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ABSTRACT

Motivation: Phosphorylation is a crucial post-translational protein
modification mechanism with important regulatory functions in
biological systems. It is catalyzed by a group of enzymes called
kinases, each of which recognizes certain target sites in its substrate
proteins. Several authors have built computational models trained
from sets of experimentally validated phosphorylation sites to predict
these target sites for each given kinase. All of these models suffer
from certain limitations, such as the fact that they do not take into
account the dependencies between amino acid motifs within protein
sequences in a global fashion.
Results: We propose a novel approach to predict phosphorylation
sites from the protein sequence. The method uses a positive
dataset to train a conditional random field (CRF) model. The
negative training dataset is used to specify the decision threshold
corresponding to a desired false positive rate. Application of the
method on experimentally verified benchmark phosphorylation data
(Phospho.ELM) shows that it performs well compared to existing
methods for most kinases. This is to our knowledge that the first
report of the use of CRFs to predict post-translational modification
sites in protein sequences.
Availability: The source code of the implementation, called CRPhos,
is available from http://www.ptools.ua.ac.be/CRPhos/
Contact: kris.laukens@ua.ac.be
Suplementary Information: Supplementary data are available at
http://www.ptools.ua.ac.be/CRPhos/

1 INTRODUCTION
Protein phosphorylation is an essential type of post-translational
modification that consists of the addition of a phosphate (PO4)
group to serine (S), threonine (T), tyrosine (Y) and to a lesser
extent histidine (H) residues. The process is catalyzed by a group
of enzymes called kinases, and can be reverted by phosphatases.
Phosphorylation has important implications on the function of a
protein. If an enzyme gets phosphorylated its activity may be
stimulated or inhibited, for example, leading to altered metabolic
fluxes in the case of a metabolic enzyme, or resulting in the
modulation of a regulatory effect if the substrate protein plays
a regulatory role. The human genome encodes more than 500
different kinases, many of which have been related to cancer and
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other diseases (Manning et al., 2002). They regulate a diverse
range of biochemical pathways and biological functions and are
often indispensable signal integrators in a living system. Being one
of the most important reversible mechanisms of post-translational
modification, phosphorylation is a prevalent subject of research in
biochemistry.

A first step towards elucidating the phosphorylation network
consists of the determination of the phosphorylated residues in a
substrate protein for a given kinase. Revealing the exact position
of a phosphorylation in a sequence is essential to get irrefutable
evidence for the assignment of a protein as a kinase substrate. It
also provides powerful clues for biomedical drug design or other
biotechnological applications. Phosphorylation sites on substrates
are usually experimentally determined by mass spectrometry-
based techniques (reviewed by Jensen, 2004). This has led to
several databases of phosphorylation sites, often tied to specific
species, such as ‘The Phosphorylation Site Database’ (Gnad et al.,
2007), ‘Phospho.ELM’ (Diella et al., 2004, 2008), ‘PhosphoSite’
(Hornbeck, 2004) and ‘PhosPhAt’ (Heazlewood et al., 2008).
Performing such experiments, however, remains time consuming,
labor intensive and expensive. These disadvantages have been
anticipated by the bioinformatics community with the development
of predictive models that are trained with experimentally annotated
and known phosphorylation sites. These models can be used to
predict potential target sequences and thus significantly reduce the
number of sequences that need to be verified by mass spectrometry.

Several computational models have been built and applied
with varying success to predict phosphorylation sites, including
hidden Markov models (HMMs) (Huang et al., 2005b), neural
networks (Blom et al., 1999, 2004; Ingrell et al., 2007), group-
based scoring method (Xue et al., 2005; Zhou et al., 2004),
Bayesian decision theory (Xue et al., 2006), support vector machines
(SVMs) (Kim et al., 2004; Plewczynski et al., 2005, 2008; Wong
et al., 2007) and algorithms to identify short protein sequence
motifs on recognized substrates (Neuberger et al., 2007; Obenauer
et al., 2003). Particularly the flanking sequence (typically −4,
+4) around the potential sites (S/Y/T) is often used to develop
these models. Apart from the protein sequence, some additional
information has also been integrated, including disorder information
(Iakoucheva et al., 2004), structure information (Blom et al., 1999)
and the distribution of the phosphorylated sites (Moses et al.,
2007). The majority of the computational models dedicated to
predicting phosphorylation sites use the experimentally validated
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database Phospho.ELM (Diella et al., 2004, 2008) for training and
for the evaluation of their performance. Due to the fact that for
some particular kinases in Phospho.ELM only a small number of
phosphorylated sites is known, the annotated Swiss-Prot database
(Boeckmann et al., 2003) is often used in complement to increase
the size of the training and testing dataset.

