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Abstract

UV-radiation elicits a suite of developmental (photomorphogenic) and protective

responses in plants, but responses early post-germination have received little

attention, particularly in intensively bred plants of economic importance. We

examined germination, hypocotyl elongation, leaf pubescence and subcellular

responses of germinating and/or etiolated soybean (Glycine max (L.) Merr.)

seedlings in response to treatment with discrete wavelengths of UV-A or UV-B

radiation. We demonstrate differential responses of germinating/young soybean

seedlings to a range of UV wavelengths that indicate unique signal transduction

mechanisms regulate UV-initiated responses. We have investigated how

phenylalanine, a key substrate in the phenylpropanoid pathway, may be involved in

these responses. Pubescence may be a key location for phenylalanine-derived

protective compounds, as UV-B irradiation increased pubescence and

accumulation of UV-absorbing compounds within primary leaf pubescence,

visualized by microscopy and absorbance spectra. Mass spectrometry analysis of

pubescence indicated that sinapic esters accumulate in the UV-irradiated hairs

compared to unirradiated primary leaf tissue. Deleterious effects of some UV-B

wavelengths on germination and seedling responses were reduced or entirely

prevented by inclusion of phenylalanine in the growth media. Key effects of

phenylalanine were not duplicated by tyrosine or tryptophan or sucrose, nor is the

specificity of response due to the absorbance of phenylalanine itself. These results

suggest that in the seed-to-seedling transition, phenylalanine may be a limiting
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factor in the development of initial mechanisms of UV protection in the developing

leaf.

Introduction

Seedling establishment is a critical period in the life cycle of any plant, where

many abiotic signals are experienced and the seedling must quickly acclimate, yet

few studies have investigated the range of seedling responses to UV at early

developmental stages [1, 2]. The signal response cascade following absorption by a

single or multiple photoreceptor(s), still poorly understood across the many UV

wavelengths [3–7], and is not well studied outside of Arabidopsis thaliana.

Synthesis and deployment of UV screening pigments is presumably an adaptive

response, increases epidermal screening of UV-B radiation, and has been

demonstrated for the last four decades [1, 3, 8]. Searles et al., (2001) found in a

meta-analysis that the accumulation of phenolic-based UV-screening compounds

was the most common response of plants to UV-B radiation, so phenylalanine

(Phe) may be a key determinant of any such response [9].

Phe-derived phenylpropanoids such as flavonoids [10] and simple phenolics

such as the hydroxycinnamic acids and cinnamate esters can absorb UV

wavelengths [11–13]. Flavonoids and other UV-screening pigments are found in

seeds, which vary with regard to both composition and concentration among

different plant species [14]. The rate-limiting step in general for phenylpropanoids

is the synthesis or availability of Phe [15–17]. In seedlings of Arabidopsis thaliana,

it was demonstrated that Phe supply was important to survival against UV-C, and

in pigment synthesis after exposure to UV-A and UV-B wavelengths [3]. While

UV-C does not reach sea-level, this assay was key in demonstrating the

importance of Phe and phenylpropanoids in high-energy UV-protection.

Variations in environmental conditions can shape or modulate plant

biochemistry, physiology, anatomy, development and productivity. Plants have

evolved protective and/or repair mechanisms that both detect and provide

tolerance to extremes or ranges of environmental conditions. Inability to respond

to abiotic signals may have a negative impact on one or more aspects of plant

development or physiology, and potentially affect the plant life cycle by reducing

biomass or seed yield. Ultraviolet-B (UV-B) radiation between 280 and 320 nm

has been studied as a plant ‘stress’ for several decades with the highest level of

interest arguably occurring in the 1980’s and 1990’s when depletion of the

stratospheric ozone layer and its impacts on plants was poorly understood.

Advances in scientific knowledge have increased our understanding of the

atmospheric processes involved in ozone formation and depletion, and the

current projection is that ozone levels will return to 1980 levels by mid-century

[18]. Penetration of UV-B is greater in herbaceous dicotyledonous plants [19],

which includes many plants of economic importance. Hence it is important to
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reveal the strategic locations within leaf tissue that structures may be developed or

synthesized in the still poorly understood reception of UV radiations.

Understanding the biochemical and physiological mechanisms of UV

acclimation and tolerance remain of interest from a mechanistic point of view and

for plants of economic importance. Exposure to high levels of UV-B can have

negative effects on photosynthetic capacity, biomass and seed yield, nutritional

quality of the seed, altered patterns of species competition, plant ultrastructure,

pigment production, reduced genomic stability and increased susceptibility to

disease [20, 21]. However many plants experience developmental responses to

UV-B as well (reviewed in [22]) and can be very tolerant to even high levels of

UV-B. Plants exhibit inter- and intra-specific differences in UV-B tolerance

[21, 23–26], where tolerance can vary with phenological stage of development and

under contrasting environmental conditions [1, 27]. For example, responses vary

when the spectral balance of UV-B to the other portions of the solar spectrum is

altered [21, 28, 29]. Variations in other environmental factors such as water or

nutrient availability may also alter the plant’s response to UV radiation.

