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Abstract

Preclinical studies suggest mesenchymal stromal cell extracellular vesicles (MSC-
EVs) reduce inflammation and improve organ function in lung diseases; however,
an objective analysis of all available data is needed prior to translation. Using rigor-
ous meta-research methods, we determined the effectiveness of MSC-EV's for pre-
clinical respiratory diseases and identified experimental conditions that may further
refine this therapy. A systematic search of MEDLINE/Embase identified 1167 records.
After screening, 52 articles were included for data extraction and evaluated for risk
of bias and quality of reporting in study design. A random effects meta-analysis was
conducted for acute lung injury (ALL; N = 23), bronchopulmonary dysplasia (BPD;
N = 8) and pulmonary arterial hypertension (PAH; N = 7). Subgroup analyses identi-
fied EV methods/characteristics that may be associated with improved efficacy. Data
is presented as standardized mean differences (SMD) or risk ratios (RR) with 95%
confidence intervals (CI). For ALI, MSC-EVs markedly reduced lung injury (SMD
-4.33, CI-5.73 t0 -2.92), vascular permeability (SMD -2.43, CI -3.05 to -1.82), and mor-
tality (RR 0.39, CI10.22 to 0.68). Small EV's were more consistently effective than large
EVs whereas no differences were observed between tissue sources, immunocom-
patibility or isolation techniques. For BPD, alveolarization was improved by MSC-
EVs (SMD -1.45, CI -2.08 to -0.82) with small EVs more consistently beneficial then
small/large EVs. In PAH, right ventricular systolic pressure (SMD -4.16, CI -5.68 to
-2.64) and hypertrophy (SMD -2.80, CI -3.68 to -1.91) were significantly attenuated by
EVs. In BPD and PAH, EVs isolated by ultracentrifugation demonstrated therapeutic
benefit whereas tangential flow filtration (N = 2) displayed minimal efficacy. Lastly,
risk of bias and quality of reporting for experimental design were consistently unclear
across all studies. Our findings demonstrate clear potential of MSC-EV's to be devel-
oped as therapy for acute and chronic lung diseases. However, greater transparency
in research design and direct comparisons of isolation technique and EV subtypes are
needed to generate robust evidence to guide clinical translation.
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1 | INTRODUCTION

Mesenchymal stromal cells (MSCs) are a heterogeneous population of cells with multipotent differentiation potential and diverse
secretory, immunomodulatory, and therapeutic functions (Le Blanc & Mougiakakos, 2012; Viswanathan et al., 2019). They can be
derived from readily available tissues, such as bone marrow, umbilical cord, and adipose tissue (Jung et al., 2012; Romanov, 2003).
Many in vitro and in vivo studies show that MSCs can modulate inflammatory pathways, improve organ function and prolong
survival (Harrell et al., 2019; Jung et al., 2012), and there are currently over 1000 clinical trials registered on ClinicalTrials.gov
investigating MSCs as an intervention across a variety of diseases. Despite this widespread interest, MSCs have received approval
for only two conditions, graft versus host disease and perianal fistulas in Crohn’s disease (Galipeau & Sensébé, 2018). The lack
of successful clinical translation is multifactorial but may include technical challenges associated with generating a consistent,
viable and effective cell therapy (Caplan et al., 2019; Lukomska et al., 2019; Rizk et al., 2016). For example, post-hoc analysis from a
clinical trial of MSCs for moderate to severe acute respiratory distress syndrome demonstrated an extensive range in cell viability
from 36 to 85% (Matthay et al., 2019). Interestingly, it has now been suggested that MSCs exert their therapeutic effects at least in
part by secretion of extracellular vesicles (EVs), which may represent a more robust therapeutic product than delivery of intact
cells (Akyurekli et al., 2015; Allan et al., 2019; Borger et al., 2017; Colombo et al., 2014; Gnecchi et al., 2005).

Respiratory disorders, whether acute or chronic, remain a leading cause of death worldwide (WHO, 2020). Greater than 500
million people are affected by chronic lung diseases with minimal curative options (Soriano et al., 2020). Moreover, COVID-19
related acute respiratory distress syndrome has shed light on the lack of available specific therapies to combat severe respiratory
infections/injury. Given the anti-inflammatory and regenerative properties of MSC-derived EVs (MSC-EVs), pulmonary diseases
have become a prominent focus for preclinical development of EV therapeutics (Guo et al., 2020). Administration of MSC-EV's
improved outcomes in both acute (e.g. acute lung injury, the preclinical correlate of acute respiratory distress syndrome) and
chronic (e.g. pulmonary arterial hypertension) conditions, as well as neonatal diseases (e.g. bronchopulmonary dysplasia) (Har-
rell et al,, 2019; Lee et al., 2019; Monsel et al., 2016; Worthington & Hagood, 2020). MSC-EVs carry a variety of key mRNAs,
microRNAs and proteins known to mediate cell processes including inflammation, angiogenesis, apoptosis and fibrosis (Tieu
et al,, 2020), all of which are critical to lung recovery. Hence, EVs can potentially harness the benefits of whole cells while over-
coming many of the common issues that accompany live cell therapies. These advantages include EV's potentially having lower
immunogenicity, enhanced ability to cross important biological barriers (e.g. lung endothelium and epithelium), and favourable
manufacturing/storage procedures (Chen et al., 2011).

As EV therapies have garnered interest over the past decade, there remain challenges and unanswered questions associated
with developing this cell-free therapy. In our previous systematic review, we analysed the methodology and outcomes of more
than 200 in vivo studies investigating MSC-EV's as a therapy (Tieu et al., 2020). There was high heterogeneity in EV nomencla-
ture, experimental approach, interventional traits, dosage regimen and study design. The Minimal Information for Studies of
Extracellular Vesicles (MISEV 2018) attempts to address many of these issues (Théry et al., 2018). However, given the diversity
of EV methodology available, there is no consensus as to which isolation technique, interventional traits (e.g. MSC source or
EV subtype) or administration protocols (e.g. delivery route, timing of treatment) will result in greatest therapeutic benefit. A
systematic and comprehensive understanding of these experimental details and the overall impact of MSC-EV's on lung repair
are needed prior to considering clinical translation.