In this article, we introduce a novel machine learning scheme that
overcomes several disadvantages associated with existing methods.
The model is based on conditional random fields (CRFs) (Lafferty
et al., 2001) and allows prediction of phosphorylated sites for
each specific kinase separately. The positive and negative datasets
are flanking sequences of amino acids around the potentially
phosphorylated residues. Information about the chemical classes
that individual amino acids belong to is also incorporated. The
CRF model is trained from only the positive training dataset. The
key idea of this approach is to generate the probability distribution
for the positive data samples. This derived distribution takes the
probability values of the positive training dataset, calculated from
the corresponding learned CRF model, as its values. Within a set
of protein sequences, the number of truly phosphorylated sites is
always small compared to the number of non-phosphorylated sites.
To overcome this difficulty, we apply Chebyshev’s Inequality from
statistics theory to find high confidence boundaries of the derived
distribution. These boundaries are used to select a part of the negative
training data, which is then used to calculate a decision threshold
based on a user-provided allowed false positive rate. To evaluate the
performance of the method, k-fold cross-validations were performed
on the experimentally verified phosphorylation dataset. This new
method performs well according to commonly used measures.

2 METHODS
CRFs were introduced initially for solving the problem of labeling sequence
data that arises in scientific fields such as bioinformatics and natural language
processing. In sequence labeling problems, each data item xi is a sequence
of observations {xi1,xi2,...,xiT }. The purpose of the technique is to make a
prediction of the sequence labels, that is, yi = {yi1,yi2,...,yiT }, corresponding
to this sequence of observations.

So far, in addition to CRFs, some probabilistic models have been
introduced to tackle this problem, such as HMMs (Freitag and McCallum
et al., 2000) and maximum entropy Markov models (MEMMs) (McCallum,
et al., 2000). In this section, we review and compare these models, before
motivating and discussing our choice for the CRFs scheme.

2.1 Review of existing models
An HMM is one of the most common methods for performing sequence
labeling. It is a generative model that maximizes the joint probability
distribution p(X,Y ), where X and Y are random variables whose values
take on all observation sequences and corresponding label sequences,
respectively. To calculate the joint probability, HMMs need to enumerate
all possible observation sequences. This is intractable when the number of
atomic observations becomes large. Moreover the interacting range between
positions in a sequence is often long. First-order HMMs relax these strict
constraints by working with two assumptions. The first one is the fact that
a prediction of a future observation only depends on the present one (or on
the immediate previous one). As a result we have p(Xt+1|Xt,Xt−1,...,X1) =
p(Xt+1|Xt). The second assumption is the time invariant or stationary:
p(Xt+1|Xt) = p(X2|X1).

These limitations of HMMs in particular and generative models in
general are the motivation behind the introduction of conditional models.
By maximizing the conditional probability p(Y |X ) from the training dataset,

conditional models do not explicitly model the observation sequences.
Furthermore, these models remain valid if dependencies between arbitrary
features exist in the observation sequences, and they do not need to account
for these arbitrary dependencies. The probability of a transition between
labels may not only depend on the current observation but also on past
and future observations. MEMMs (McCallum et al., 2000) are a typical
group of conditional probabilistic models. Each state in a MEMM has an
exponential model that takes the observation features as input, and outputs
the distribution over the possible next states. These exponential models are
trained by an appropriate iterative scaling method in the maximum entropy
framework.

On the other hand, MEMMs and non-generative finite state models based
on next-state classifiers are all victims of a weakness called label bias
(Lafferty et al., 2001). In these models, the transitions leaving a given state
compete only against each other, rather than against all other transitions in
the model. The total score mass arriving at a state must be distributed and
observed over all next states. An observation may affect which state will
be the next, but does not affect the total weight passed on to it. This will
result in a bias in the distribution of the total score weight at a state with
fewer next states. In particular, if a state has only one out-going transition,
the total score weight will be transferred regardless of the observation. A
simple example of the label bias problem has been introduced in the work
of Lafferty et al. (2001).