Therefore, it is difficult to partition responses across multiple environmental

factors. Here, we examine how Phe may attenuate seedling responses to UV-A and

UV-B in the absence of other confounding environmental factors in germinating

soybean (Glycine max (L.) Merr.).

Soybean is an important intensively bred agricultural crop that has been often

studied for its responses to UV-B [23, 26, 28, 30–36]. However, little is known of

the spectral sensitivity of the responses during emergence/early seedling

establishment. At germination and in the first days after a seedling may experience

UV, but may not have a fully functioning chloroplast, and is still dependent upon

carbon and phenylpropanoid contents of the seed. Responses of young seedlings

to varying levels of UV have been shown to affect overall sensitivity and growth

[1, 2, 37]. Moreover, the ‘sprouts’ industry for soybean and other crops of

economic importance is growing, and the interest in phenylpropanoids for their

application to human health is growing [38, 39]. Therefore, understanding the

balance of damage and defense mechanisms, and spectral sensitivity of the UV

response in young seedlings under controlled conditions will permit better

understanding of plant perception and response to UV in the natural

environment.

We have investigated responses that begin in the seed and the responses of the

first primary leaves in young soybean to different wavelengths of UV spanning

UV-B and UV-A spectral regions, with the hypothesis that UV-B may incur

damage, and UV-A development. We were surprised that the UV-B and UV-A

effects were not so clear-cut, with UV-B inducing developmental responses in

some physiological contexts and damage in others. Phe is known to be important

responder to UV, but it appears to serve in multiple capacities across the UV

spectrum, and is dependent upon the tissue and developmental context. We

propose a strategic role for Phe in post-germination growth and defense, and a

specific role of Phe in the development of pubescence optimal for screening UV.

UV and Phenylalanine Promote Growth and Development

PLOS ONE | DOI:10.1371/journal.pone.0112301 December 30, 2014 3 / 24



Materials and Methods

Plant materials and accessions

Glycine max L. seeds of the Williams 82 (Maturity Group IV) cultivated variety

were originally obtained from Dr. William Kenworthy (University of Maryland).

Seeds of Harosoy (maturity Group II) corresponding to isogenic lines L62-561

(glabrous) and L62-801 (dense) were obtained from Dr. Randall Nelson (National

Soybean Research Center, University of Illinois at Urbana).

Chemicals

All chemicals unless specifically described otherwise were obtained from Sigma

(St. Louis, MO USA).

Growth conditions and UV treatments

Seeds were surface sterilized for 30 min in 20% bleach, washed well with sterile

water three times, then imbibed for 1 h in sterile water in complete darkness. All

subsequent steps occurred in a dark room unless otherwise specified, aided only

by dim green safelight, to prevent exciting light receptors [40]. Seeds were then

sown on 0.8% agarose plates containing 0.5 X Murashige and Skoog media, using

low-melt ‘‘Top’’ agarose cooled to 50 C̊, poured to form a very thin (,1 mm)

layer over the seeds (5 mL/phytatray), in order to keep them in place and

hydrated [3]. Sucrose was not used in the standard medium (unless otherwise

specified), in order not to introduce an additional source of carbon.

Seedlings were grown in complete darkness for either 3 or 7 d before being

irradiated with a total fluence of 104 mmol m22. At day (d) 3 after planting, seeds

have begun to germinate (i.e. d 1 of growth). So 7 d after planting, seedlings are

4 d-old; 8 d after planting, 5 d-old. Henceforth, the age of the seedling will either

be referred to as ‘‘germinating seeds’’ [d 3] or 4 d-old (7 d post sowing), or 5 d-

old (8 d post sowing) seedlings.

The UV fluence selected was based on past photobiology work [40] detailing a

minimum of incident photons predetermined to give a physiological effect in

etiolated seedlings. The photon exposure was selected as a reference point for the

purposes of this study and not to simulate sunlight. The total fluence of 104 mmol

m22 was controlled by varying exposure times at 300 nm [18 min], 305 nm

[16 min], 311 nm [14 min], 317 nm [11 min]), 325 nm [6 min], 332 nm

[6 min] or 368 nm [4 min], calculated from lamp output spectra as per [3]; times

avoided reciprocity failure.