In the clinical world, scientifically rigorous systematic reviews and meta-analyses are the gold standard approach for evaluating
the efficacy of interventions objectively and comprehensively (Crowther et al., 2010; Gurevitch et al., 2018; Murad et al., 2016;
Sena et al., 2014). They objectively assess the quality of research being conducted, elucidate specific therapy or patient population
characteristics that affect treatment outcomes, and identify knowledge gaps. By applying meta-research methods in preclinical EV
research, our study aims to determine the efficacy of MSC-EVs as treatment for various acute and chronic respiratory conditions.
A meta-analysis of acute lung injury, bronchopulmonary dysplasia, and pulmonary arterial hypertension was completed. We also
conducted subgroup analyses to explore the specific EV characteristics and methodology that may be associated with greater
benefits to help refine MSC-EV therapy. Lastly, we assessed the quality of reporting experimental parameters and risk of bias in
study design that currently exists in MSC-EV research.

2 | MATERIALS AND METHODS
2.1 | Protocol and registration
Our protocol was registered in the International Prospective Registry of Systematic Reviews (PROSPERO CRD42020145334).

Reporting of this systematic review follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
2020 guidelines (Supplemental File 1).
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2.2 | Eligibility criteria

Eligibility criteria for study inclusion was created a priori and defined according to five parameters: population, intervention,
comparator, outcomes and study design (PICOS). Predefining PICOS parameters is standard practice in meta-research method-
ology that enables unbiased search, inclusion, and assessment of pertinent articles.

221 | Population

We included any in vivo animal models of respiratory disease or injury. Invertebrate animals, in vitro or ex vivo preclinical studies
were excluded.

2.2.2 | Intervention

Studies must have administered MSC-EV's for inclusion. All animal or tissue source of MSCs were included. MSCs or EVs may
have been pre-treated, co-treated or modified (e.g. gene transfection). All routes, doses, timing and frequency of administration
were included. Studies may have administered EV's as xenogeneic, allogeneic or autologous products. Studies in which EVs were
not derived from MSCs, or were not administered to animals directly, were excluded.

223 | Comparator

All comparators including (but not limited to) placebo, vehicle control, MSCs and/or fibroblasts were considered.

2.2.4 | Outcome

Primary, secondary and tertiary outcomes were selected for acute lung injury (ALI), bronchopulmonary dysplasia (BPD),
and pulmonary arterial hypertension (PAH), the three most studied lung conditions for MSC-EV therapy. For lung condi-
tions outside of ALI, BPD, and PAH, the primary and secondary outcomes reported in the articles were extracted for narra-
tive synthesis. Studies in which outcomes did not assess EV efficacy (e.g. only the biodistribution of EVs was assessed) were
excluded.

225 | Study Design

We included controlled interventional studies (randomized, pseudo-randomized, or non-randomized), while unpublished grey
literature, abstracts, review articles, editorials, commentaries, and letters were excluded. Studies were not excluded based on
language or publication date.

2.3 | Search strategy

A systematic search of Ovid MEDLINE, Ovid MEDLINE In-Process & Other Non-Indexed Citations, and Embase Classic +
Embase was conducted until March 6, 2019 using a broad search strategy for any in vivo study investigating MSC-EV's. To update
our study, an additional search was conducted on 4 August, 2020 with lung disease filters. Both search strategies (Supplemental
File 2) were designed with the help of an information specialist and assessed by a second information specialist through the
Peer Review of Electronic Search Strategies (PRESS) (McGowan et al., 2016). The search strategies were modified according to
database and used controlled vocabulary, MeSH terms (e.g. mesenchymal stem cells, mesenchymal stromal cells, extracellular
vesicles, exosomes, microvesicles), abbreviations (e.g. MSCs, EVs, MVs), and filters for preclinical animal models. No restrictions
were applied for publication date.
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FIGURE 1  Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) flow diagram detailing study screening and selection

2.4 | Study selection and data extraction

Titles and abstracts were independently screened in duplicate (AT, MS, CG and/or KH) using the Distiller Systematic Review
Software (DistillerSR, Evidence Partners, Ottawa, Canada). A calibration test using 10 studies was performed before beginning
the formal screening process to ensure high inter-rater correlation (kappa 0.8). Titles and abstracts that met criteria or that could
not be excluded with certainty moved on to full-text screening. Following a calibration test involving 10 studies, two reviewers
(AT, MS, CG and/or KH) independently reviewed the full-text articles. Reasons for exclusion were recorded at this stage. Dis-
agreements between reviewers were resolved through discussion. The selection process is presented in a PRISMA flow diagram
(Figure 1).

Standardized data extraction forms were created in DistillerSR. Data pertaining to study characteristics, risk of bias, and quality
assessment were extracted independently and in duplicate (AT, CG and/or KH). A calibration exercise for data extraction was
conducted on the first three studies. Data was collected on study characteristics, including: general study characteristics, animal
model characteristics (e.g. species, sex, model of disease or injury), MSC and EV isolation and characterization techniques, MSC
or EV modifications, and dosage. Details for all data collected can be found in our registered PROSPERO protocol. We used the
generally accepted size-based definitions of EV subtypes, i.e. exosomes or small EVs (30-150 nm in diameter) and microvesicles
or large EVs (150-1000 nm in diameter) (Théry et al., 2018; Tieu et al., 2020), to determine whether authors use of these terms
was consistent with MISEV recommendations.