2.2 Conditional random fields
CRFs are discriminative probabilistic models that not only inherit all
advantages of MEMMs but also overcome the label bias weakness. While
MEMMs use exponential models of the current state to calculate the
conditional probabilities of the next states, CRFs use a single exponential
model for the conditional probability of all training labels, given the
observation sequence. Therefore, the weight of an arbitrary feature can
be learned from its global interactions with all the other features. This
means that the weights of all the features within CRFs can be traded-off
against each other. CRFs have been applied to some common problems
in natural language processing, such as NP (noun phrase)-chunking, POS
(part of speech)-tagging and text segmentation (Sha and Pereira, 2003), and
the experimental results are significantly better than those from HMMs and
MEMMs.

In CRFs, the dependencies between the label components of a random
variable Y are represented by an undirected graph G = (E,V ). Let C be a set
of cliques in graph G. Suppose that there exists a set of K feature functions
fk(c,X) predefined in each clique c ∈C, where k = 1...K . According to
the Hammersley–Clifford theorem, the conditional probability of a label
sequence given the observation sequence is calculated as follows (Sha and
Pereira, 2003):

p
(
Y |X) = 1

Zo

∏
c∈C

φ
(
c,X

)
(1)

Here Zo is the normalization function defined over all possible label
sequences and φ(c,X) is called the potential function of clique c. This is
a non-negative real-valued function and is defined as follows:

φ
(
c,X

) = e
∑

αk
∗fk

(
c,X

)
(2)

The parameters αk are learned globally from a labeled training dataset.
Although the graph G of Y may have a general structure for the problem
of modeling the sequence the most simple and important structure is the
linear chain structure. Several authors have previously applied CRFs with
a linear structure and obtained good performances (Lafferty et al., 2001; Sha
and Pereira, 2003). Within a linear structure, each clique is an edge with
two end points. The conditional probability formula can then be rewritten as
follows:

p
(
Y ,X

) = 1

Zo
exp


 ∑

e∈E,k

λkhk
(
e,Y |e ,X

)+ ∑
v∈V ,k

µkgk
(
v,Y |v ,X

) (3)
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In this formula Y |e ,Y |v are components of the random variable Y
corresponding to the edges and vertices of graph G, respectively. The function
gk and hk are the respective feature functions for the state–observation pair
and the state–state pair. These are real-valued functions but are often defined
as Boolean functions. In the domain of phosphorylation site prediction, these
feature functions, g1 for example, can be defined as follows:

g1 =
[

1 if AA−3 = "R"and AA−2 = "K"and L
(
AA0

) = "Phos"
0 otherwise

(4)

Here AA−3 = "R" means ‘The amino acid three positions left from current
AA is R’ and L

(
AA0

) = "Phos" means ‘The label of the current amino acid
is phosphorylated’.

As explained in the Section 3.1, the state–state pair feature functions (hk

in formula 3) are not declared in our implementation. Several authors have
proposed methods to efficiently induce such feature functions from datasets
(Lafferty et al., 2001; McCallum, 2003; Pietra et al., 1997).

The weights of the CRFs are learned from the training dataset {xi,yi} to
maximize the conditional log likelihood of label sequences {yi} (Sha and
Pereira, 2003).

L =
∑

i

logp
(
xi,yi

) =
∑

i

[∑
c

∑
k

αk,c
∗fk

(
c,xi

)−logZo
(
xi

)]
(5)

This likelihood function in CRFs is convex when the training label sequences
(i.e. a series of the labels ‘phosphorylated’ and ‘non-phosphorylated’) make
the state sequences (i.e. a series of amino acids) unambiguous (McCallum,
2003). In the case of phosphorylation site prediction this means that the
training labels do corroborate the substrate specificity of the kinase. This
situation happens often in practice. It guarantees that the global maximum
value of the log likelihood of the conditional probability L will be found.