The UV source was assembled by the UV-B Monitoring and Research Program

(UVBMRP), Colorado State University, Fort Collins, CO, USA and consisted of a

UV lamp fitted with narrow band pass filters to achieve specific UV-A and UV-B

wavelengths, where filters had a 2 nm FWHM at the following center wavelengths:

300, 305, 311, 317, 325, 332 and 368 nm [3]. Control plants were handled exactly

as the experimental plants except that a ‘‘mock’’ irradiation was conducted; i.e. no

radiation administered during ‘treatment’ [41].
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Following irradiation period on day 3, seedlings were either returned to

continuous darkness (Dc), or placed in a 16::8 light::dark cycle (WLD) at an

illumination of 100 mmol m22 s21 of white light (GE Cool-white T12 fluorescent

lamps, General Electric, Fairfield, CT USA). Completed germination (breaking

testa and emergence of radical) was scored 3 d after irradiation for all seeds, and

hypocotyl length (nearest mm) was measured 5 d following irradiation.

Amino acid-feeding and sucrose experiments

Duplicate sets of seeds were planted similarly to that used in germination studies.

For Phe-feeding experiments, Phe was added to low-melt ‘‘Top’’ agarose to a final

concentration of 1.0 mM at planting for light-grown experiments. This

concentration was chosen partly based on the studies on the Phe insensitive growth

(pig1-1) mutant [42] and was successfully used in [3] as a saturating level of Phe

for Arabidopsis. After assessing the data, we repeated the Phe experiments at a

lower concentration (500 mM) to avoid exceeding saturation of the response, and

an additional series of 1 mM, 10 mM, and 100 mM of Phe were also tested for

hypocotyl growth. A number of other amino acids were also tested including the

closely related aromatic amino acids tyrosine and tryptophan, added to top

agarose at a final concentration of 100 or 500 mM. A separate experiment was

done where sucrose (sterile filtered) was added to top agarose (2% sucrose final

concentration). The Control (no Phe) included 0.5X MS at the same volume used

for amino acids (20-fold dilution). Germinating sets of seedlings (d 3) were

irradiated with 104 mmolm22 of UV radiation (300, 305, 311, or 317 nm) or no

UV (Control) as previously described, then grown under WLD described above for

5 more d. There were three replicates of each treatment with 30 seeds each, where

for each set 10 hypocotyls randomly were selected to be measured to the nearest

mm.

Microscopy

In separate studies, 4-d-old etiolated seedlings grown in complete darkness were

treated with UV radiation as described above, returned to darkness for 24 h, then

the first developing leaves were harvested and prepared for Scanning Electron

Microscopy (SEM), Transmission Electron Microscopy (TEM), deconvoluting, or

stereo-dissection microscopy, with SEM, TEM, and deconvoluting methods

described previously [3, 41]. The 368 nm wavelength was chosen as it is UV-A,

and 317 nm was chosen as it was an expected UV-B wavelength to penetrate the

atmosphere, and 300 nm the lower end of UV-B, which does not reach sea level

but can penetrate high altitude. For SEM, the cells examined were those of the

epidermal layer and the pubescence. Leaf hair length was determined from SEM

images by sampling 10 central (side) hairs on each of 10 seedlings. For TEM, the

epidermis and first/adjacent mesophyll layer of cells of the primary leaf pair from

the abaxial side (first exposed as cotyledon opens) were examined. Fluorescence

images were obtained from live (in sterile water) seedling first leaves, 24 h post-

UV and Phenylalanine Promote Growth and Development
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UV treatment, on a Zeiss Axiovert 200M microscope (Carl Zeiss; Oberkocken,

Germany). The 20X objective was used, and images were obtained with a digital

camera utilizing DAPI (blue), FITC (green) and Texas Red (red) filter sets

(Chroma; Rockingham, VT) in order to approximately span most of the visible

light spectrum. Due to the camera type, images were false colored. At least 30

seedlings were viewed per condition. On the dissecting microscope (Zeiss Stereo

Discovery V.8), images of live, immediately removed soybean primary leaves were

taken of 5-d-old seedlings (24 h after a treatment of UV, Phe (included from

planting), or mock treatment). For Phe applications to 4-d-old seedlings, 1.0 mM

Phe in 0.5X MS was poured on (10 mL) and orbitally rotated for 5 min, then

permitted to sink in for 1 h, any not absorbed was poured off, then 5 mL 0.5X MS

was poured on, rotated, then poured off to remove residue on stem base and any

exposed root. Irradiation with 317 nm occurred after the Phe treatment (1.0 h

post) for this specific treatment. All seedlings were viewed live, using Axiovision

software, and utilizing a DAPI-LongPass filter set. DAPI LongPass excites at a

peak of 325 nm (but does excite in both UV-B and UV-A). Images show all

visible-spectrum wavelengths as captured by a real color camera. At least 30

seedlings from each treatment were viewed.

Absorbance spectra

Etiolated seedlings were grown and treated as described for microscopy, using

Control, 300, 317, 368 nm treatments, then returned to darkness immediately

after treatment. For spectra, 24 h post-irradiation, primary leaf tissue was

harvested directly into aqueous buffer (50 mM K2PO4 pH 7.5, 1.0 mM

dithiothreitol, and 0.5% protease inhibitor cocktail for plants (Sigma, St. Louis,

MO USA) and ground (30 seedlings) [41]. Cell wall material and organelles were

removed by centrifugation. Absorbance of the supernatant was measured using a

Perkin-Elmer 7000EL (Perkin Elmer, Waltham, MA, USA) spectrophotometer.

Spectra of leaf ‘‘hairs’’ were attained by harvesting whole primary leaves into

liquid nitrogen, under dim green lighting. Once frozen, pubescence was dislodged

from leaf surfaces with a plastic cell scraper and metal spatula (viewed with

dissecting microscope under white light). Leaf material then was lifted out of the

liquid nitrogen, with pubescence remaining in mortar to be ground in extraction

buffer post-evaporation of liquid nitrogen, processed in the same manner for a

spectrum, described above.

Phenylpropanoid quantitation

Briefly, four sets of seeds (30) were planted in complete darkness. 4-d-old

seedlings (d 7) were exposed to 317 nm or a mock (control) irradiation as

described for earlier experiments. Aerial portions were harvested directly into

liquid nitrogen under dim green light 24 h later. Once frozen, hairs were scraped

into liquid nitrogen, and leaf material removed, as described above for absorbance

spectra. Sample preparation for analysis was similar to a published procedure

UV and Phenylalanine Promote Growth and Development
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[41], except final dried samples were further purified by dissolving in water, then

extracted with ethyl acetate and analyzed by LC-MS [43]. Multiple-reaction

motoring method in negative ion mode was used for the analysis of particular

phenylpropanoids including quercetin, hydroxycinnamate, sinapate, coumarin,

with standards obtained from Sigma. Levels determined were expressed as ng/g of

liquid-nitrogen-ground-tissue. Liquid-nitrogen-dried/ground-tissue of aerial

portions represent 30 pairs of primary leaves each (untreated, UV-treated

317 nm). Identities of structures were confirmed by MS.

Statistical analysis

Unpaired t tests were calculated for groups of seedlings utilizing Prism v.5

software (GraphPad 2011) using Welch’s correction. For appropriate data sets

ANOVA also assessed utilizing Prism v.5. 30 seedlings were used per experimental

replicate, unless otherwise stated. A minimum of 3 independent replicates were

used per experiment. Results were noted as significant if P,0.05.

Results

Action spectra of responses indicate differential responses for

discrete UV wavelengths; germination and hypocotyl responses

indicate unique underlying mechanisms

As a first step to assess UV responses, young soybean seedlings were irradiated

with specific UV-A and UV-B wavelengths, then the primary leaves were extracted

for absorbance spectra (Fig. 1A). A pulse of 300, 317 or 368 nm treatment was

delivered overhead to 4 d dark-grown seedlings, then the primary leaf pair was

harvested 24 h after irradiation for extraction in aqueous solution, and

absorbance read. Each wavelength produced unique spectra, however 300 nm

treatment produced a spectrum similar to the Dark Control (mock irradiated, no

light).

Germination (breaking testa, emergence of radicle) was impacted by exposure

to UV radiation in a wavelength-dependent manner, observed 3 d after

irradiation, where sets of seeds were maintained either in complete darkness (Dc),

or in Long Day white light (WLD) (Fig. 1B). Compared to unirradiated controls,

seeds exposed to UV-B 300, 305, or 311 nm, then maintained in Dc, had greatly

reduced germination (#47%, compared to 99% for control) but were not

significantly different from each other (P..05). Exposure to 317 nm, in the

intermediate range between UV-A and UV-B, germination was scored ,60% in

Dc, and was significantly different from 311 nm treatment (p5.0116).

Germination in response to 325 and 332 nm was scored over 80% for both

wavelengths, where germination rate was significant in comparing 325 to 317 nm

values, and 325 and 332 nm germination values (shown on Fig. 1B). Comparisons

of both the germination rates for 332 and 368 nm were not significant, and

UV and Phenylalanine Promote Growth and Development
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Fig. 1. A. Etiolated soybean primary leaf pair spectra in response to UV radiation. Soybean were grown
in complete darkness, irradiated with the wavelength (300, 317 or 368 nm) as shown on the Figure, then
primary leaf pair extracted for aqueous UV-absorbing molecules. Absorbance was read from 200–420 nm.
Spectra are representative. n53 of sets of 30 seedlings each. Control was treated the same as experimental
except not irradiated. Seed germination (B) and hypocotyl elongation (C) responses to exposure to 300,
305, 311, 317, 325, 332, 368 nm or to no UV (Control) irradiated 3 d after planting. For germination, scoring
occurred 3 d after irradiation for seed/seedling maintained in complete darkness (Dc, except for irradiation
period) or 16:8 long day (WLD). For hypocotyl experiments, scoring took place 5 d post irradiation. Standard
deviation is shown, and significance is indicated on the Figure by P values on 1B, and stars on 1C, where ****
indicates P values ,.0001, *** indicates P value,.001, **P value,.01, and * P value in that instance shown is
0.05.

doi:10.1371/journal.pone.0112301.g001
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368 nm compared to dark unirradiated controls (Dc control) similarly were not

significant (P..05).

The reduced germination effects of UV observed at all wavelengths at 317 nm

and below was mitigated (germination rates increased) by placing seeds into a

long-day 16:8 LT::DK cycle (WLD) immediately following UV exposure (Fig. 1B).

Interestingly, in WLD conditions, some individual wavelength comparisons were

not significant, as if the germination rate was step-wise in plateau. For example,

germination rates of 300 compared to 305 nm, 317 to 325 nm, and 332 to

368 nm, were not significant; and, 332, 368 nm and WLD controls were not

significant in comparison (P..05). Other pairwise comparisons were significantly

different (shown on Fig. 1B) in germination if seedlings where grown under WLD,

post-irradiation. A 2-way ANOVA comparing Dc and WLD data across all

wavelengths indicates significance (P,.0001).

Hypocotyl responses measured 5 d after irradiation did not mirror the

germination Dc to WLD differences. Elongation was progressively more impacted

at shorter wavelengths (Fig. 1C) in the Dc condition, and was linear. If each

wavelength was compared to the next greater (i.e. 300 to 305 nm, 305 to 311 nm

etc) the significance for each pair was P..0001, except for Dc 368 nm compared

to the Dc control (no irradiation) where P5.0285. Hypocotyl elongation

increased with each increasing wavelength in the WLD condition, except that the

hypocotyl elongation response plateaued by 332 nm. In specific pairwise

comparisons of each wavelength, all hypocotyl lengths of Dc compared to WLD in

response to a specific UV wavelength were significantly longer (P values pairwise,

300 Dc to 300 WLD etc.), where P values ranged from 0.0468 to ,.0001

(significance indicated on Fig. 1C), except for elongation in response to 332 nm

which did not reach significance in Dc compared to WLD. Due to the plateau of

response in the WLD, the hypocotyl length of 368 Dc compared to 368 WLD was

significantly different (P,.0001), and hence, 332 and 368 nm in WLD expanded to

a similar length as the WLD control seedlings and was not significantly different.

Ultrastructural responses to UV radiation

With UV clearly having tissue-dependent impacts, some detrimental, some

growth promoting, we further investigated the primary leaves since their

development for photosynthesis is critical to overall seedling survival. Primary

leaves of control, and UV-treated seedlings were examined by SEM. Control 4-d-

old (mock-irradiated) seedlings, and seedlings exposed to UV-B radiation

(300 nm) exhibited organized rows of densely packed, but unexpanded leaf hairs

24 h post-irradiation (Fig. 2A), with some hairs appearing damaged in response

to 300 nm. In contrast, the pubescence on primary leaves of seedlings treated with

317 nm or 368 nm expanded, covering the surface of the primary leaf, with

368 nm eliciting the greatest response on the upper leaf (exposure side). TEM

data of the primary leaf pair revealed cellular damage as a result of the 300 nm

(UV-B radiation) treatment including organellar damage, membrane damage and

the loss of cell wall integrity in both the epidermal layer, and developing
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Fig. 2. Representative SEM and TEM images of UV-A and UV-B responses. A. SEM indicate
developmental response to UV-A and lack of, or inhibited response to 300 nm for development of
pubescence. 4-d-old seedlings were mock-irradiated (Control) or irradiated with a brief pulse of UV (300, 317
or 368 nm), then returned to the dark for 24 h after which the primary leaves were harvested directly for
Scanning Electron Microscopy. Views of the primary leaves of seedlings indicate the side views of the primary
leaf pair. The lower panel depicts representative enlarged insets of the side views of the primary leaves
showing the rows of hairs. Irradiation treatments are indicated in the Figure. The bar graph depicts the mean
length of 10 randomly selected hairs from what will later (after opening) be the abaxial side, with the mean
value shown. Mean value of Control seedlings’ primary leaves was set to 1.0, and other treatments thus
compared to Control. B. TEM micrographs of etiolated 5-d-old soybean seedlings grown exposed to UV
indicate damage at UV-B wavelengths. 4-d-old Williams 82 (the cultivar used throughout unless indicated)
seedlings were either mock-irradiated (Control) or irradiated with 104 mmolm22 of UV (300, 317 or 368 nm),
then returned to the dark for 24 h, after which the primary leaves were harvested directly into fixative in the
dark to be processed for TEM. Sections were cut perpendicular to the abaxial (top, emergent side of leaf)
surface and show the side view of the epidermis and first developing mesophyll cell layer. Representative
sections are shown. v5vacuole. Second set (panels below). Soybean cv Harosoy dense (top row) and
Harosoy glabrous (bottom row) were sown and grown the same as for Williams 82. The 4-d-old seedlings
were either mock-irradiated (Control) or irradiated with 104 mmolm22 of UV (317 nm), then returned to the dark

UV and Phenylalanine Promote Growth and Development
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mesophyll layer just below the epidermis (2B, upper set of images). Despite having

an apparent developmental response to 317 nm (pubescence), this treatment

resulted in some vacuolar disruption observed in the TEM, but there was no

visible loss of plasma membrane/cell wall integrity. The 368 nm treatment (UV-A)

appeared to promote plastid development (compared to proplastids in Controls)

with no overt deleterious effects on the cells.

To confirm the SEM and to explore whether leaf hairs have a specific role in

protecting young etiolated leave cells from UV radiation, we did TEM to explore

the effects of 317 nm treatment on the isogenic Harosoy dense (pubescent/hairy;

L62-801) and glabrous (bald; L62-561) cultivars of soybean at the same age (4-d-

old), by examining the epidermal and immediate adjacent layer of developing

mesophyll of the primary leaf pair (2B, lower set of images). The TEM data

indicated that the dense (hairy) line displayed no obvious deleterious effects in

response to treatment with 317 nm radiation. In contrast, the glabrous (hairless)

line displayed severe damage, including vacuolar and organellar damage,

plasmolysis, and loss of plasma membrane and cell wall integrity.

UV stimulates expansion of pubescence and pigments at some

wavelengths

Deconvoluting fluorescence microscopy was used to further evaluate the

pubescence of live etiolated seedlings in response to a UV treatment 24 h post-

irradiation. In order to view pigmentation in the live leaves and resulting

pubescence, excitation and emission filter sets were used that span UV and most

of the visible spectral region. A brief UV-B treatment (300, 305 or 311 nm) did

not increase fluorescence intensity or elongation of pubescence of live seedlings

(Fig. 3A). Response to 300 and 305 nm indicated that hairs remained short or

even damaged (300, hairs appear folded). As observed in SEM data (Fig. 2A),

seedlings treated with 317 nm also exhibited expanded pubescence, and

additionally, pigments were observed within the pubescence. Fluorescence was

more visible in seedlings treated with UV-A radiation (325, 332 or 368 nm)

(Fig. 3A & B), and for detail Figs. 3B and S1 indicate slices through the

pubescence of the seedlings with the most visible pubescence, those seedlings

treated with 368 nm. In particular, the DAPI and FITC (exciting in UV and blue,

and blue and green, respectively, with emission in blue and in green, respectively)

channels indicated the predominant emissions, which would fit with what is

known about phenylpropanoid absorbance. Absorbance spectra of primary leaves

confirm that 300 nm elicits little in the way of synthesis or deployment of UV-

absorbing compounds compared to 317 or 368 nm (Fig. 1A). Since pigments

were noticed at 317 nm, and 317 also had a similar absorbance spectrum to

for 24 h after which the primary leaves were harvested directly into fixative in the dark to be processed for
TEM. Sections were cut perpendicular to the abaxial surface, and representative sections are shown.
v5vacuole.

doi:10.1371/journal.pone.0112301.g002
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368 nm, analysis was performed on the hairs treated with 317 and compared to

the rest of the leaf material. Pubescence was separated from the primary leaves

24 h after being treated with 317 nm, then the pubescence was further analyzed by

absorbance spectra (Fig. 3C) and HPLC for specific phenylpropanoids. There

were many compounds that were too low in abundance to be detected in the hairs

by these methods, but of individual compounds detected, sinapic acid esters were

observed to have the greatest increase compared to pubescence of untreated

primary leaves (0.83 ng/g [317 nm] compared to 0.03 ng/g [untreated], S2 Fig.).

Fig. 3. UV- and visible-light absorbing compounds are located in pubescence, induced by UV-A or UV-B or Phe. A. Responses of live-seedling
pubescence to UV-B and UV-A wavelengths on deconvoluting microscopy. 4-d dark grown seedlings were either mock-irradiated (Untreated) or
irradiated with 104 mmolm22 of UV (300, 305, 311, 317, 325, 332 or 368 nm shown), then returned to the dark for 24 h, after which the live primary leaves
were imaged on a deconvoluting microscope. The images shown are captured (false-colored) for DAPI (blue), FITC (green) and TexasRed (red) excitation/
emission sets (merged images shown) and show natural fluorescence, and represent a snap of the Z-stack focused on the abaxial pubescence of the
primary leaf. At least 30 seedlings were viewed per condition. A close-up of the pubescence from 368 nm treatment is shown. Scale bar represents 40 mm.
Arrows indicate the increasing (compared to Untreated) fluorescence. B. Z-stack representative slices of fluorescence of 368 nm treatment. Each slice
of the Z stack51 mm thickness. C. Spectra of leaf material compared to pubescence. Soybean were grown in complete darkness, irradiated with the
wavelength as shown on the Figure at 4-d-old, then primary leaf pairs were harvested from seedlings into liquid nitrogen, where pubescence was separated
then extracted for aqueous UV-absorbing molecules. Absorbance was read from 200–420 nm. Spectra are representative. n53 of sets of 30 seedlings
each.

doi:10.1371/journal.pone.0112301.g003
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Exogenous Phe prevents any negative effects of UV-B

Phenylpropanoids can absorb light in 300–415 nm range, and are the basis of the

most commonly observed responses (screening) to UV of field plants in the

literature. Phe also is the precursor to many structural molecules involved in

defense responses of seedlings. Hence, we explored how exogenous Phe would

affect particular responses to UV-B which we had shown in Fig. 1 to be harmful at

more energetic wavelengths (,317 nm). Addition of Phe (1.0 mM) to the growth

media at the time of sowing resulted in 100% germination and greening by 5 d

post-irradiation, compared to UV-B treated seedlings with no exogenous Phe

added (S3A Fig.). Hypocotyl elongation data (S3B Fig.) were similar in the

unirradiated control, and irradiated seedlings for all UV-B treatments when Phe

(1.0 mM) was added to the media. Since 1.0 mM appeared to saturate this

‘prevention of damage’ response, we also utilized other concentrations of Phe in a

similar set of experiments, shown in Figs. 4 and S4. The more energetic

wavelengths (300, 305 nm) still caused suppression of elongation, but not as

severe as –Phe. To explore if this prevention of damage was specific to Phe, we

tested similar amino acids, or amino acids thought to regulate Phe in other

organisms, in order to see if another amino acid could impart the same protective

effects (Fig. 4). Neither tyrosine nor tryptophan at 500 mM could duplicate the

effect of Phe, however there was some response observed, where tryptophan had

greater hypocotyl elongation at 300 nm compared to 305 or 311. Tryptophan

itself, unlike Phe, is known to be able to directly absorb UV directly ,300 nm;

conversely, tyrosine has low absorbance at 300 nm. To further clarify the

mechanism of Phe’s action, 2% sucrose was included in the top agarose at time of

sowing, in case the hypocotyl alleviation response was due to a specific carbon

issue, as the germinating seedlings do not have a developed or mature chloroplast.

Sucrose also failed to alleviate the hypocotyl suppression of UV-B in the more

energetic wavelengths. While 100 mM of Phe impacted the protective effect and

promoted elongation, it was not as great as 500 mM Phe. 100 mM tyrosine or

tryptophan did not improve or alter responses to UV (S4 Fig.).

Phe and UV-B can increase development in the primary leaves

Data herein indicate Phe and UV have developmental impacts on the germinating

and young soybean seedling. Since Phe-derived materials can be up to a third of

the vegetative mass of a plant [44], and Phe synthesis is known to be increased by

UV by many reports, it is possible that there is some interactive effect of Phe and

UV in the context of leaf and/or pubescence development. In order to investigate

this further, we examined pubescence and leaf expansion on a dissection

microscope utilizing DAPI LongPass capture. Viewed samples are excited at a

peak of 325 nm (excitation occurs in both UV-A and UV-B) and the emission

from the plant material is captured at UV-A and all visible wavelengths. When

Phe was included in the medium from sowing, and 4-d-old seedlings were

irradiated with 317 nm then returned to darkness and harvested 24 h later, an

increase on pubescence density, fuorescence and leaf expansion was observed
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(Fig. 5; ‘‘+Phe +UV’’ image, ‘‘U-P’’ tip to base leaf length), compared to seedlings

treated with Phe alone in the medium from sowing (‘‘+Phe only no UV’’ image;

‘‘+P’’ tip to base leaf length), or a UV irradiation without Phe (‘‘+UV only no

Phe’’ image, ‘‘+UV’’ tip to base leaf length). The U-P leaf expansion measurement

indicated the +Phe and +UV impact was not directly additive. If Phe was added to

medium of 4-d-old seedlings, 1.0 h before the UV (317 nm) irradiation, then

viewed 24 h later (‘‘+Phe on day 4 +UV’’ image; ‘‘U-P4’’ tip to base leaf length),

there was little change in response observed, compared to UV or Phe alone, so Phe

itself directly is not absorbing UV to fluoresce in the pubescence. The Control

(‘‘Untreated’’ image; ‘‘N’’ tip to base leaf length) seedlings which were not treated

by any UV irradiation, and the medium did not contain Phe at any time remained

non-fluorescent (clear) and leaves relatively unexpanded. The pubescence itself is

largely non-flourescing (without Phe or UV) compared to the cells of the cell layer

below, which are fluorescing in the red region, indicating presence of

protochlorophylls/chlorophyll.

Discussion

The results of this study illustrate wavelength-dependent effects of exposure to UV

radiation, and how Phe can directly influence the seedling response outcome.

Each parameter assessed had a unique action spectrum for UV, where for some,

Fig. 4. Phe prevents deleterious effects of UV-B, not duplicated by tryptophan, tyrosine or sucrose.
Images of seedlings grown and exposed to UV radiation (300, 305, 311, 317) as described in Fig. 1, except
that seedlings were grown on media with (+) and without (–) inclusion of 500 mM Phe, or 500 mM tryptophan
(Trp) or 500 mM tyrosine (Tyr), or 2% final volume sterile-filtered sucrose (Sucrose) at the time of seed sowing.
Hypocotyls were measured in cm 5 d after irradiation. Symbols are indicated on the Figure. Some of the
symbols plotted are obscured, as there were nearly coinciding data points (i.e. tryptophan symbol is right
behind sucrose for the 300 nm treatment).

doi:10.1371/journal.pone.0112301.g004
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Fig. 5. Primary leaves respond to Phe or UV (317 nm): impact on pubescence and leaf expansion. All data shown are from 5-d-old seedlings (4-d-old
seedlings were irradiated with 317 nm, returned to darkness, then images captured 24 h later), and images were taken on a Stereo dissecting microscope
utilizing a DAPI-longPass cube set, with excitation peak at 325 nm and emissions that covered the full visible spectrum (in real color). Images were captured
at the same exposure. The Control (‘‘Untreated’’ image; ‘‘N’’ tip to base leaf length) seedlings were not treated by any UV irradiation, and the medium did not
contain Phe at any time. ‘‘+Phe +UV’’ image, ‘‘U-P’’ tip to base leaf length indicates data set where Phe was included in the medium from sowing, and 4-d-old
seedlings were irradiated with 317 nm then returned to darkness and harvested 24 h later. ‘‘+Phe only no UV’’ image; ‘‘+P’’ tip to base leaf length were
seedlings treated with Phe alone in the medium from sowing, harvested at the same time as all other seedlings (24 h irradiation times). ‘‘+UV only no Phe’’
image, ‘‘+UV’’ tip to base leaf length are seedlings receiving a 317 nm UV irradiation without any Phe at any time, returned to darkness and harvested 24 h
post-irradiation. ‘‘+Phe on day 4 +UV’’ image; ‘‘U-P4’’ tip to base leaf length indicate seedlings grown in the same manner as controls, until 4-d-old seedlings,
where Phe was added to the medium 1.0 h before the UV (317 nm) irradiation, returned to darkness, then viewed 24 h later. All seedlings thus were the
exact same age (5-d-old). The red flourescence indicates protochlorophylls and developing plastids from developing mesophyll under the epidermis. n530
seedlings each condition. The scale bar represents 50 mm. (*5P,.05; **5P,.01).

doi:10.1371/journal.pone.0112301.g005
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there was a distinct difference between UV-A and UV-B responses (germination

and maintenance in darkness; pubescence fluorescence, absorbance of aqueous

extract of primary leaves), and some parameters appeared to respond in a near

linear fashion to increasing wavelength (germination moved to WLD; hypocotyl

elongation moved to Dc) underlying potentially shared as well as unique

mechanisms of signal transduction. We demonstrated that Phe can prevent a

stressful response or cessation of growth response, preventing deleterious

responses in development/greening, germination, and elongation. Compared to

tyrosine and tryptophan, Phe itself does not absorb well in the UV-B range,

However, the products of the phenylpropanoid pathway are utilized for UV-

screening, as well as structures of protection made from phenylpropanoids, and

further, