitpong & Niwitpong (2019b); Yosboonruang,
Niwitpong & Niwitpong (2020), and Yosboonruang & Niwitpong (2020). In addition, a
delta-lognormal distribution has been applied in other fields, such as Ingram Jr. et
al. (2010); Owen & DeRouen (1980); Fletcher (2008); Wu & Hsieh (2014), and Zhou &
Tu (2000). Constructing the confidence intervals for several parameters of a delta-
lognormal distribution used in statistical inference has been of interest to many
researchers. Confidence intervals for the delta-lognormal mean were proposed by Owen
& DeRouen (1980); Kvanli, Shen & Deng (1998); Zhou & Tu (2000); Tian (2005); Chen
& Zhou (2006); Tian & Wu (2006); Fletcher (2008); Li, Zhou & Tian (2013); Wu & Hsieh
(2014); Hasan & Krishnamoorthy (2018), and Maneerat, Niwitpong & Niwitpong (2018);
Maneerat, Niwitpong & Niwitpong (2019a); Maneerat, Niwitpong & Niwitpong (2019b).
Furthermore, the confidence intervals for variance and the coefficient of variation (CV) of
a delta-lognormal distribution were presented by Buntao & Niwitpong (2012); Buntao &
Niwitpong (2013);Yosboonruang, Niwitpong & Niwitpong (2018);Yosboonruang, Niwitpong
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& Niwitpong (2019a); Yosboonruang, Niwitpong & Niwitpong (2019b); Yosboonruang,
Niwitpong & Niwitpong (2020); Yosboonruang & Niwitpong (2020), and Maneerat,
Niwitpong & Niwitpong (2020a);Maneerat, Niwitpong & Niwitpong (2020b).

For statistical inference, the CV, the ratio of the standard deviation to themean, is a good
tool for investigating rainfall dispersion. The advantage of using the CV is that it is unitless
and thus, is useful for measuring dispersion in data series with different units or drastically
different means. Focusing on inferential statistics, the confidence intervals and functions
of the CV for several distributions have been presented. Wong &Wu (2002) suggested a
small-sample asymptotic method for constructing the confidence intervals for the CV of
normal and non-normal distributions when the sample size is very small. Mahmoudvand
& Hassani (2009) proposed two new methods for constructing the confidence intervals for
the CV of a normal distribution and compared them with Miller’s, Makay’s, Vangel’s, and
Sharma-Krishna’s methods; they found that their proposed methods are more appropriate
than the others. Buntao & Niwitpong (2012) proposed the generalized pivotal approach
(GPA) and a closed-form method for variance estimation for the difference between the
CVs of lognormal and delta-lognormal distributions; their results show that the GPA is the
most suitable. After that, they constructed the confidence intervals for the ratio of the CVs
of delta-lognormal distributions using GPA and the method of variance estimates recovery
(MOVER) (Buntao & Niwitpong, 2013); their resultswere similar to the confidence intervals
for the difference between the CVs. Wongkhao, Niwitpong & Niwitpong (2015) presented
the generalized confidence interval (GCI) andMOVER to construct the confidence intervals
for the ratio of CVs of normal distributions and then compared their methods with the
Verrill and Johnson and bootstrapping methods; they found that GCI and MOVER
performed better than the others. Sangnawakij & Niwitpong (2017a) proposed MOVER,
GCI, and the asymptotic confidence interval (ACI) for constructing the confidence interval
for the CV and difference between the CVs of two-parameter exponential distributions;
their results show that GCI was appropriate for a single CV and ACI worked well for the
difference between the CVs. In addition, confidence intervals were extended by Sangnawakij
& Niwitpong (2017b) based on the score and Wald intervals for the difference between and
ratio of CVs of two gamma distributions; their proposed methods performed well in a
comparative study. Recently, Yosboonruang, Niwitpong & Niwitpong (2018) proposed GCI
and a modified Fletcher method to construct the confidence intervals for the CV of a
delta-lognormal distribution and found that GCI was the best. Afterward, they introduced
the fiducial GCI (FGCI) and MOVER to construct the confidence intervals for the CV of
a delta-lognormal distribution (Yosboonruang, Niwitpong & Niwitpong, 2019a). Moreover,
they compared the confidence intervals based on FGCI and a Bayesian method for the
CV of a delta-lognormal distribution (Yosboonruang, Niwitpong & Niwitpong, 2019b);
their results indicate that the Bayesian method outperformed FGCI. Yosboonruang &
Niwitpong (2020) constructed confidence intervals using GCI and MOVER based on
variance stabilizing transformation, the Wilson score, and Jeffreys’ method for the ratio
of the CVs of delta-lognormal distributions; their results show that GCI was the most
suitable. Yosboonruang, Niwitpong & Niwitpong (2020) presented FGCI and a Bayesian
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method to construct the confidence interval for the difference of CVs of delta-lognormal
distributions; they concluded that the Bayesian method was the most appropriate.

Since dispersion in the precipitation series for different areas can be the same or
different, simultaneous estimation of this for multiple areas has been investigated using
various distributions and parameters. Mandel & Betensky (2008) introduced an algorithm
for simultaneous confidence interval (SCI) construction and then compared bootstrapped
and normal-based SCIs in which the limits of the bootstrap intervals were smaller than
the normal-based intervals. Donner & Zou (2011) used a two-step MOVER approach
for constructing SCIs for multiple contrasts of binomial proportions; their proposed
methodwas reasonable for small-to-moderate sample sizes.Abdel-Karim (2015) considered
three methods: FGCI-MOVER, MOVER-MOVER, and simultaneous FGCI to construct
SCIs for the ratio of means of lognormal distributions; they reported that the MOVER-
MOVER method outperformed the others. Li, Song & Shi (2015) suggested parametric
bootstrapping to construct SCIs for all pairwise differences between the means of two-
parameter exponential distributions. Thangjai, Niwitpong & Niwitpong (2019) presented
three methods: MOVER, a computational approach, and FGCI to construct SCIs for all
of the differences between the CVs of lognormal distributions; their results show that
MOVER was the best and the computational approach performed similarly to MOVER
when the sample size was large. In addition, Thangjai & Niwitpong (2020) used parametric
bootstrapping, GCI, and MOVER for SCI construction for all of the differences between
CVs in two-parameter exponential distributions; their results indicate that GCI was the
most appropriate in most cases, while MOVER was the best for large sample sizes.

As mentioned above, rainfall series data follow a delta-lognormal distribution. Since our
focus is on comparing the dispersion of rainfall from five regions in Thailand, the pairwise
differences between the CVs of their rainfall data distributions are an interesting topic to
study. Although there have been numerousmethods published for constructing SCIs for the
differences between the parameters of several types of distributions, constructing SCIs for
all of the pairwise differences between the CVs of delta-lognormal distributions has not yet
been reported. GCI is a general method that is often used to construct confidence intervals,
but FGCI is stronger than GCI since it provides asymptotically correct frequentist coverage
(Hannig, Abdel-Karim & Iyer, 2006). Moreover, previous researchers have reported that
MOVER is an appropriate method for constructing the SCIs for various parameters of
several types of distributions. Therefore, one of ours aims was to construct SCIs for this
scenario based on FGCI and compare them with ones based on MOVER and Bayesian
methodology. The coverage probability, the probability that the confidence interval of the
estimate covers the value of the parameter, together with the expected length were used to
estimate the performance of the confidence intervals.

METHODS
Let Xi=

(
Xi1,Xi2,...,Xini

)
, i= 1,2,...,k be a random sample from k independent delta-

lognormal distributions, denoted by Xij ∼1
(
µi,σ

2
i ,δi(0)

)
, where δi(0) = P

(
Xij = 0

)
.

Since this distribution contains zero and positive values, then the zero values follow
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a binomial distribution and the positive values a lognormal distribution denoted by
Xij = 0∼ Bin

(
ni,δi(0)

)
and Yij = ln

(
Xij
)
∼N

(
µi,σ

2
i
)
, respectively. Moreover, let ni(0) and

ni(1) be the numbers of zero and positive values, respectively, where ni= ni(0)+ni(1). The
distribution function of a delta-lognormal distribution is given by

f
(
xij;µi,σ

2
i ,δi(0)

)
=


δi(0) ;xij = 0

δi(1)
1

√
2πσi

(
1
xij

)
exp

{
−

[
ln
(
xij
)
−µi

]2
2σ 2

i

}
;xij > 0,

(1)

where δi(1) = 1− δi(0). Following Aitchison (1955), the respective population mean and
variance of Xi are

E (Xi)=µXi = δi(1)exp
(
µi+

σ 2
i

2

)
(2)

and

Var (Xi)= σ
2
Xi
= δi(1)exp

(
2µi+σ

2
i
)[
exp

(
σ 2
i
)
−δi(1)

]
. (3)

Following this, the CV of Xi can be expressed as

CV (Xi)= νi=

√
exp

(
σ 2
i
)
−δi(1)

δi(1)
. (4)

Since we are interested in constructing the SCIs for all pairwise differences between the
CVs, then

νil = νi−νl =

√
exp

(
σ 2
i
)
−δi(1)

δi(1)
−

√
exp

(
σ 2
l
)
−δl(1)

δl(1)
, (5)

where i,l = 1 ,2,...,k and i 6= l . The maximum likelihood estimators of δi(1) and µi

are δ̂i(1) = ni(1)/ni and µ̂i =
∑ni(1)

j=1 ln
(
xij
)
/ni(1), respectively. Furthermore, the unbiased

estimator for σ 2
i is σ̂ 2

i =
∑ni(1)

j=1
[
ln
(
xij
)
− µ̂i

]2
/
(
ni(1)−1

)
.

Assume that δ̂i(1) and σ̂ 2
i are independent, then the maximum likelihood estimator of νi

can be defined as

ν̂i=

√
exp

(
σ̂ 2
i
)
− δ̂i(1)

δ̂i(1)
. (6)

Similarly,

ν̂il = ν̂i− ν̂l =

√
exp

(
σ̂ 2
i
)
− δ̂i(1)

δ̂i(1)
−

√
exp

(
σ̂ 2
l
)
− δ̂l(1)

δ̂l(1)
, (7)

where i,l =1 ,2,...,k and i 6= l .
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According to Yosboonruang, Niwitpong & Niwitpong (2020), the estimated variance of
ν̂i− ν̂l can be expressed as

ˆVar (ν̂i− ν̂l)=

{[
ln
(
δ̂i(1)

)
+ ln

(
exp(σ̂ 2

i )−δ̂i(1)
δ̂i(1)

+1
)][

exp(σ̂ 2
i )−δ̂i(1)
δ̂i(1)

+1
]}2

2ni
[
exp(σ̂ 2

i )−δ̂i(1)
δ̂i(1)

]
+

{[
ln
(
δ̂l(1)

)
+ ln

(
exp(σ̂ 2

l )−δ̂l(1)
δ̂l(1)

+1
)][

exp(σ̂ 2
l )−δ̂l(1)
δ̂l(1)

+1
]}2

2nl
[
exp(σ̂ 2

l )−δ̂l(1)
δ̂l(1)

] ,

(8)

where i,l =1 ,2,...,k and i 6= l .

The simultaneous FGCIs
To construct the simultaneous FGCIs, a fiducial generalized pivotal quantity (FGPQ),
which is a subclass of the generalized pivotal quantity (GPQ) (Hannig, Iyer & Patterson,
2006), is presented as follows.
Definition 1 Let Xi =

(
Xi1,Xi2,...,Xini

)
,i= 1,2,...,k be a random sample from k

independent delta-lognormal distributions with parameters of interest (σ 2
i ,δi(1)) and

nuisance parameter µi. Let xi =
(
xi1,xi2,...,xini

)
,i= 1,2,...,k be an observed value of

Xi. GPQ R
(
Xi;xi,µi,σ

2
i ,δi(1)

)
is called an FGPQ if it corresponds with the following

two conditions (Weerahandi, 1993; Hannig, Iyer & Patterson, 2006): 1. For a given xi, the
conditional distribution of R

(
Xi;xi,µi,σ

2
i ,δi(1)

)
is free of µi. 2. The observed value of

R
(
Xi;xi,µi,σ

2
i ,δi(1)

)
at Xi= xi,r

(
xi;xi,µi,σ

2
i ,δi(1)

)
is the parameter of interest.

The FGPQs for σ 2
i and δi(1) can be constructed by applying Definition 1. According to

Hannig, Iyer & Patterson (2006) and Li, Zhou & Tian (2013), the respective FGPQs for δi(1)
and σ 2

i are

Rδi(1) ∼
1
2
Beta

(
ni(1),ni(0)+1

)
+

1
2
Beta

(
ni(1)+1,ni(0)

)
(9)

and

Rσ 2
i
=

(
ni(1)−1

)
σ̂ 2
i

Ui
, (10)

where Ui∼χ
2
ni(1)−1. Following this, the FGPQ for νi is simply

Rνi =

√√√√exp
(
Rσ 2

i

)
−Rδi(1)

Rδi(1)
. (11)

Hence, the FGPQ for the differences between two independent CVs can be expressed as

Rνil =Rνi−Rνl =

√√√√exp
(
Rσ 2

i

)
−Rδi(1)

Rδi(1)
−

√√√√exp
(
Rσ 2

l

)
−Rδl(1)

Rδl(1)
, (12)

where i,l =1 ,2,...,k and i 6= l .
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Therefore, the 100(1−α)% two-sided SCI for νi−νl based on the FGCI method can
be written as Lil 6 νil 6Uil , where Lil and Uil are the α/2-th and (1−α/2)-th quantiles of
Rνil , respectively.
Theorem 1 Let Xi =

(
Xi1,Xi2,...,Xini

)
,i = 1,2,...,k be a random sample from k

independent delta-lognormal distributions with mean µi, variance σ 2
i , and probability of

zero values δi(0). Let νi=
√[

exp
(
σ 2
i
)
−δi(1)

]
/δi(1) and νl =

√[
exp

(
σ 2
l
)
−δl1

]
/δl1 for i,l

=1 ,2,...,k and i 6= l be the CV of Xi and Xl , respectively. Furthermore, let ν̂i and ν̂l

be the estimators of νi and νl , respectively. The estimator for the variance of the difference
between νi and νl is ˆVar (ν̂i− ν̂l). Let ni be the sample size of the i-th random sample and
n= n1+n2+ ...+nk . Assume that ni/n→ ri as n→∞ where 0< ri< 1. Therefore,

P
[
Rνil (α/2)≤Rνil ≤Rνil (1−α/2),∀i 6= l

]
→ 1−α. (13)

Proof Since

P
[
Rνil (α/2)≤Rνil ≤Rνil (1−α/2),∀i 6= l

]
= P [Lil 6 νi−νl 6Uil,∀i 6= l],

where [Lil,Uil]= ν̂i− ν̂l±d1−α
√

ˆVar (ν̂i− ν̂l) and d1−α denotes the (1−α)-th quantile of
Rνil . Thus,

P [Lil 6 νi−νl 6Uil,∀i 6= l]= P

[
max
i6=l

∣∣∣∣∣ ν̂i− ν̂l−(νi−νl)√
ˆVar (ν̂i− ν̂l)

∣∣∣∣∣≤ d1−α

]
= P

[
Dn≤ d1−α

]
.

Accordingly,

P [Lil 6 νi−νl 6Uil,∀i 6= l]→ 1−α.

This implies that

P
[
Rνil (α/2)≤Rνil ≤Rνil (1−α/2),∀i 6= l

]
→ 1−α. �

The Bayesian method
According to the distributions of Xi for i= 1,2,...,k with the unknown parameters
µi,σ

2
i , and δi(0), where δi(0) = 1− δi(1), the joint likelihood function of k independent

delta-lognormal distributions is

L
(
µi,σ

2
i ,δi(1)|xij

)
∝

k∏
i=1

(
1−δi(1)

)ni(0)
δ
ni(1)
i(1)

(
σ 2
i
)− ni(1)

2 exp

− 1
2σ 2

i

ni(1)∑
j=1

[
ln
(
xij
)
−µi

]2. (14)

By applying the second-order partial derivative of the log-likelihood function with
respect to the unknown parameters, the Fisher information matrix of the unknown
parameters can be written as

I
(
µi,σ

2
i ,δi(1)

)
=
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diag

[
n1(

1−δ1(1)
)
δ1(1)

n1δ1(1)
σ 2
1

n1δ1(1)
2
(
σ 2
1
)2 ... ... ...

nk(
1−δk(1)

)
δk(1)

nkδk(1)
σ 2
k

nkδk(1)
2
(
σ 2
k
)2
]
.

(15)

In this paper, we constructed both of equal-tailed SCIs based on simulation data and
simultaneous credible intervals based on information from a simulation study of their
prior distributions using two forms of Bayesian prior; the suitability of the Jeffreys’ rule
and uniform priors was determined by considering the values of a random variable of
their posterior distributions that correspond to those for a delta-lognormal distribution.
See also, Yosboonruang, Niwitpong & Niwitpong (2019b) and Yosboonruang, Niwitpong &
Niwitpong (2020).

The Jeffreys’ rule prior
The Jeffreys’ rule prior is obtained from the square root of the determinant of the
Fisher information matrix (Jeffreys, 1946). It is well known that a delta-lognormal
distribution comprises lognormal and binomial distributions. From the CVs in Eq. (4),
the parameters of interest are σ 2

i and δi(1), and the Jeffreys’ rule priors for these parameters

are p
(
σ 2
i
)
∝ σ−3i and p

(
δi(1)

)
∝
(
1−δi(1)

)− 1
2 δ

1
2
i(1), respectively. Assuming that σ 2

i and δi(1)
are independent, the prior distribution for a delta-lognormal distribution can be defined

as p
(
σ 2
i ,δi(1)

)
∝ σ−3i

(
1−δi(1)

)− 1
2 δ

1
2
i(1). By combining the likelihood function and the prior

distribution of a delta-lognormal distribution, the joint posterior density function can be
written as

p
(
σ 2
i ,δi(1)|xij

)
=

k∏
i=1

1
Beta

(
ni(0)+ 1

2 ,ni(1)+
3
2

)(1−δi(1))(ni(0)+ 1
2)−1δ

(ni(1)+ 3
2)−1

i(1)

×
1

√
2π σi√ni(1)

exp

− 1

2 σ 2
i

ni(1)

(µi− µ̂i)
2


(
ni(1)σ̂ 2

i
2

) ni(1)
2

0
(ni(1)

2

) (
σ 2
i
)− ni(1)

2 −1

×exp

− ni(1)σ̂ 2
i

2

σ 2
i

,
(16)

where µ̂i=
∑ni(1)

j=1 ln
(
xij
)
/ni(1), and σ̂ 2

i =
∑ni(1)

j=1
[
ln
(
xij
)
− µ̂i

]2
/
(
ni(1)−1

)
.

By integrating Eq. (16), the respective posterior distributions of σ 2
i and δi(1) are derived

as

p
(
σ 2
i |xij

)
∝

k∏
i=1

(
ni(1)σ̂ 2

i
2

) ni(1)
2

0
(ni(1)

2

) (
σ 2
i
)− ni(1)

2 −1exp

− ni(1)σ̂ 2
i

2

σ 2
i

, (17)

and

p
(
δi(1)|xij

)
∝

k∏
i=1

1
Beta

(
ni(0)+ 1

2 ,ni(1)+
3
2

)(1−δi(1))(ni(0)+ 1
2)−1δ

(ni(1)+ 3
2)−1

i(1) . (18)
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It should be noted that p
(
σ 2
i |xij

)
follows an inverse gamma distribution and p

(
δi(1)|xij

)
follows a beta distribution, denoted by σ 2

i |xij ∼ Inv−Gamma
(
ni(1)/2,ni(1)σ̂ 2

i /2
)
and

δi(1)|xij ∼Beta
(
ni(0)+1/2, ni(1)+3/2

)
, respectively. Consequently, σ 2

i |xij and δi(1)|xij can
be substituted into (5) to construct the equal-tailed SCI and the simultaneous credible
interval, respectively.

The uniform prior
Since the uniform prior has a constant function for the prior probability (Stone, 2013), then
the uniform priors of σ 2

i and δi(1) are 1, denoted by p
(
σ 2
i
)
∝ 1 and p

(
δi(1)

)
∝ 1, respectively.

Afterward, the uniform prior for a delta-lognormal distribution becomes p
(
σ 2
i ,δi(1)

)
∝ 1.

Similar to Eq. (16), the joint posterior density function is obtained by combining p
(
σ 2
i ,δi(1)

)
with the likelihood function from Eq. (14). Subsequently, we obtain the posterior of σ 2

i
and δi(1) by integrating the joint posterior density function with respect to the others. Thus,
the posterior distribution is σ 2

i |xij ∼ Inv−Gamma
[(
ni(1)−2

)
/2,
(
ni(1)−2

)
σ̂ 2
i /2

]
for σ 2

i
and δi(1)|xij ∼Beta

(
ni(0)+1,ni(1)+1

)
for δi(1).

Therefore, the 100(1−α)% equal-tailed SCI and simultaneous credible interval for νil
based on the Bayesian method are Lil ≤ νil ≤Uil , where Lil and Uil are the lower and upper
bounds of the intervals, respectively.
Theorem 2 Let Xi=

(
Xi1,Xi2,...,Xini

)
∼1

(
µi,σ

2
i ,δi(1)

)
, where i= 1,2,...,k and δi(0)=

1−δi(1), with sample sizes n1,n2,...,nk and n= n1+n2+...+nk . Let ri= ni/n as n→∞,

where 0< ri < 1. For i,l =1 ,2,...,k and i 6= l , let νi =
√[

exp
(
σ 2
i
)
−δi(1)

]
/δi(1) and

νl =

√[
exp

(
σ 2
l
)
−δl(1)

]
/δl(1) be the CVs of Xi and Xl , respectively. Let ν̂i and ν̂l be the

estimators of νi and νl , respectively. An estimator for the variance of the difference between
νi and νl is ˆVar (ν̂i− ν̂l). Let p

(
σ 2
i ,δi(1)

)
and p

(
σ 2
i ,δi(1)|xij

)
be the prior distribution and

the joint posterior density function for delta-lognormal distribution, respectively. Therefore,

P [Lil ≤ νil ≤Uil ,∀i 6= l]→ 1−α. � (19)

Proof The proof is similar to Theorem 1.

Algorithm 1: For the FGCI and Bayesian methods
Step 1. Generate random samplesXi, i= 1,2,...,k, with sample sizes n1,n2,...,nk and calculate

δ̂i(1) and σ̂ 2
i .

Step 2. Generate Ui∼χ
2
ni(1)−1,Beta

(
ni(1),ni(1)+1

)
,Beta

(
ni(1)+1,ni(1)

)
,

Beta
(
ni(0)+1/2,ni(1)+3/2

)
,Beta

(
ni(0)+1,ni(1)+1

)
,Inv−Gamma

(
ni(1)/2,ni(1)σ̂ 2

i /2
)
,

and Inv−Gamma
[(
ni(1)−2

)
/2,
(
ni(1)−2

)
σ̂ 2
i /2

]
.

Step 3. Calculate Rδi(1),Rσ 2
i
,Rνi,Rνl ,νi,and νl .

Step 4. Repeat Steps 2–3 5,000 times.
Step 5. Compute the 95% SCIs for νil .
Step 6. Repeat Steps 1–5 15,000 times.

MOVER
The concept of MOVER proposed by Donner & Zou (2012) can be applied to construct
the 100(1−α)% two-sided confidence interval of νi−νl for i,l =1 ,2,...,k and i 6= l , for
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which Lil ≤ νil ≤Uil where Lil and Uil denote the lower and upper limits of the confidence
interval, respectively, expressed as

Lil = ν̂i− ν̂l−
√
(ν̂i− li)2+(ul− ν̂l)2 (20)

and

Uil = ν̂i− ν̂l+

√
(ui− ν̂i)2+(ν̂l− ll)2, (21)

where i,l =1 ,2,...,k and i 6= l . From (4), the parameters of interest are δi(1) and σ 2
i , and

so the confidence intervals for these parameters can be constructed.
Since the unbiased estimator of σ 2

i is given by σ̂ 2
i =

∑ni(1)
j=1
[
ln
(
xij
)
− µ̂i

]2
/
(
ni(1)−1

)
, for

i= 1,2,...,k and where
(
ni(1)−1

)
σ̂ 2
i /σ

2
∼χ2

ni(1)−1. Consequently, the respective lower and
upper bounds for σ 2

i are defined as

lσ 2
i
=

(
ni(1)−1

)
σ̂ 2
i

χ2
1− α2 ,ni(1)−1

(22)

and

uσ 2
i
=

(
ni(1)−1

)
σ̂ 2
i

χ2
α
2 ,ni(1)−1

. (23)

The score method proposed by Wilson (1927) is used to construct the confidence
limits for δi(1). According to Brown, Cai & DasGupta (2001) and Donner & Zou (2011), the
respective lower and upper limits of δi(1) are given by

lδi(1) =
ni(1)+

Z 2
i(α/2)
2

ni+Z 2
i(α/2)

−Zi(α/2)

√
ni(0)ni(1)

ni
+

Z 2
i(α/2)
4

ni+Z 2
i(α/2)

(24)

and

uδi(1) =
ni(1)+

Z 2
i(α/2)
2

ni+Z 2
i(α/2)

+Zi(α/2)

√
ni(0)ni(1)

ni
+

Z 2
i(α/2)
4

ni+Z 2
i(α/2)

, (25)

where Zi,i= 1,2,...,k follow a standard normal distribution. This approach is similar to
constructing the confidence limits for σ 2

l and δl(1).
Therefore, the 100(1−α)% two-sided SCIs for νi−νl based on the MOVER method

are

SCIil = [Lil,Uil], (26)

where i,l =1 ,2,...,k and i 6= l .
Theorem 3 Let Xi =

(
Xi1,Xi2,...,Xini

)
,i = 1,2,...,k, be random samples from k

independent delta-lognormal distributions with mean µi, variance σ 2
i , and probability

of zero values δi(0). Furthermore, let the sample size of the i-th random sample be ni,
where n = n1 + n2 + ...+ nk and ri = ni/n as n→∞, for which 0 < ri < 1. Let
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νi =

√[
exp

(
σ 2
i
)
−δi(1)

]
/δi(1) and νl =

√[
exp

(
σ 2
l
)
−δl(1)

]
/δl(1), for i,l =1 ,2,...,k

and i 6= l , be the CVs of Xi and Xl , respectively. In addition, let ν̂i and ν̂l be the
estimators of νi and νl , respectively. Let Lil = ν̂i − ν̂l −

√
(ν̂i− li)2+(ul− ν̂l)2 and

Uil = ν̂i− ν̂l +
√
(ui− ν̂i)2+(ν̂l− ll)2, where i,l =1 ,2,...,k and i 6= l , be the respective

lower and upper limits of the confidence interval for νil = νi−νl . Therefore,

P (Lil ≤ νil ≤Uil ,∀i 6= l)→ 1−α. (27)

Proof Suppose that the respective lower and upper limits of the confidence interval for
νil = νi−νl are

Lil = ν̂i− ν̂l−
√
(ν̂i− li)2+(ul− ν̂l)2= ν̂il−

√
(ν̂i− li)2+(ul− ν̂l)2

and

Uil = ν̂i− ν̂l+

√
(ui− ν̂i)2+(ν̂l− ll)2= ν̂il+

√
(ui− ν̂i)2+(ν̂l− ll)2,

where i,l =1 ,2,...,k and i 6= l . Thus, the respective estimators of variance for ν̂i and ν̂l at
νi= li and νl = ll are

ˆVar (ν̂i)=
(ν̂i− li)2

z2α/2
and

ˆVar (ν̂l)=
(ν̂l− ll)2

z2α/2
,

where zα/2 is the α/2-th quantile of the standard normal distribution. Similarly, the
respective estimators of variance for ν̂i and ν̂l at νi= ui and νl = ul are

ˆVar (ν̂i)=
(ui− ν̂i)2

z2α/2
and

ˆVar (ν̂l)=
(ul− ν̂l)2

z2α/2
.

Hence, the respective lower and upper limits can be expressed as

Lil = ν̂il−zα/2

√
(ν̂i− li)2

z2α/2
+
(ul− ν̂l)2

z2α/2

= ν̂il−zα/2
√

ˆVar (ν̂i)+ ˆVar (ν̂l)

and

Uil = ν̂il+zα/2

√
(ui− ν̂i)2

z2α/2
+
(ν̂l− ll)2

z2α/2

= ν̂il+zα/2
√

ˆVar (ν̂i)+ ˆVar (ν̂l).
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Therefore,

P (Lil ≤ νil ≤Uil)= P
[
νil ∈

(
ν̂il±zα/2

√
ˆVar (ν̂i)+ ˆVar (ν̂l)

)
,∀i 6= l

]
= P

[
max
i6=l

∣∣∣∣∣ ν̂il−νil√
ˆVar (ν̂i)+ ˆVar (ν̂l)

∣∣∣∣∣≤ zα/2

]
= P

[
D′n≤ zα/2

]
.

Suppose that ni/n→ ri ∈ (0,1) as n→∞,i= 1,2,...,k where n= n1+n2+ ...+nk .

From the central limit theorem, n(ν̂i−νi)
d
→ Zi,i= 1,2,...,k, where Zi

iid
∼N

(
0,σ 2

i /ri
)
,

while from Slutsky’s theorem, D′n→ D′, where D′ =max
i6=l

∣∣∣∣(Zi−Zl)/

√
σ 2
i /ri+σ

2
l /rl

∣∣∣∣.
Following Skorokhod’s theorem, let Yn and Y be random variables from the common

probability space with distributions D′n and D′, respectively. Thus, Yn converges to Y
almost surely, denoted by Yn

a.s.
→ Y , and D′n converges to D′ almost surely, denoted by

D′n
a.s.
→D′. Assume that Zi and Z∗i are independent and identically distributed random

variables. Thus, T
(
X ,X∗,µ,σ 2)

→D′∗, where D′∗=max
i6=l

∣∣∣∣(Z∗i −Z∗l /√σ 2
i /ri+σ

2
l /rl

)∣∣∣∣,
for i,l =1,2,...,k, and i 6= l . Since the limiting distribution of T

(
X ,X∗,µ,σ 2) is continuous

and zα/2(X)→ qα/2, where qα/2 is the α/2-th quantile of the distribution of D′∗, we can
obtain

P
(
D′n≤ zα/2

)
→ P

(
D′≤ qα/2

)
= P

(
D′∗≤ qα/2

)
= 1−α, as n→∞. Therefore,

P
[
νil ∈

(
ν̂il±zα/2

√
ˆVar (ν̂i)+ ˆVar (ν̂l),∀i 6= l

)]
→ 1−α,

which implies that

P (Lil ≤ νil ≤Uil ,∀i 6= l)→ 1−α. �

Algorithm 2: For MOVER
Step 1. Generate random samples Xi, i= 1,2,...,k with sample size n1,n2,...,nk and calculate

δ̂i(1) and σ̂ 2
i .

Step 2. Generate χ2
1−α/2,ni(1)−1,χ

2
α/2,ni(1)−1,and Zi∼N (0,1).

Step 3. Calculate lσ 2
i
,lσ 2

l
,uσ 2

i
,uσ 2

l
,lδi(1),lδl(1),uδi(1),and uδl(1) .

Step 4. Repeat Steps 2–3 5,000 times.
Step 5. Compute the 95% SCIs for νil .
Step 6. Repeat Steps 1–5 15,000 times.

SIMULATION RESULTS
Here, the performances of the proposed methods via Monte Carlo simulation with the R
statistical program are presented. The best method attains a coverage probability equal
to or greater than the nominal simultaneous confidence level of 0.95 together with the
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shortest expected length. The simulations were conducted with 15,000 iterations for each
combination of parameters. Furthermore, 5,000 replications for the FGCI and Bayesian
methods for each case of parameter combination were carried out. Sample sizes were set
as 25, 50, and 100; δi(1)= 0.2,0.5,0.8; and σ 2

i = 0.5,1.0,2.0.
The results in Tables 2–4 and Figs. 1–3 show that the coverage probabilities of FGCI

and the equal-tailed Bayesian using Jeffreys’ rule prior were close to or greater than the
nominal confidence level for almost all k values. Similarly, the coverage probabilities of
the equal-tailed Bayesian using the uniform prior, the Bayesian credible intervals using
Jeffreys’ rule and uniform priors, and MOVER were close to or greater than the nominal
confidence level for all cases. For most cases, the Bayesian credible interval using Jeffreys’
rule prior attained the shortest expected length, except for ni = 50; δi(1) = 0.5,0.8; and
σ 2
i = 0.5,1.0, for which the expected lengths of FGCI were the shortest.

EMPIRICAL STUDY
Thailand is generally divided into five areas by topography, i.e., Northern (A1),
Northeastern (A2), Central (A3), Eastern (A4), and Southern (A5). The daily rainfall
data from these areas in August 2020 were used to assess the performances of the proposed
methods for SCI construction. The distributions of these data are presented in Fig. 4,
which shows right-skewness for all of the datasets. Thus, the minimum Akaike information
criterion (AIC) and the lowest Bayesian information criterion (BIC) were used to test the
fitting of the distributions to such data. From AIC and BIC results in Table 5, it is evident
that the positive values in the rainfall datasets from the five areas conform to lognormal
distributions. Moreover, normal Q-Q plots were constructed to show the distributions of
the log-transformed positive rainfall data from the five areas (Fig. 5), which verified the
AIC and BIC results that these datasets follow lognormal distributions. A summary of these
data are

n1= 31,δ̂1= 0.7097,µ̂1= 0.7715,σ̂ 2
1 = 3.4565,η̂1= 6.6088,

n2= 31,δ̂2= 0.6774,µ̂2= 1.4332,σ̂ 2
2 = 2.9550,η̂2= 5.2294,

n3= 31,δ̂3= 0.6452,µ̂3= 1.5512,σ̂ 2
3 = 2.8638,η̂3= 5.1154,

n4= 31,δ̂4= 0.4839,µ̂4= 1.4178,σ̂ 2
4 = 2.1487,η̂4= 4.0888,

n5= 31,δ̂5= 0.4839,µ̂5= 1.8040,σ̂ 2
5 = 2.1962,η̂5= 4.1930.

Table 6 reports the 95% SCIs and credible intervals for all pairwise differences between
the CVs of the daily rainfall series from five areas in Thailand. The results show that the
expected length of the Bayesian credible interval using the Jeffreys’ rule prior was the
shortest, which corresponds with the simulation results. Therefore, it is a good choice for
constructing the SCI for all of the pairwise differences between the CVs of the precipitation
series from the five areas in Thailand.

DISCUSSION
The simulation results indicate that the Bayesian credible interval using Jeffreys’ rule prior
outperformed the other methods in virtually all cases. Although the coverage probabilities
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Table 2 The coverage probabilities and expected lengths for the 95% SCIs and credible intervals for all pairwise differences between the CVs of
delta-lognormal distributions for k = 3.

n1 : n2 : n3 δ1(1) : δ2(1) : δ3(1) σ2
1 : σ

2
2 : σ

2
3 Coverage probabilities (Expected lengths)

FGCI B.Jrule-E B.Uni-E B.Jrule-C B.Uni-C MOVER

25:25:25 0.5:0.5:0.5 0.5:0.5:0.5 0.9642 0.9788 0.9842 0.9956 0.9980 0.9986
(2.1698) (2.1537) (2.5030) (2.0848) (2.4026) (3.4408)

1.0:1.0:1.0 0.9573 0.9605 0.9718 0.9957 0.9984 0.9941
(6.8818) (6.2442) (7.9188) (5.7177) (7.1021) (9.6034)

2.0:2.0:2.0 0.9516 0.9465 0.9631 0.9978 0.9991 0.9838
(68.0142) (53.9752) (88.1169) (37.9389) (55.1280) (85.1444)

0.5:1.0:2.0 0.9557 0.9540 0.9678 0.9708 0.9820 0.9878
(24.7584) (20.5209) (31.5389) (13.1644) (17.7557) (31.4612)

0.8:0.8:0.8 0.5:0.5:0.5 0.9542 0.9632 0.9725 0.9834 0.9894 0.9954
(1.2558) (1.2613) (1.3684) (1.2412) (1.3444) (1.8437)

1.0:1.0:1.0 0.9533 0.9526 0.9636 0.9857 0.9915 0.9868
(3.2363) (3.1117) (3.4638) (2.9940) (3.3202) (4.2113)

2.0:2.0:2.0 0.9499 0.9458 0.9570 0.9930 0.9963 0.9756
(16.6440) (15.4579) (18.2078) (13.7933) (16.0213) (20.0584)

0.5:1.0:2.0 0.9513 0.9496 0.9598 0.9659 0.9750 0.9797
(7.3206) (6.8777) (7.9629) (5.5921) (6.3072) (8.7800)

50:50:50 0.2:0.2:0.2 0.5:0.5:0.5 0.9692 0.9869 0.9906 0.9991 0.9997 0.9994
(4.3383) (4.1487) (5.2706) (3.9321) (4.8731) (7.2083)

1.0:1.0:1.0 0.9593 0.9672 0.9778 0.9988 0.9996 0.9965
(17.7495) (14.6338) (23.0519) (12.3745) (17.8689) (25.8720)

2.0:2.0:2.0 0.9525 0.9489 0.9668 0.9984 0.9996 0.9882
(813.5319) (360.7209) (3.75E+03) (130.6376) (338.9741) (1.00E+03)

0.5:1.0:2.0 0.9560 0.9567 0.9719 0.9742 0.9846 0.9910
(131.2015) (80.4363) (238.4643) (36.1680) (67.2572) (169.2385)

0.5:0.5:0.5 0.5:0.5:0.5 0.9609 0.9797 0.9827 0.9904 0.9926 0.9990
(1.2086) (1.2989) (1.3657) (1.2849) (1.3499) (1.9562)

1.0:1.0:1.0 0.9536 0.9613 0.9678 0.9870 0.9907 0.9934
(3.0015) (2.9770) (3.1957) (2.8997) (3.1064) (4.2360)

2.0:2.0:2.0 0.9496 0.9488 0.9579 0.9910 0.9942 0.9831
(13.0784) (12.5308) (13.8315) (11.6629) (12.8048) (16.6567)

0.5:1.0:2.0 0.9510 0.9541 0.9619 0.9644 0.9712 0.9872
(6.2117) (6.0214) (6.5869) (5.1934) (5.6079) (7.9402)

0.8:0.8:0.8 0.5:0.5:0.5 0.9545 0.9652 0.9702 0.9764 0.9804 0.9960
(0.7563) (0.7866) (0.8128) (0.7810) (0.8069) (1.1146)

1.0:1.0:1.0 0.9512 0.9530 0.9582 0.9744 0.9788 0.9870
(1.7222) (1.7159) (1.7838) (1.6925) (1.7587) (2.2244)

2.0:2.0:2.0 0.9489 0.9476 0.9528 0.9832 0.9863 0.9746
(6.2458) (6.1250) (6.4310) (5.9199) (6.2078) (7.4204)

0.5:1.0:2.0 0.9534 0.9532 0.9592 0.9644 0.9690 0.9816
(continued on next page)
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Table 2 (continued)

n1 : n2 : n3 δ1(1) : δ2(1) : δ3(1) σ2
1 : σ

2
2 : σ

2
3 Coverage probabilities (Expected lengths)

FGCI B.Jrule-E B.Uni-E B.Jrule-C B.Uni-C MOVER

(3.2059) (3.1646) (3.3108) (2.8957) (3.0156) (3.8254)
100:100:100 0.2:0.2:0.2 0.5:0.5:0.5 0.9655 0.9862 0.9876 0.9955 0.9969 0.9995

(2.1032) (2.2970) (2.4455) (2.2649) (2.4065) (3.5694)
1.0:1.0:1.0 0.9572 0.9696 0.9746 0.9935 0.9959 0.9966

(5.5368) (5.4606) (6.0091) (5.2547) (5.7570) (8.2473)
2.0:2.0:2.0 0.9528 0.9546 0.9629 0.9951 0.9973 0.9891

(28.1449) (26.2788) (30.4653) (23.6063) (27.0268) (37.4768)
0.5:1.0:2.0 0.9541 0.9585 0.9665 0.9672 0.9744 0.9903

(12.6988) (12.0766) (13.7614) (9.9027) (11.0231) (16.9562)
0.5:0.5:0.5 0.5:0.5:0.5 0.9595 0.9793 0.9803 0.9852 0.9866 0.9988

(0.7728) (0.8596) (0.8774) (0.8547) (0.8723) (1.2568)
1.0:1.0:1.0 0.9558 0.9646 0.9673 0.9806 0.9824 0.9949

(1.7356) (1.7761) (1.8252) (1.7576) (1.8058) (2.4523)
2.0:2.0:2.0 0.9501 0.9513 0.9555 0.9803 0.9831 0.9832

(6.1101) (6.0586) (6.2714) (5.9140) (6.1174) (7.6906)
0.5:1.0:2.0 0.9518 0.9565 0.9603 0.9613 0.9653 0.9889

(3.1854) (3.1976) (3.2977) (2.9846) (3.0716) (4.0742)
0.8:0.8:0.8 0.5:0.5:0.5 0.9542 0.9668 0.9691 0.9721 0.9739 0.9966

(0.5013) (0.5298) (0.5376) (0.5273) (0.5350) (0.7395)
1.0:1.0:1.0 0.9495 0.9526 0.9554 0.9654 0.9678 0.9864

(1.0816) (1.0919) (1.1103) (1.0843) (1.1025) (1.3892)
2.0:2.0:2.0 0.9517 0.9516 0.9546 0.9739 0.9756 0.9766

(3.4703) (3.4545) (3.5212) (3.4088) (3.4741) (4.0656)
0.5:1.0:2.0 0.9496 0.9518 0.9552 0.9579 0.9608 0.9814

(1.8867) (1.8883) (1.9231) (1.8062) (1.8377) (2.2430)
25:50:100 0.5:0.5:0.5 0.5:0.5:0.5 0.9614 0.9782 0.9840 0.9829 0.9885 0.9984

(1.4118) (1.4647) (1.6172) (1.4069) (1.5307) (2.2374)
1.0:1.0:1.0 0.9525 0.9572 0.9670 0.9764 0.9838 0.9941

(3.9253) (3.7120) (4.3712) (3.3455) (3.7992) (5.4323)
2.0:2.0:2.0 0.9525 0.9502 0.9609 0.9827 0.9875 0.9826

(27.5125) (23.2226) (33.9099) (16.5621) (20.9132) (34.6995)
0.5:1.0:2.0 0.9551 0.9600 0.9648 0.9793 0.9827 0.9901

(3.8830) (3.8512) (4.0951) (3.6913) (3.9292) (5.2078)
25:50:100 0.8:0.8:0.8 0.5:0.5:0.5 0.9572 0.9679 0.9740 0.9754 0.9825 0.9958

(0.8600) (0.8810) (0.9323) (0.8589) (0.9050) (1.2513)
1.0:1.0:1.0 0.9516 0.9525 0.9596 0.9709 0.9775 0.9869

(2.0776) (2.0320) (2.1907) (1.9232) (2.0528) (2.6582)
2.0:2.0:2.0 0.9513 0.9486 0.9558 0.9776 0.9826 0.9751

(8.8667) (8.4294) (9.4811) (7.3245) (8.0262) (10.4756)
0.5:1.0:2.0 0.9532 0.9545 0.9592 0.9702 0.9735 0.9833

(2.2424) (2.2348) (2.3100) (2.1757) (2.2505) (2.7807)

Notes.
B.Jrule-E, B.Uni-E represented the equal-tailed Bayesian confidence intervals using Jeffreys’ rule and uniform priors, respectively, and B.Jrule-C and B.Uni-C represented the
Bayesian credible intervals using Jeffrey’s rule and uniform priors.
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Table 3 The coverage probabilities and expected lengths for the 95% SCIs and credible intervals for all pairwise differences between the CVs of
delta-lognormal distributions for k = 5.

n1 : ... : n5 δ1(1) : ... : δ5(1) σ2
1 : ... : σ

2
5 Coverage probabilities (Expected lengths)

FGCI B.Jrule-E B.Uni-E B.Jrule-C B.Uni-C MOVER

255 0.55 0.55 0.9643 0.9794 0.9854 0.9958 0.9981 0.9986
(2.1555) (2.1428) (2.4893) (2.0756) (2.3915) (3.4245)

1.05 0.9558 0.9597 0.9717 0.9954 0.9982 0.9935
(6.9019) (6.2584) (7.9374) (5.7313) (7.1150) (9.6234)

2.05 0.9519 0.9470 0.9625 0.9973 0.9993 0.9834
(62.1565) (50.5751) (80.8805) (37.1890) (53.9109) (79.5531)

0.52 : 1.0 : 2.02 0.9545 0.9538 0.9676 0.9715 0.9818 0.9870
(25.5380) (23.5178) (37.1670) (15.2344) (20.9148) (36.4956)

0.85 0.55 0.9548 0.9642 0.9728 0.9833 0.9895 0.9958
(1.2560) (1.2612) (1.3683) (1.2413) (1.3445) (1.8432)

1.05 0.9529 0.9523 0.9627 0.9857 0.9915 0.9875
(3.2430) (3.1186) (3.4726) (3.0017) (3.3297) (4.2211)

2.05 0.9495 0.9447 0.9567 0.9929 0.9963 0.9757
(16.3407) (15.2264) (17.9101) (13.5908) (15.7761) (19.7367)

0.52 : 1.0 : 2.02 0.9525 0.9508 0.9614 0.9696 0.9775 0.9807
(7.2308) (7.5393) (8.7262) (6.1994) (7.0193) (9.6191)

505 0.25 0.55 0.9676 0.9864 0.9896 0.9990 0.9996 0.9994
(4.3044) (4.1252) (5.2361) (3.9094) (4.8405) (7.1615)

1.05 0.9610 0.9688 0.9792 0.9988 0.9997 0.9969
(17.6359) (14.5147) (22.9054) (12.3017) (17.7946) (25.7023)

2.05 0.9532 0.9499 0.9673 0.9988 0.9997 0.9882
(428.000) (253.198) (996.537) (122.265) (272.000) (578.397)

0.52 : 1.0 : 2.02 0.9548 0.9550 0.9707 0.9735 0.9849 0.9903
(191.069) (122.152) (490.477) (47.626) (101.477) (276.993)

0.55 0.55 0.9602 0.9789 0.9818 0.9899 0.9921 0.9987
(1.2089) (1.2989) (1.3660) (1.2850) (1.3502) (1.9561)

1.05 0.9548 0.9618 0.9677 0.9876 0.9911 0.9941
(3.0083) (2.9852) (3.2034) (2.9072) (3.1133) (4.2457)

2.05 0.9506 0.9496 0.9578 0.9913 0.9944 0.9839
(13.0787) (12.5396) (13.8536) (11.6771) (12.8287) (16.6737)

0.52 : 1.0 : 2.02 0.9537 0.9574 0.9644 0.9695 0.9752 0.9881
(6.1486) (6.5705) (7.1952) (5.7079) (6.1752) (8.6478)

0.85 0.55 0.9541 0.9654 0.9700 0.9763 0.9799 0.9958
(0.7579) (0.7881) (0.8142) (0.7825) (0.8083) (1.1163)

1.05 0.9516 0.9536 0.9589 0.9755 0.9790 0.9874
(1.7233) (1.7170) (1.7855) (1.6937) (1.7603) (2.2261)

2.05 0.9508 0.9495 0.9548 0.9838 0.9871 0.9760
(6.2622) (6.1471) (6.4545) (5.9443) (6.2338) (7.4475)

0.52 : 1.0 : 2.02 0.9512 0.9522 0.9574 0.9646 0.9691 0.9808
(continued on next page)
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Table 3 (continued)

n1 : ... : n5 δ1(1) : ... : δ5(1) σ2
1 : ... : σ

2
5 Coverage probabilities (Expected lengths)

FGCI B.Jrule-E B.Uni-E B.Jrule-C B.Uni-C MOVER

(3.1366) (3.3900) (3.5463) (3.1199) (3.2508) (4.0931)
1005 0.25 0.55 0.9660 0.9867 0.9883 0.9954 0.9966 0.9994

(2.1027) (2.2959) (2.4445) (2.2638) (2.4055) (3.5676)
1.05 0.9566 0.9680 0.9732 0.9935 0.9958 0.9968

(5.5583) (5.4771) (6.0303) (5.2701) (5.7768) (8.2755)
2.05 0.9521 0.9526 0.9617 0.9951 0.9971 0.9883

(27.9967) (26.1432) (30.2853) (23.4497) (26.8163) (37.2629)
0.52 : 1.0 : 2.02 0.9550 0.9598 0.9676 0.9697 0.9763 0.9915

(12.6571) (13.2932) (15.2030) (11.0107) (12.3119) (18.6781)
0.55 0.55 0.9594 0.9791 0.9807 0.9848 0.9862 0.9987

(0.7720) (0.8589) (0.8767) (0.8540) (0.8717) (1.2557)
1.05 0.9546 0.9635 0.9664 0.9793 0.9816 0.9947

(1.7331) (1.7739) (1.8229) (1.7555) (1.8035) (2.4495)
2.05 0.9527 0.9540 0.9582 0.9825 0.9852 0.9848

(6.0963) (6.0429) (6.2535) (5.9008) (6.1028) (7.6733)
0.52 : 1.0 : 2.02 0.9527 0.9579 0.9613 0.9645 0.9681 0.9884

(3.1078) (3.4067) (3.5167) (3.1961) (3.2916) (4.3313)
1005 0.85 0.55 0.9542 0.9670 0.9691 0.9721 0.9742 0.9966

(0.5010) (0.5295) (0.5374) (0.5269) (0.5348) (0.7392)
1.05 0.9509 0.9544 0.9570 0.9665 0.9688 0.9875

(1.0812) (1.0918) (1.1102) (1.0842) (1.1024) (1.3890)
2.05 0.9506 0.9507 0.9533 0.9730 0.9752 0.9755

(3.4721) (3.4569) (3.5238) (3.4111) (3.4762) (4.0692)
0.52 : 1.0 : 2.02 0.9500 0.9524 0.9552 0.9593 0.9619 0.9806

(1.8380) (2.0041) (2.0416) (1.9233) (1.9575) (2.3760)
252 : 50 : 1002 0.55 0.55 0.9608 0.9770 0.9830 0.9830 0.9886 0.9985

(1.5163) (1.4923) (1.6614) (1.4314) (1.5704) (2.2909)
1.05 0.9549 0.9595 0.9688 0.9785 0.9852 0.9940

(4.4104) (3.8914) (4.6543) (3.4894) (4.0239) (5.7364)
2.05 0.9511 0.9484 0.9600 0.9813 0.9872 0.9826

(32.7160) (25.3223) (37.4111) (17.8405) (23.1773) (37.9900)
0.52 : 1.0 : 2.02 0.9552 0.9603 0.9655 0.9801 0.9835 0.9901

(3.8324) (4.0083) (4.2595) (3.8460) (4.0906) (5.3939)
0.85 0.55 0.9555 0.9656 0.9719 0.9753 0.9817 0.9959

(0.9159) (0.8965) (0.9522) (0.8736) (0.9239) (1.2760)
1.05 0.9506 0.9512 0.9583 0.9707 0.9774 0.9856

(2.2438) (2.0817) (2.2545) (1.9682) (2.1113) (2.7304)
2.05 0.9496 0.9469 0.9551 0.9774 0.9824 0.9744

(10.1646) (8.9783) (10.2014) (7.7693) (8.6055) (11.2231)
0.52 : 1.0 : 2.02 0.9515 0.9536 0.9582 0.9704 0.9737 0.9832

(2.2063) (2.3189) (2.3964) (2.2595) (2.3367) (2.8768)

Notes.
255 represents 25:25:25:25:25.
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Table 4 The coverage probabilities and expected lengths for the 95% SCIs and credible intervals for all pairwise differences between the CVs of
delta-lognormal distributions for k = 10.

n1 : ... : n10 δ1(1) : ... : δ10(1) σ2
1 : ... : σ

2
10 Coverage probabilities (Expected lengths)

FGCI B.Jrule-E B.Uni-E B.Jrule-C B.Uni-C MOVER

2510 0.510 0.510 0.9644 0.9796 0.9852 0.9958 0.9981 0.9987
(2.1718) (2.1549) (2.5017) (2.0864) (2.4056) (3.4437)

1.010 0.9559 0.9596 0.9717 0.9952 0.9982 0.9935
(6.9095) (6.2680) (7.9343) (5.7342) (7.1201) (9.6381)

2.010 0.9513 0.9466 0.9627 0.9970 0.9990 0.9832
(64.2109) (51.6243) (83.5403) (37.5819) (54.7163) (81.8119)

0.810 0.510 0.9558 0.9645 0.9733 0.9836 0.9899 0.9958
(1.2509) (1.2566) (1.3621) (1.2369) (1.3398) (1.8373)

1.010 0.9518 0.9513 0.9621 0.9855 0.9914 0.9871
(3.2511) (3.1246) (3.4760) (3.0068) (3.3358) (4.2290)

2.010 0.9511 0.9468 0.9581 0.9931 0.9962 0.9759
(16.2516) (15.1258) (17.7445) (13.5223) (15.6914) (19.6085)

5010 0.210 0.510 0.9678 0.9859 0.9892 0.9988 0.9995 0.9993
(4.3466) (4.1581) (5.2771) (3.9368) (4.8806) (7.2207)

1.010 0.9600 0.9680 0.9784 0.9988 0.9997 0.9966
(17.6759) (14.5839) (22.8034) (12.3672) (17.8805) (25.7964)

2.010 0.9525 0.9491 0.9671 0.9988 0.9997 0.9881
(584.809) (314.782) (1958.586) (130.579) (314.105) (825.014)

0.510 0.510 0.9614 0.9800 0.9828 0.9905 0.9927 0.9989
(1.2078) (1.2981) (1.3643) (1.2842) (1.3493) (1.9553)

1.010 0.9543 0.9614 0.9676 0.9874 0.9909 0.9942
(2.9985) (2.9750) (3.1898) (2.8975) (3.1028) (4.2323)

2.010 0.9505 0.9497 0.9577 0.9915 0.9944 0.9834
(13.0586) (12.5061) (13.7967) (11.6493) (12.7980) (16.6309)

0.810 0.510 0.9543 0.9653 0.9699 0.9761 0.9799 0.9960
(0.7572) (0.7873) (0.8131) (0.7817) (0.8075) (1.1153)

1.010 0.9510 0.9530 0.9584 0.9747 0.9791 0.9872
(1.7261) (1.7192) (1.7869) (1.6958) (1.7624) (2.2287)

2.010 0.9500 0.9485 0.9541 0.9835 0.9866 0.9749
(6.2757) (6.1553) (6.4591) (5.9506) (6.2399) (7.4567)

10010 0.210 0.510 0.9658 0.9868 0.9885 0.9957 0.9968 0.9994
(2.1038) (2.2979) (2.4450) (2.2660) (2.4078) (3.5707)

1.010 0.9573 0.9684 0.9738 0.9937 0.9959 0.9968
(5.5609) (5.4793) (6.0256) (5.2730) (5.7794) (8.2780)

2.010 0.9515 0.9523 0.9612 0.9950 0.9972 0.9881
(27.8994) (26.0553) (30.1289) (23.3884) (26.7565) (37.1355)

10010 0.510 0.510 0.9595 0.9799 0.9813 0.9856 0.9869 0.9989
(0.7720) (0.8589) (0.8767) (0.8540) (0.8718) (1.2559)

1.010 0.9536 0.9622 0.9653 0.9784 0.9810 0.9945
(continued on next page)
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Table 4 (continued)

n1 : ... : n10 δ1(1) : ... : δ10(1) σ2
1 : ... : σ

2
10 Coverage probabilities (Expected lengths)

FGCI B.Jrule-E B.Uni-E B.Jrule-C B.Uni-C MOVER

(1.7364) (1.7768) (1.8256) (1.7582) (1.8066) (2.4531)
2.010 0.9505 0.9518 0.9557 0.9815 0.9841 0.9838

(6.1121) (6.0620) (6.2702) (5.9173) (6.1188) (7.6931)
0.810 0.510 0.9541 0.9668 0.9689 0.9720 0.9741 0.9964

(0.5013) (0.5298) (0.5376) (0.5272) (0.5351) (0.7395)
1.010 0.9508 0.9542 0.9569 0.9665 0.9689 0.9874

(1.0804) (1.0907) (1.1089) (1.0832) (1.1014) (1.3878)
2.010 0.9503 0.9502 0.9530 0.9726 0.9747 0.9753

(3.4656) (3.4492) (3.5157) (3.4036) (3.4692) (4.0610)

Notes.
2510 represents 25:25:25:25:25:25:25:25:25:25.

Figure 1 Comparison of the performances of the proposed methods in terms of their coverage proba-
bilities and expected lengths with various sample sizes: (A) k = 3 (B) k = 5 (C) k = 10.

Full-size DOI: 10.7717/peerj.11651/fig-1

in some cases were close to 1.00, suggesting that overestimation may have occurred, the
expected lengths were the shortest. Therefore, the Bayesian credible interval using Jeffreys’
rule prior can be used to construct the SCIs for all of the pairwise differences between the
CVs of delta-lognormal distributions. Since constructing SCIs concerns the differences
between the parameters of interest for all pairwise comparisons, our findings correspond
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Figure 2 Comparison of the performances of the proposed methods in terms of their coverage proba-
bilities and expected lengths with various probabilities of non-zero values: (A) k = 3 (B) k = 5 (C) k =
10.

Full-size DOI: 10.7717/peerj.11651/fig-2

with Yosboonruang, Niwitpong & Niwitpong (2020) who found that the highest posterior
density Bayesian using Jeffreys’ rule prior is appropriate for constructing the confidence
interval for the difference between two independent CVs of delta-lognormal distributions.
However, Abdel-Karim (2015) and Thangjai, Niwitpong & Niwitpong (2019) reported that
MOVER is the most suitable for constructing SCIs for the mean or CV of a lognormal
distribution, but this is not in agreement with our findings for the data and scenario used
in this study since the range of intervals for its SCI was wider than when using the Bayesian
methods. In addition, the SCI range between the CVs of the daily rainfall data series from
the five different areas of Thailand was too wide, and so this demonstrates that it is different
in rainfall dispersion from five areas in Thailand.

CONCLUSIONS
Herein, we proposed methods to construct the SCIs for all pairwise differences between the
CVs of delta-lognormal distributions, including FGCI, two Bayesian methods constructed
under the equal-tailed confidence intervals and credible intervals using the Jeffreys’ rule
and uniform priors, and MOVER. The performances of the proposed methods were
determined via their coverage probabilities together with their expected lengths under
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Figure 3 Comparison of the performances of the proposed methods in terms of their coverage proba-
bilities and expected lengths with various variances: (A) k = 3 (B) k = 5 (C) k = 10.

Full-size DOI: 10.7717/peerj.11651/fig-3

Table 5 AIC and BIC results for testing the distributions of the positive daily rainfall data from the five areas of Thailand in August 2020.

Regions AIC BIC

Normal Lognormal Cauchy Exponential Normal Lognormal Cauchy Exponential

Northern 200.1677 126.6431 154.5509 143.7143 202.3498 128.8252 156.7329 144.7143
Northeastern 186.9685 145.5208 170.8114 151.8661 189.0576 147.6098 172.9005 152.9106
Central 187.4002 142.8220 159.7491 148.7169 189.3916 144.8135 161.7405 149.7126
Eastern 129.2900 99.5405 110.7899 100.7356 130.7061 100.9566 112.2060 101.4437
Southern 140.0174 111.4550 124.1323 114.2896 141.4335 112.8711 125.5484 114.9977

various circumstances. The results indicate that the Bayesian credible interval using the
Jeffreys’ rule prior was suitable for constructing the SCIs for all pairwise differences between
the CVs of delta-lognormal distributions in terms of the coverage probability together with
the expected length. Furthermore, FGCI is appropriate for constructing these SCIs in cases
of the variances equal to 0.5 and 1.0 with the proportion of non-zero values equal to 0.5
and 0.8 for the sample sizes of 50 and 100. In addition, the results of using daily rainfall
data from five regions in Thailand coincided with those from the simulation study.
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Figure 4 The density of daily rainfall data in the five areas of Thailand in August 2020.
Full-size DOI: 10.7717/peerj.11651/fig-4

Figure 5 Normal Q-Q plots of the log-transformed positive daily rainfall data from the five areas of
Thailand in August 2020.

Full-size DOI: 10.7717/peerj.11651/fig-5
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Table 6 The 95% two-sided confidence intervals and credible intervals for all pairwise differences between the CVs of daily rainfall data from
the five areas of Thailand in August 2020.

Regions CIFGCI CIB.Jrule−E CIB.Uni−E CIB.Jrule−C CIB.Uni−C CIMOVER

A1-A2 [−18.6001,34.6174] [−18.9230,29.7356] [−17.4271,40.6785] [−20.0641,27.7802] [−22.5574,31.0130] [−24.4099,41.5271]
A1-A3 [−17.9489,34.8373] [−14.7811,30.1761] [−19.4179,40.0759] [−18.8783,24.1259] [−20.8181,36.4352] [−24.6036,41.6372]
A1-A4 [−12.0747,36.3137] [−11.4058,31.0863] [−13.2535,43.2976] [−15.6054,24.9219] [−18.9824,33.3564] [−19.2874,42.6266]
A1-A5 [−14.6835,36.5005] [−12.4631,30.6305] [−15.3529,42.0874] [−15.9005,25.3713] [−18.3991,35.6191] [−20.8273,42.5263]
A2-A3 [−19.1684,19.8007] [−15.4068,20.8296] [−21.9396,19.5370] [−16.9424,18.6778] [−18.6853,21.7661] [−25.8643,25.7772]
A2-A4 [−14.2284,20.9574] [−12.1077,21.4176] [−15.2508,20.4711] [−12.3215,21.1200] [−16.0818,19.4744] [−20.5246,26.7455]
A2-A5 [−15.1643,20.7719] [−14.3124,21.0636] [−16.9309,20.4638] [−15.1223,19.4770] [−15.7284,20.9116] [−22.0733,26.6474]
A3-A4 [−14.0533,20.3410] [−12.8066,16.4067] [−16.1177,22.6669] [−13.4979,15.6852] [−17.3305,21.2102] [−20.6315,26.9413]
A3-A5 [−15.2305,20.4287] [−14.3490,16.8954] [−17.6976,22.7643] [−14.9963,16.0516] [−16.0804,23.8267] [−22.1806,26.8432]
A4-A5 [−17.1536,14.8658] [−15.0784,13.8954] [−18.1792,16.4151] [−14.9530,14.0968] [−18.1763,16.4173] [−23.1424,21.4920]
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