2.3 Proposed algorithm
In this section, we introduce an algorithm that has all of the advantages
of the CRFs discussed in the above section. The algorithm follows a
novelty detection approach, as previously successfully implemented in gene
prioritization by De Bie et al. (2007). It builds a CRF model M+ for all
training data objects that belong to the positive class. In this application,
we designed the features or patterns according to the motifs described
in the biochemical literature on phosphorylation site prediction (reviewed
by Kobe et al., 2005). All patterns used are listed in the Supplementary
Material. If this set of features and patterns is well designed, the probabilities
p(+|x,M+) that a positive training data object x is labeled as positive
(+) are guaranteed to be the global maximum. This is due to the convex
characteristic of the conditional log likelihood function in CRFs. They will
distribute mainly near the largest probability value 1. Furthermore, according
to Chebyshev’s Inequality (Ewens and Grant, 2001), given a random variable
X and a real number n > 0, p(|X −E(X)|≥nσ )≤1/n2. Here E(X)and σ 2

denote the expected value and the variance of variable X, respectively. This
means that the confidence degree of a value of X belonging to the range
[E(X)−n∗σ , E(X)+n∗σ ] is larger than (1−1/n2). For example, with n = 3,
the confidence degree is >89%. From now this interval will be referred to as
the n-confidence interval. When applied to the distribution of the probability
values p(+|x,M+), the expected value can be estimated by the average value
of all values p(+|x,M+), with x being the positive training data objects. The
n-confidence interval is enlarged by increasing the value n until the upper
bound equals 1. This interval is used in the proposed algorithm to overcome
the difficulty that the number of examples in the positive training dataset is
very small. Due to the guarantee of obtaining the global maximum of the
CRFs, the n-confidence interval is expected to contain all values p(+|x,M+)
of all real positive data objects.

Moreover, the negative training dataset may contain some phosphorylated
residues that have not yet been experimentally verified as such. These
negative data will then get high probabilities—within the n-confidence
interval—of being labeled as positive, and will not be considered during
the process of controlling the false positive rate of the obtained classifier.

Algorithm
Input:

• Positive training dataset D+ and Negative training dataset D−.

• Predefined False Positive Rate (PFPR) of the obtained predictor.

Output:

• A predictor including a model M+ and a decision threshold θ so that
the observed False Positive Rate is expected to equal PFPR.

(1) Generate the positive CRF model M+ from the positive training
data set D+.

(2) Initialize an empty array Thres.

(3) For each data object x∈D+

(4) Calculate probability of predicting x as positive (+) given the
model M+, P+ = p(+|x,M+)

(5) Calculate the n-confidence interval of the distribution of P+ so that
the up bound equals 1.

(6) For each data object y∈D−

(7) Calculate probability of predicting y as positive (+) given the
model M+, P− = p(+|y,M+) and insert into array Thres if
P− /∈ n-confidence interval.

(8) Sort the array Thres according to ascending order.

(9) θ = Thres
[(

length
(
Thres

)−1
)−PFPR∗length

(
Thres

)]
(10) Return (Model M+, Decision threshold θ )

A new data object will be classified as positive if the probability of classifying
it as positive given the model M+is greater than or equal to the threshold θ .

In all experiments, we used the open source software tool CRF++
{{http://crfpp.sourceforge.net/}} to build the model.

3 RESULTS AND DISCUSSION

3.1 Implementation
We used the Phospho.ELM (Diella et al., 2008) (version 0707)
database to experimentally evaluate our approach. This dataset
has been used as a benchmark to test the performance of most
computational phosphorylation prediction models previously
published. Phospho.ELM contains experimentally verified
phosphorylation sites in eukaryotic proteins, manually curated from
the literature. It stores information about substrate proteins with
the exact positions of the residues that are experimentally verified
to be phosphorylated by a given kinase. For each potentially
phosphorylated residue (S, T or Y), we extracted the nine amino
acid sequence, including the central residue, surrounding it
(from −4 to +4). All of these sequences of which the central
residue was annotated as phosphorylated by a given kinase
were considered as the positive set, whereas all remaining 9mer
sequences on the same substrate proteins, were considered as
negative examples. Following Kim et al. (2004), we discarded
highly homologous sequences (over 70% identity) from the positive
and negative training dataset to avoid overestimation on accuracy
when cross-validating. Such bias appears if the testing data are
highly homologous to the training data. The number of positive
and negative samples for different kinases, after removing the
redundancies, is shown in Table 1. There are clearly much more
negative samples than positive ones. Apart from the amino acid
itself, the chemical/structural group that an amino acid belongs to
is used as an additional feature for each residue. Twenty amino
acids were grouped into eight different clusters (Table 2) according
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Table 1. The size of positive and negative datasets for some common protein
kinases, obtained from Phospho.ELM version 0707