Since MSCs are a heterogeneous population of cells widely accessible from a variety of tissue sources, the International Society
for Cell Therapy (ISCT) published guidelines to standardize MSC characterization. Studies were assessed for their adherence
to the ISCT criteria including: (1) adherence to plastic in standard culture conditions, (2) positive and negative expression of
specific surface antigens, and (3) multipotent differentiation potential. Furthermore, international guidelines for investigating
EVs were published in 2018 entitled “Minimal Information for Studies of EVs” (MISEV 2018) (Théry et al., 2018). Researchers
are encouraged to characterize EVs by amount, two measures of single vesicle analysis, and at least three positive and one negative
protein marker. These criteria were used to assess study adherence to EV characterization.

2.5 | Primary and secondary outcomes

Outcomes were predetermined by consulting experts within the field of regenerative medicine and lung disease. Primary out-
comes included histological lung injury scores for ALI, mean linear intercept (a measure of alveolarization) for BPD, and right
ventricular systolic pressure for PAH. Secondary outcomes for ALI and BPD included protein concentration and neutrophil
count in bronchoalveolar lavage fluid (measures of alveolar-capillary membrane permeability and inflammation, respectively).
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For BPD and PAH, Fulton’s index (a measure of right ventricular hypertrophy and indicator of pulmonary hypertension) was
extracted as a secondary outcome. Tertiary outcomes, if reported, included measures of survival and adverse events of EV therapy.
The corresponding authors of the individual studies included in our review were contacted to obtain relevant missing data.

2.6 | Risk of bias and quality of reporting

Risk of bias was evaluated by two independent reviewers (AT, CG) using the SYRCLE (Systematic Review Centre for Laboratory
Animal Experimentation) risk of bias tool (Hooijmans et al., 2014). The SYRCLE tool features 10 different parameters including
randomization, blinding and outcome reporting, each of which was scored as having a low, high, or unclear risk of bias for each
study. Quality of reporting was evaluated by two independent reviewers (AT, CG) using the NIH standards for transparency in
reporting preclinical research. Each element in the NIH standards for transparency was scored as having been reported or not
reported. Disagreements between reviewers were resolved through discussion (Fergusson et al., 2019a; NIH 2014).

2.7 | Data analysis

Extracted data on study characteristics, methodology and intervention characteristics are presented as frequencies, proportions
and/or percentages. Studies may have used multiple techniques and interventions, either as separate experiments or in combi-
nation. Hence, the cumulative percentage of certain categories may be greater than 100%.

Study outcomes were pooled using Comprehensive Meta-Analyst (version 3; BioStat Inc., USA) and represented by forest
plots. Continuous outcome measures were expressed as standardized mean differences (SMDs) with 95% confidence intervals
(CIs), which were calculated using a random effects inverse variance meta-analysis. Standardized mean difference was chosen
due to the expected heterogeneity in the measurement techniques of outcomes. Dichotomous outcome measures were expressed
as risk ratios (RRs) with 95% confidence intervals (ClIs), which were calculated using a random effects meta-analysis based
on the DerSimonian Laird model. We corrected for the multiple use of a single control group using the method described by
Vesterinen et al (Vesterinen et al., 2014). Statistical heterogeneity was assessed using the Cochrane I* test. Planned subgroup
analyses included subgroups based on animal characteristics (e.g. sex, age, species), intervention characteristics (e.g. tissue source
of MSCs, subtype of EVs, method of EV isolation), timing of treatment and respiratory disease modelled (e.g. ALL, BPD, PAH).

3 | RESULTS
3.1 | Study characteristics

Our systematic searches yielded a total of 1167 records (Figure 1). Following level 1 screening of titles and abstracts, 434 articles
underwent level 2 full-text screening which resulted in a total of 52 studies included for our systematic review (Ahn et al., 2018;
Aliotta et al., 2016, 2017; Bandeira et al., 2018; Braun et al., 2018; Chaubey et al., 2018; Chen et al., 2014, 2019, 2020; Choi et al.,
2014; Cruz et al., 2015; de Castro et al., 2017; Deng et al., 2020; Dinh et al., 2020; Fang et al., 2020a, 2020b; Gao et al., 2020; Hao
et al.,, 2019; Harrell et al., 2020; Hogan et al., 2019; Huang et al., 2019; Khatri et al., 2018; Kim et al., 2020; Klinger et al., 2020; Lee
etal., 2012; Lei et al., 2020; Li et al., 2015, 2019a, 2019b, 2020; Liu et al., 2018, 2019a, 2019b; Mansouri et al., 2019; Maremanda et al.,
2019; Monroe et al., 2020; Monsel et al., 2015; Porzionato et al., 2019; Potter et al., 2018; Silva et al., 2019; Stone et al., 2017; Tang
etal., 2017; Varkouhi et al., 2019; Wang et al., 2020; Willis et al., 2018, 2020; Xu et al., 2019, 2020; Yi et al., 2019; Zhang et al., 2020;
Zhaorigetu et al., 2020; Zhu et al., 2014). Our meta-analysis focussed on the three most frequently investigated diseases (ALI,
BPD and PAH).

Baseline characteristics of the included studies are reported in Table 1. A majority of studies were conducted in the United
States (N = 22; 42%) or China (N = 21; 42%) (Figure S3.1). The first paper examining MSC-EVs in a model of lung disease was
published in 2012. Since then, there has been a marked growth in the number of preclinical animal studies investigating MSC-EV's
with over 60% of studies (N = 32) published in 2019 and 2020 (Figure S3.1). A variety of lung conditions have been investigated
including ALI (N = 23; 44%), PAH (N = 8;15%), BPD (N = 7; 13%), asthma / allergic inflammation (N = 5; 10%), pulmonary
fibrosis (N = 5; 10%), congenital diaphragmatic hernia (N = 2; 4%) and chronic obstructive pulmonary disease (N = 2; 4%).
Most studies utilized either a mouse (N = 31; 60%) and/or rat (N = 21; 40%) model, with only one study applying a pig model
(2%). Nearly half of the studies used only male animals (N = 24; 46%), with 8 studies using females only (15%), 2 studies using
both sexes (4%), and 18 studies not reporting of the sex of their animals (35%).
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Study name Year Statistics for each study Standardized difference in
Std diff Lower Upper means and 95% Cl
in means limit limit
Monsel 2015 269 -461 -0.78 -
Tang 2017  -919 -13.90 -4.48 —a—
Li 2019 2019 232 -393 -0.72 . B
Liua 2019  -7.88 -10.48 -5.29 ——
Liub 2019  -502 -7.01 -3.02 -
Deng 2020 -426 -570 -2.81 . 3
Chen 2020 292 -418 -1.66 3
Overall Efficacy  -4.33 -5.73 -2.92 <@
12 =74% 1500 -7.50 0.00 7.50 15.00