Protein kinase Positive size Negative size

Abl (Proto-oncogene tyrosine-protein kinase) 45 1209
ATM (Ataxia telangiectasia mutated) 55 1882
CaM-KII (Calcium/calmodulin-dependent 50 1829
protein kinases)
CDK (Cyclin-dependent kinases) 104 1990
CK1 (Casein kinases 1) 42 1051
CK2 (Casein kinases 2) 226 3875
DNA-PK (DNA-dependent protein kinase 20 632
catalytic subunit)
EGFR (Epidermal growth factor receptor) 44 823
Fyn (Proto-oncogene tyrosine-protein kinase) 48 1409
GSK-3 (Glycogen synthase kinases 3) 32 866
InsR (Insulin receptor) 44 724
Met (Hepatocyte growth factor receptor) 13 132
mTOR (FK506 binding protein 12-rapamycin 13 50
associated protein 1)
PKA (cAMP-dependent protein kinase) 310 8823
PKB (Protein kinases B) 79 3563
PKC (Protein kinase) 227 4428
Src (Proto-oncogene tyrosine-protein kinase) 141 2681
Syk (Tyrosine-protein kinase) 45 680

Table 2. The chemical classes to which the 20 amino acids belong, based
on Wong et al. (2007)

Group name Amino Acids

Sulfur C, M
Aliphatic 1 A, G, P
Aliphatic 2 I, L, V
Acid D, E
Base H, K, R
Aromatic F, W, Y
Amide N, Q
Small hydroxy S, T

to their common chemical/structural properties (Wong et al., 2007).
For each position in the positive sequence data, a set of Boolean
value feature functions was declared, including functions for amino
acids (e.g. formula 4), for chemical groups (e.g. formula 6) and for
combinations of amino acids and chemical groups (e.g. formula 7).

g2 =
[

1 if G−3 = "Sulfur"and G−2 = "Base"and L
(
AA0

) = "Phos"
0 otherwise

(6)

g3 =
[

1 if A−3 = "R"and G−2 = "Base"and L
(
AA0

) = "Phos"
0 otherwise

(7)

Here G−3 = "Sulfur"means ‘The chemical group of the amino acid
(AA) three positions left from the current AA belongs to the cluster
Sulfur’ and L(AA0) = "Phos" means ‘The label of the current amino
acid is phosphorylated’.

 

N R K Q S W F D H
Amide Base Base Amide SmallHydroxy Aromatic Aromatic Acid Base

 S((N, Amide), (R, Base), (K, Base), (Q, Amide), (W, Aromatic),  
 (F, Aromatic), (D, Acid), (H, Base)) 

Transformed to an object S 

Fig. 1. Method for transforming an amino acid sequence to a data object of
the central amino acid.

When applying the algorithm (Section 2.3) to build a predictive
model from the positive (i.e. central residue is phosphorylated) and
negative (i.e. central residue is not phosphorylated) sequence data,
the conditional probabilities in Steps 4 and 7 are probabilities of
the central residues in the sequence data having the label ‘Phos’
(i.e. ‘phosphorylated’). These probabilities are equivalent to the
total sum of the probabilities of all possible label sequences of
which the central labels are ‘Phos’, assigned by a CRF given the
flanking sequence of amino acids. This increases the computational
complexity of the algorithm due to the required enumeration of all
possible surrounding labels.

To tackle this problem, we introduce a transferring method that
is applied to the sequence data as follows. Each nine-residue long
amino acid sequence is represented in an equivalent form, where
the center residue (S, Y or T) is a data object and the surrounding
residues themselves and their corresponding features become the
new features (Fig. 1). The information about the positions of the
residues is conserved, thus the CRF model still has the ability to
exploit the meaning of residue positions if suitable feature functions
(gk) are used. The state–state feature functions (hk , formula 3)
are not further declared since the dependencies between labeling
information of the surrounding amino acids is omitted in this new
representation.

3.2 Evaluation
To evaluate the performance of the algorithm, k-fold cross-validation
was used for the model trained from the large datasets, whereas
Jackknife cross-validation was applied when the models were
trained with less than 30 positives. Each cross-validation was
performed 20 times, and after each round we calculated Sensitivity
(Sn) = TP/(TP+FN) and Specificity (Sp) = TN/(TN+FP). Here TP,
TN, FP and FN are true positive, true negative, false positive and
false negative values, respectively. The average values after 20 runs
were used as the final measure of the performance for the model.

For each kinase-specific phosphorylation predictor, the ROC
(receiver operating characteristic) curve, which shows the tradeoff
between sensitivity and specificity, was generated from the final
average. The ROC curves obtained from different k-fold cross-
validations (k = 2, 4, 6, 8, 10) were approximately the same (data not
shown). For the sake of clarity, all shown ROC curves are the result
from 10-fold cross-validation (Fig. 3 and Supplementary figures,
blue lines). All ROC curves, except CDK1 and PKB, reach 100%
sensitivity with a specificity of at least 20%. Because the number of
positives is much smaller than the number of negatives, this implies
a significant reduction in the number of required validations, even
if no false negatives are desired.
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Fig. 2. Relation between expected and observed specificity values of
obtained predictor. All lines are generated using linear regression.

We also validated whether the observed specificity value of
a classifier generated from the method is close to the expected
value. For each value of an expected specificity, a 4-fold cross-
validation procedure was implemented 20 times. The average
observed specificity was calculated and compared with the expected
value (Fig. 2). These values were identical for kinases with a
negative training dataset larger than 1500. For kinases with a smaller
negative training set, the smallest regression coefficient was 0.97,
for the ‘mTOR’ kinase, of which the number of negative training
sequences was only 50. As a consequence, the algorithm can return
any desired point (classifier) on the ROC curve based on taking into
account an expected specificity value as input.

The model proposed in this article uses the positive dataset for
training, and uses the negative data to calculate a decision threshold.
In order to demonstrate the efficiency of this approach, we also
tested a conventional approach, using both the positive and negative
data for training a CRF model. For this experiment, the nine amino
acid protein sequences from both the positive and the negative
dataset were taken as input to the learning algorithm of the CRFs.
The derived ROC curves are shown in red in Figure 3 and in
the Supplementary Material. For most kinases, this conventional
approach results in a slightly worse ROC curve, indicating that
our approach outperforms the application of CRFs trained on both
positive and negative data.

3.3 Comparison
The derived ROC curves allow for easy comparison of our method
with reported performance measures from other methods. We
followed two different approaches.

The approach applied by most authors of phosphorylation site
prediction methods, is the direct comparison of obtained results with
previously reported performances (Huang et al., 2005a; Kim et al.,
2004; Zhou et al., 2004). If available, performance values, reported
in literature as pairs of sensitivities/specificities, were shown as
colored dots on the ROC plots for each kinase method (Fig. 3 and
Supplementary Fig. 1). These values can be considered worse or
better, depending on whether these dots fall below or above the
CRPhos ROC curve, respectively. In most cases, CRPhos yielded

a performance that is comparable or better than other methods.
(SVMs-based approaches applied in Predphospho (Kim et al., 2004)
and KinasePhos 2.0 (Wong et al., 2007) do perform better in some
instances (e.g. both in CK2, KinasePhos 2.0 in PKC, PredPhospho
in CDK), but worse in other cases (both in PKA, PredPhospho in
PKC). However, both predictors have been validated on data of
which the size of the negative and positive subset has been equalized,
in contrast to this article. Compared with PPSP (Xue et al., 2006),
CRPhos performs better for the majority of the kinases, but worse or
similar for a few. From all kinases, only the prediction for CK2 by
CRPhos is generally worse than those by other prediction methods,
although even then CRPhos achieves both sensitivity and specificity
values above 80%. NetphosK could only be compared for PKA and
ATM, yielding worse and better performance, respectively. Except
for CK2, CRPhos performs similar or better than the other methods,
including GPS (Zhou et al., 2004), Scansite (Obenauer et al., 2003)
and KinasePhos 1.0 (Huang et al., 2005a).

There is a chance that the version of the dataset, which is different
for previously published models, affects the above comparison. An
ideal solution to perform an unbiased comparison is running new
cross-validations on all existing methods using the same dataset that
we used. This is practically hard to achieve since trainable versions
of most tools are not available. An alternative solution consists of
testing and comparing our method and other existing ones on the
same testing dataset. There is however a high chance to get a biased
comparison if some testing data are already learned by one of the
methods.

To eliminate this problem, a more rigorous approach was
recently deployed by Wan et al. (2008). They generated a
subset of Phospho.ELM, called MetaPS06, which contains the
phosphorylation sites that were only recently added, after
publication of existing prediction models. This MetaPS06 set
does not overlap with any previously used training data. By
testing this dataset against different prediction tools, Wan and
Colleagues (2008) obtained comparable performance measurements
that represent the predictive power of each tool. To generate
equivalent performance values, we removed from Phosphos.ELM
version 07 all phosphorylated sites originated from Phospho.ELM
version 06 (with annotation data <12/31/2004), as described (Wan
et al., 2008). For this experiment the removed dataset was used to
train the CRPhos model, whereas the remaining fraction was used
for testing. The results (Fig. 4) demonstrate that the performance
of CRPhos remains better than the performance of most other
methods. Unlike other methods, CRPhos learns the model only
from the ‘golden’ positive dataset and not from the ‘un-golden’
negative dataset. This negative dataset could contain some real
phosphorylated (positive) data that have not yet been experimentally
validated. This may cause a bias in the prediction by models that are
trained from both positive and negative data.

Moreover, we also cross-validated our model using the older
versions of Phospho.ELM. versions 06 & 1206. Supplementary
Figure 2 demonstrates that this has almost no effect on the
performance.

A significant advantage of the method described in this article
lies in the fact that it is able to generate predictions for all possible
specificity values. Any classifier, defined by a point in the ROC
curve, can be readily obtained, whereas other approaches are only
able to generate one classifier with a fixed sensitivity/specificity.
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Fig. 3. ROC curves of our method for some well-studied kinases, using 10-fold cross-validation (CRPhos). CRF* stands for the equivalent curve for a CRF
model learned from both the positive and negative training dataset. For comparison, corresponding performance measures reported in literature are shown:
PPSP (Xue et al., 2006), Scansite (Obenauer et al., 2003), NetPhosK (Blom et al., 2004), KinasePhos 1.0 (Huang et al., 2005a), KinasePhos 2.0 (Wong et al.,
2007), GPS (Zhou et al., 2004) and PredPhospho (Kim et al., 2004).

4 CONCLUSION
In this article, we introduced a novel approach based on CRFs to
predict kinase-specific phosphorylation sites. Upon validation with
a real dataset of phosphorylation sites, the method yielded accurate
predictions that were similar or better than predictions obtained with
existing methods. This is consistent with the theoretical advantages
of CRFs, including the convergence to the global maximum of
the log likelihood conditional probability and the capability of
capturing all amino acid motifs and their interactions in a global
fashion.

Our approach employs Chebyshev’s Inequality to find the
confidence interval for the distribution of the real positive data.
As a result, it overcomes the difficulty that, in reality, the size of
the experimentally verified positive data is very small compared
to that of the negative data. Moreover, the use of Chebyshev’s
Inequality also allows eliminating the noisy negative data, which
may contain target sites that have not yet been experimentally
assigned as positive.

Finally, this method allows obtaining an optimal prediction for
any given allowed false positive rate. This gives the end-user
extra flexibility, especially when applied in situations where either
incomplete detection, or false positives are undesired.
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Fig. 4. Performance of CRPhos with the testing dataset that is created according to the scheme in Wan et al. (2008). The remaining dataset after removing
this testing data from Phospho.ELM v.07 was used to train CRPhos. The performance measure of other existing methods, reported by Wan et al. (2008), are
shown for comparison.
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