Favors EV Favors Control

FIGURE 2  Meta-analysis for all included studies of acute lung injury that reported the primary outcome of lung injury score. Data is presented as a forest
plot with standardized mean difference and 95% confidence intervals. Effect sizes < 0 favours EV treatment and > 0 favours control. Subscript denotes a
separate study or article that was published within the same year. The ‘Overall Efficacy’ represents a pooled estimate of MSC-EV effect on lung injury score
from all studies combined. I? value represents the statistical heterogeneity

3.2 | EV methodology and interventional characteristics

The animal source of MSCs used included human (N = 34; 65%), mouse (N = 11; 21%), rat (N = 8; 15%) and pig (N = 1; 2%)
(Figure S3.2). MSCs were derived from a variety of tissue sources including bone marrow (N = 31; 60%), umbilical cord (N =11;
21%), adipose tissue (N = 6; 12%), placenta (N = 3; 6%) and induced pluripotent stem cells (iPSCs) (N = 2; 4%) (Figure S3.2).
Studies administered either xenogeneic EVs (N = 34; 65%) or allogeneic EVs (N = 20; 38%). Based on the ISCT guidelines, 30
studies (58%) met all three criteria for MSC characterization. In vitro trilineage differentiation and the positive/negative markers
used in each study are described in Figure $3.2.

The most common techniques used for EV isolation were ultracentrifugation (N = 34; 65%), isolation kits (N = 7; 13%) and
tangential flow filtration (N = 6; 12%) (Figure S3.3). EVs were characterized by quantification (N = 47; 90%), size distribution
(N = 45; 87%), morphological analysis (N = 45; 87%) and/or surface marker expression (N = 41; 79%) in most studies (Fig-
ure 53.3). Based on the MISEV 2018 guidelines, 10 studies (19%) adequately characterized their EV therapies. Importantly, 52%
(N =27) of studies did not report assessment of negative markers to demonstrate specific isolation of EVs. Regarding EV nomen-
clature, we assessed whether the terminology used was consistent with reported size distribution of EVs (e.g. small, large or both
small/large EVs combined). Thirty-five (67%) studies utilized consistent terminology, whereas 8 studies (15%) used discordant
terms and 9 studies (17%) did not provide size analysis. More details regarding EV isolation and characterization, including
specific techniques and markers used, can be found in Figure S3.3.

The two most common routes of administration for MSC-EV delivery included intravenous (N = 31; 60%) and intratracheal
(N =165 31%) delivery (Figure S3.4). The units applied for dosing EV's varied considerably and included absolute protein amount
(N = 23; 44%), particle number (N = 11; 21%) or amount of EVs released by a certain number of MSCs (N = 8; 15%), as well
as EVs released over time or dosed by weight of animal (Figure S3.4). Most studies delivered a single dose of therapy (N = 35;
67%); studies with multiple administrations used a median value of 4 doses (ranging from 2-15 doses). EV modifications were
conducted in 33 studies (63%) which included modifications before EV isolation (N = 17; 33%), modifications to EVs directly
(N = 8;15%) and co-treatments (N = 8; 15%). Lastly, dose-response and biodistribution analyses were examined in 8 (15%) and
7 (13%) studies, respectively (Figure S3.4).

3.3 | Meta-analyses of acute lung injury studies

Method of ALI induction included intratracheal endotoxin (e.g. lipopolysaccharide; N = 8), intratracheal E. Coli (N = 3),
ischemia-reperfusion injury (N = 2), bleomycin injection (N = 2), smoke inhalation (N = 1), radiation (N = 1), viral induction
(N =1), shock (N = 1), phosgene (N = 1), burn (N = 1), trauma (N = 1) or intestinal ischemia-reperfusion (N = 1). Histologi-
cal lung injury was reported in 7 studies investigating preclinical ALI. All 7 studies demonstrated a significant reduction in lung
injury from MSC-EV therapy (pooled analysis, SMD -4.33, 95%CI -5.73 to -2.92, I? = 74%) (Figure 2). Subgroup analyses demon-
strated that small EVs consistently result in a significant attenuation of lung injury whereas the efficacy of large EVs is highly
variable and similar to control treatments from pooled analysis (Figure 3). Studies that isolated EV's by ultracentrifugation did
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Statistics for each study

Standardized difference in

No. of Std Diff Lower Upper Hetero-

0,
Subgroups Studies in Means Limit Limit geneity means and 93% Gl
Tissue Source of MSCs (P=0.62)
Bone Marrow MSC N=5 -4.00 550 -249 12=65% #’
Umbilical MSC N=2 527 -10.12 -041  12=91%
Immunocompatibility (P=0.41)
Allogeneic N=3 381 534 228 1=60% @
Xenogeneic N=4 -5.14 -7.86 -2.41 12=93% -
EV Isolation Technique (P=0.73)
High Speed Centrifugation N=1 232 393 -072 1*=83% -
Isolation Kit N=1 -7.88 -1048 -529  1>=0% ~—
Ultracentrifugation N=5 419 532 -305 [12=76% >
EV Subtype (P=0.27
Large EVs N=2 557 -11.89 075 12=84% —~ccossigii—
Small EVs N=4 468 665 271 12=78% -
Unclear N=1 292 -418 -166  12=0% <&
Route of Administration (P=0.97)
Intratracheal N=3  -439 -850 -227 [=72% D
Intravenous N=4  -433 658 -207 1>=81% -
Timing of Treatment (P=0.08)
Concurrent N=2 6.53 -10.46 -2.60 [12=61% —~ei—
Prevention N=1 232 393 -072 12=0% @
Rescue N=4 421 599 -242 1=77% >
Species of Animals (P=0.91)
Mouse Model N=3 450 690 210 12=70% -
Rat Model N= 431 636 226 12=81% -
Sex of Animals (P=0.004)
Female N=1 -7.88 -1048 -529  12=0% e
Male N=6 -3.70 -487 253  12=60% <
Overall Efficacy -4.33 -5.73 -2.92 12=74% <
-15.00 -7.50 7.50 15.00
Favors EV Favors Control

FIGURE 3  Subgroup analysis for all included studies of acute lung injury that reported the primary outcome of lung injury score. Each row represents
pooled estimate data from studies within that subgroup. Data is presented as a forest plot with standardized mean difference and 95% confidence intervals. I?
value represents the statistical heterogeneity within each subgroup. Effect sizes < 0 favours EV treatment and > 0 favours control. The ‘Overall Efficacy’ is a
pooled estimate effect of MSC-EV's on lung injury score from all studies combined

not demonstrate a difference in effect size as compared to the single study that utilized an isolation kit (Figure 3). Lastly, MSC-
EVs may demonstrate greater benefits (P = 0.004) to attenuate lung injury in female rodents as compared to males, however
only one study used female animals (Figure 3). No difference in effect size was observed between MSC tissue source (bone mar-
row vs. umbilical cord), species source of MSCs, immunocompatibility (allogeneic vs. xenogeneic), timing of treatment, route of
administration or animal model (Figure 3).

Changes to alveolar-capillary barrier permeability measured by bronchoalveolar lavage fluid (BALF) protein concentration
were reported in 28 studies. Overall, MSC-EV administration was associated with a significant attenuation of lung permeability
(SMD -2.43,95%CI -3.05 to -1.82, I> = 83%) (Figure 4). From subgroup analysis, lung permeability was reduced to a greater extent
(P < 0.001) by delivery of small EV's or both small/large as compared to large EVs alone (Figure 5). Allogeneic administration of
MSC-EVs also showed a greater reduction in lung permeability compared to xenogeneic delivery (P = 0.001). Sex (P = 0.009) and
species (P = 0.03) may be associated with greater EV efficacy as female animals and rat models demonstrated better outcomes
(Figure 5). Lastly, the single study that used an isolation kit displayed a greater improvement (P < 0.001) to lung permeability as
compared to studies that utilized ultracentrifugation. Similar to lung injury score, no difference in effect size was observed when
considering MSC tissue source, route of administration or timing of treatment.

Other secondary outcomes considered for ALI studies included mortality (RR 0.39, 95%CI 0.22 to 0.68, I* = 14%) (Fig-
ure S4.1) and inflammatory response as measured by neutrophil infiltration in BALF (SMD -1.42, 95%CI -1.83 to -1.02,
I = 66%) (Figure S4.2), both of which were significantly improved by MSC-EV therapy. Lastly, a dose-response analysis
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FIGURE 4  Meta-analysis for all included studies of acute lung injury and bronchopulmonary dysplasia that reported the secondary outcome of alveolar
capillary permeability. Data is presented as a forest plot with standardized mean difference and 95% confidence intervals. Effect sizes < 0 favours EV treatment
and > 0 favours control. Subscript denotes a separate study or article that was published within the same year. The ‘Overall Efficacy’ represents a pooled
estimate of MSC-EV effect on lung vascular permeability from all studies combined. I? value represents the statistical heterogeneity

was conducted for studies administering EVs by protein amount and reporting lung vascular permeability as an outcome.
Despite many studies delivering similar doses, the effect size varied considerably and was not correlated to dose (P = 0.311)
(Figure 54.3).

3.4 | Meta-analyses of bronchopulmonary dysplasia studies

All animal models of BPD were induced by housing new-born mice or rats under hyperoxia conditions, ranging from 60-
95% oxygen. Alveolarization was reported in 11 studies from 7 different articles and pooled analysis demonstrated marked
improvements from MSC-EV administration (SMD -1.45, 95%CI -2.08 to -0.82, I* = 63%) (Figure 6). Similar to ALI, sub-
group analysis indicated that small EV's consistently improve alveolarization, whereas the combination of small/large EV's were
highly variable and not statistically different as compared to control (Figure 7). One study that isolated EVs by TFF did not
exhibit any benefits from EVs. However, when TFF was combined with density gradient ultracentrifugation or ultracentrifuga-
tion was used alone, MSC-EV:s significantly improved lung alveolarization (P = 0.008) (Figure 7). Inmunocompatibility (allo-
geneic, P = 0.045), route of administration (intraperitoneal, P = 0.040) and timing of treatment (concurrent, P = 0.044) may
result in differential effects, whereas no differences in efficacy was observed when comparing tissue source of MSCs or animal
species.

One study evaluated the survival benefits of MSC-EVs in experimental BPD; however, mortality was shown to be unaltered
as compared to control (RR 0.86, 95%CI 0.41 to 1.80) (Figure S4.1). Other secondary outcomes of experimental BPD that were
assessed include alveolar permeability (SMD -1.80, 95%CI -3.18 to -0.41, I> = 67%) (Figure 4) and lung inflammation as measured
by BALF neutrophil (SMD -2.48, 95%CI -3.41 to -1.75, I> = 66%) (Figure S4.2), both of which demonstrated significant improve-
ments from MSC-EV delivery. Furthermore, MSC-EV delivery resulted in marked reductions to both Fulton’s Index (measure
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FIGURE 5  Subgroup analysis for all included studies of acute lung injury that reported the secondary outcome of alveolar capillary permeability. Each
row represents pooled estimate data from studies within that subgroup. Data is presented as a forest plot with standardized mean difference and 95%
confidence intervals. I? value represents the statistical heterogeneity within each subgroup. Effect sizes < 0 favours EV treatment and > 0 favours control. The
‘Overall Efficacy’ is a pooled estimate effect of MSC-EV's on lung vascular permeability from all studies of acute lung injury combined

of right ventricular hypertrophy; SMD -0.99, 95%CI -1.49 to -0.49, I* = 0%) (Figure S4.4) and RVSP (SMD -1.20, 95%CI -2.07 to
-0.34, 1> = 0%) (Figure S4.5).

3.5 | Meta-analyses of pulmonary arterial hypertension studies

Method for PAH induction included monocrotaline injection (N = 5), chronic hypoxia(N = 2), or the combination of semaxanib
(SU5416) and chronic hypoxia in rats (N = 2). Ten distinct studies from 5 articles reported RVSP, each of which demonstrated
a significant reduction after MSC-EV administration (pooled analysis, SMD -4.16, 95%CI -5.68 to -2.64, I> = 84%) (Figure 8).
Exploratory subgroup analysis showed allogeneic MSC-EV's improved RVSP to a significantly greater extent than xenogeneic
administration (P < 0.001) (Figure 9). Interestingly, in the single report of EVs isolated by combining TFF and size exclusion
chromatography, EVs were less efficacious (P < 0.001) as compared to ultracentrifugation or ultracentrifugation/chromatography
combined (Figure 9). Studies that did not report sex showed a significantly greater reduction in RVSP as compared to male-
only studies (P < 0.001). Despite the well-known sex dependency of PAH, no preclinical study explored MSC-EV therapy in
female animals. Unlike ALI or BPD, EV subtype did not demonstrate variable effects to RVSP. No differences in EV efficacy were
observed when comparing MSC tissue source or timing of treatment (Figure 9). Lastly, 17 studies reported the secondary outcome
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FIGURE 6  Meta-analysis for all included studies of bronchopulmonary dysplasia that reported the primary outcome of lung alveolarization. Data is
presented as a forest plot with standardized mean difference and 95% confidence intervals. Effect sizes < 0 favours EV treatment and > 0 favours control.
Subscript denotes a separate study or article that was published within the same year. The ‘Overall Efficacy’ represents a pooled estimate of MSC-EV effect on
alveolarization from all studies combined. I? value represents the statistical heterogeneity

of Fulton’s Index. In these studies, MSC-EV administration led to a significant reduction in right ventricular hypertrophy (SMD
-2.80, 95%CI -3.68 to -1.91, I* = 78%) (Figure S4.4).

3.6 | Studies of other respiratory conditions
3.6.1 | Asthma/ allergic airway inflammation (N = 5 studies)

Disease was induced by intraperitoneal delivery of ovalbumin (N = 3) (De Castro et al., 2017; Fang et al., 2020a; Kim et al.,
2020), Aspergillus fumigatus hyphal extract (N = 1) (Cruz et al., 2015), or IL-33 (N = 1) (Fang et al., 2020b). MSC-EVs were
administered by intravenous injection in 4 studies, with one study using intranasal delivery for more localized lung distribution.
Four studies assessed in vivo outcomes, all of which reported a significant reduction to BALF neutrophils, eosinophils and pro-
inflammatory cytokines from MSC-EV delivery. Three studies reported a marked attenuation in lung inflammation score. One
study showed improvements to lung mechanics, and another demonstrated a reduction in lung hyperresponsiveness to aller-
gens (e.g. Aspergillus hyphal). Lastly, one study assessed differential gene expression in lung tissues post-EV administration and
found the most upregulated genes were those related to antioxidation (Ponl), mitochondrial function (Bex2) and lung epithelium
protection (Scgblcl). Of note, the inhibition of miR-146a abolished the therapeutic efficacy of MSC-EVs, thereby illustrating its
critical role within EVs for immunomodulation.

3.6.2 | Pulmonary fibrosis (N = 5 studies)

Fibrosis was induced by intratracheal silica (N = 2) (Bandeira et al., 2018; Choi et al., 2014), bleomycin (N = 2) (Dinh et al., 2020;
Mansouri et al., 2019), or fine particulate matter (N = 1) (Gao et al., 2020). All studies delivered MSC-EV's as a rescue treatment
which led to reduced lung collagen content in three studies, one of which was still significantly elevated as compared to control. In
the other two studies, MSC-EV treated animals did not attenuate collagen deposition, whereas MSCs themselves or lung spheroid
cell exosomes led to marked improvements. The effect of MSC-EVs on BALF macrophage expression was variable. Two studies
reported no changes in number of lung macrophages, whereas one study observed a rescued expression of anti-inflammatory
macrophages. Most studies demonstrated reduced expression of pro-inflammatory cytokines including IL-18, TGFS1 and TNFa.
Lastly, one study found that transplantation of bone marrow derived monocytes preconditioned with MSC-EVss attenuated both
pulmonary fibrosis and lung inflammation.
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FIGURE 7  Subgroup analysis for all included studies of bronchopulmonary dysplasia that reported the primary outcome of lung alveolarization. Each
row represents pooled estimate data from studies within that subgroup. Data is presented as a forest plot with standardized mean difference and 95%
confidence intervals. I? value represents the statistical heterogeneity within each subgroup. Effect sizes < 0 favours EV treatment and > 0 favours control. The
‘Overall Efficacy’ is a pooled estimate effect of MSC-EV's on alveolarization from all studies combined

Study name Year Statistics for each study Standardized difference in

Std diff Lower Upper means and 95% CI
in means limit limit

Lee a 2012 -7.22 -10.02 -4.42 ——
Leeb 2012 -9.90 -12.56 -7.23 —H
Chen 2014 -9.32 -12.93 -5.71 ——
Klinger a 2019 240 -412 -0.68 -
Klinger b 2019 -3.70 -575 -1.64 -
Klinger ¢ 2019 -2.33 -3.90 -0.77 . 5
Klinger d 2019 284 -474 -0.93 -
Klinger e 2019 245 -456 -0.33 -
Hogan 2019 -1.52 -2.68 -0.37 L |
Zhang 2020 -3.16 -5.02 -1.30 = =
Overall Efficacy -4.16 -5.68 -2.64 <@
12=84% 15.00 -7.50 0.00 7.50 15.00

Favors EV Favors Control

FIGURE 8  Meta-analysis for all included studies of pulmonary arterial hypertension that reported the primary outcome of right ventricular systolic
pressure. Data is presented as a forest plot with standardized mean difference and 95% confidence intervals. Effect sizes < 0 favours EV treatment and > 0
favours control. Subscript denotes a separate study or article that was published within the same year. The ‘Overall Efficacy’ represents a pooled estimate of
MSC-EV effect on right ventricular systolic pressure from all studies combined. I? value represents the statistical heterogeneity
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FIGURE 9  Subgroup analysis for all included studies of pulmonary arterial hypertension that reported the primary outcome of right ventricular systolic
pressure. Each row represents pooled estimate data from studies within that subgroup. Data is presented as a forest plot with standardized mean difference and
95% confidence intervals. I? value represents the statistical heterogeneity within each subgroup. Effect sizes < 0 favours EV treatment and > 0 favours control.
The ‘Overall Efficacy’ is a pooled estimate effect of MSC-EV's on right ventricular systolic pressure from all studies combined

3.6.3 | Chronic obstructive pulmonary disease (COPD)

Two articles (4%) studied the effects of MSC-EVs in a cigarette smoke induced mouse model of COPD (Harrell et al., 2020;
Maremanda et al., 2019). In one study, the combination of MSCs and exosomes were more effective than either treatment alone
to reduce BALF cell count and cytokine levels (Maremanda et al., 2019). The mechanism of action was found to be recovery of
mitochondrial transfer and mitochondrial fusion gene expression. The second study of COPD found intraperitoneal delivery
of MSC-EVs resulted in marked reductions to plasma pro-inflammatory cytokines, histological lung injury and lung influx of
inflammatory immune cells (Harrell et al., 2020).

3.7 | Quality of reporting in MSC-EV research

All 52 lung articles were assessed for their completeness of reporting study design domains based on the NIH Principles and
Guidelines for Reporting in Preclinical Research (NIH 2014). These guidelines identify parameters that should be included in
preclinical publications to enhance scientific rigor, reproducibility and transparency. No articles used established reporting guide-
lines (e.g. Animal Research: Reporting In Vivo Experiments, ARRIVE) (Figure S6). Findings were substantiated under a range
of conditions (e.g. different dosages, routes of administration, modifications) in 31 studies (60%). Forty studies (77%) stated N-
values for at least one in vivo outcome and 31 studies (60%) for all outcomes. A priori sample size determination was described
in seven studies (13%); however, all seven studies had inadequate information necessary to reproduce calculations. The total
number of animals used in all experiments was reported in 17 studies (33%) (Figure S6).

A primary outcome was not explicitly stated in any of the 52 studies (Figure S6). The number of measurements per subject was
described for at least one outcome in 30 studies (58%), two of which reported the number of replicates in all findings. Randomiza-
tion of experimental groups was mentioned in less than half of the articles (N = 24); however, the method of randomization was
not described in any article. No studies reported blinding of the personnel conducting experiments. Blinding of data analysis was
described for all outcomes in two studies (4%) and some outcomes in 16 studies (31%), with no blinding of outcome assessment
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mentioned for 33 studies (66%). Lastly, the NIH recommends reporting the criteria for data exclusion to minimize selection bias.
Seven studies (13%) provided reasoning for data omission, which included excluding animals with heart rates < 300 beats per
minute for hemodynamic measurements (Willis et al., 2018), low expression of genes in RNA sequencing (Hogan et al., 2019), or
statistical outliers (Varkouhi et al., 2019). Forty-five studies (87%) did not provide any criteria for data exclusion (Figure S6).

3.8 | Risk of bias assessment

A majority of studies were deemed as having an ‘unclear’ risk of bias across most domains (Figure 10). Although 24 studies (46%)
reported that animals were randomized to experimental groups, no studies provided details regarding method of randomization
(i.e. to reduce selection bias) which is essential to assess adequate random sequence generation. Thirty-two studies (62%) dis-
played a low risk for reporting baseline characteristics (i.e. to reduce selection bias). However, the risk of bias was unclear across
all studies for the domains of allocation concealment (i.e. selection bias), random housing (i.e. selection bias), blinding of personnel
(i.e. performance bias) and selective outcome reporting (i.e. reporting bias). Seventeen studies reported blinded assessments (i.e.
detection bias) for some outcomes (e.g. histological/pathological injury) and 2 studies were blinded for all outcomes. Incomplete
outcome data (i.e. attrition bias) was assessed as whether the N-value was consistent between the methods and results sections.
Fourteen studies (27%) exhibited low risk, 25 studies (48%) had unclear risk and 13 studies (25%) were deemed high risk. Lastly,
other potential sources of bias considered included source of funding, sample size calculation and conflict of interests. Eleven
studies (21%) had a high risk in at least one of these additional categories. (Figure 10).

4 | DISCUSSION

Our systematic review provides a comprehensive synthesis of the preclinical efficacy, methodology, study design and preclinical
reporting of MSC-EV studies of acute and chronic respiratory diseases. Pooled estimates from meta-analyses indicate that MSC-
EV administration significantly improves primary outcomes in ALI (i.e. lung injury score), BPD (i.e. alveolarization) and PAH
(i.e. right ventricular systolic pressure). With the exception of mortality for BPD, MSC-EVs were also markedly effective at
improving secondary outcomes including survival (ALI), lung vascular permeability (ALI and BPD), BALF neutrophil count
(ALI and BPD), RVSP (BPD) and Fulton’s Index (BPD and PAH). These findings demonstrate the therapeutic efficacy of MSC-
EVs to treat both acute and chronic lung diseases.

Our previous systematic analysis of all animal studies investigating MSC-EV's found high heterogeneity in how EVs are being
isolated and characterized (Tieu et al., 2020). Moreover, there were significant inconsistencies in nomenclature being used to
describe EV therapy and variability in interventional characteristics including tissue source of MSCs and treatment regimen.
After updating our search and limiting our review to publications related to lung disorders, we still observed similar heterogene-
ity. When assessing whether groups were characterizing their MSCs and EVs according to international guidelines (e.g. ISCT
criteria and MISEV 2018) (Dominici et al., 2006; Théry et al., 2018), we found that 58% and 19% of studies met the recommen-
dations, respectively. This is a significant increase from our previous reports of only 2% adherence to MISEV 2018 (Tieu et al.,
2020) which highlights the impact of these guidelines for improving EV characterization. EV nomenclature remains inconsistent
despite the suggestions from MISEV 2018 to describe EV therapies by physical parameters (e.g. small EVs 30-150 nm, large EV's
150-1000 nm). Based on size alone, we found that over 30% of studies are using discordant terminology. This finding may be
problematic for two reasons: (1) inconsistent terms will hinder between study comparisons of different EV populations, and (2)
our finding likely is an underestimate as we only considered size and did not include analysis of EV cellular origin (e.g. exosomes
originate as intraluminal vesicles within late endosomes). Greater standardization in reporting of size and applying accurate
terminology in the EV field can help identify specific EV populations that serve as a more effective therapeutic product.

Given the many variables involved in developing an MSC-EV therapy, we conducted exploratory subgroup analyses to deter-
mine if specific EV parameters may be associated with improved efficacy. Across studies of ALI, BPD and PAH, the different
tissue sources of MSCs (e.g. bone marrow, umbilical cord, placenta) and routes of administration (e.g. intravenous, intraperi-
toneal, intratracheal) were equally efficacious, despite beliefs that intratracheal delivery may allow for greater lung distribution.
Moreover, umbilical cord tissue is known to be more efficient in producing EVs with potentially less variability from donor
demographics (e.g. age, sex, comorbidities) and serves as a non-invasive, abundant source for MSCs given its designation as
biohazardous waste (Curley et al., 2017; Fong et al., 2012; Hua et al., 2014). Hence, the similar efficacy and ease in collection of
umbilical cord tissue suggests some potential advantages when considering clinical translation. EVs isolated by TFF appeared
to be less effective than those enriched by ultracentrifugation for preclinical BPD and PAH (no studies used TFF in ALI). How-
ever, these findings were from only two studies that utilized TFF and more direct comparisons of TFF and ultracentrifugation
are warranted to establish the relative in vivo efficacy of EVs, especially given TFF’s greater efficiency in EV yield and potential
for clinical scaleup (Haraszti et al., 2018). Lastly, we conducted subgroup analysis by EV subtype/size to investigate whether dis-
tinct EV populations may exhibit variable outcomes. Small EVs or the combination of small/large EVs were found to be more
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consistently beneficial as compared to large EVs in ALI and BPD (no studies used large EVs in PAH). Moreover, small EV's led
to a significant improvement in lung vascular permeability as compared to large EVs. These results may indicate that there are
differential effects between small and large EVs, which may not be dependent on acuity/chronicity of the disease state.

Our study had limitations which warrant discussion. Firstly, the findings from subgroup analyses should be considered
exploratory. We show that specific EV characteristics are associated with greater efficacy in these investigations. However, some
subgroup categories were limited by the number of available studies and/or the sample size. Hence, updated analyses when more
studies are published will be required to generate definitive conclusions. Our findings identify the need for robust data from
head-to-head comparisons of EV methodology and/or subtypes to identify the most effective approaches for clinical translation.
Next, data generated from studies with a low risk of bias may serve as a more accurate indicator for the efficacy of MSC-EVs.
Unfortunately, most studies included in our analysis demonstrated an “unclear” risk across a majority of design parameters,
which is commonly observed in many fields of preclinical in vivo research (Avey et al., 2016; Bailey et al., 2021a, 2021b; Begley &
Ioannidis, 2015; Fergusson et al., 2019a, 2019b). Future analyses will provide greater insights once researchers and journals adopt
more complete reporting of preclinical study design (Collins & Tabak, 2014; Henderson et al., 2013; Landis et al., 2012). Lastly,
although no adverse events were reported, none of the included studies conducted formal experiments to investigate MSC-EV
safety.

Although MSC-EV therapy demonstrates great promise, several questions still need to be answered to advance the field. We
found dose-response and biodistribution studies to be infrequently conducted in respiratory diseases, which is also the case for
the MSC-EV field as a whole (Tieu et al., 2020). These experiments are urgently needed to better understand the optimal approach
for dosing EV's before attempting clinical translation. Moreover, there are no standardized guidelines on how EV dose should
be measured and reported (e.g. protein, particle or RNA amount). We now know that MSC-EV's contain many bioactive factors
including mRNas, microRNAs and proteins that modulate critical cell processes ranging from inflammation to apoptosis to
angiogenesis (Tieu et al., 2020). Although many studies show the importance of specific molecules by inhibiting their expression,
few have attempted to compare whether overexpressing one bioactive factor is more important than others. Lastly, quality of
reporting and potential risk of bias in study design is consistently unclear in preclinical EV research. Greater rigor and transparent
detailing of experimental parameters including randomization, blinding, and sample size estimates will generate more robust
evidence for EV efficacy to guide clinical translation.
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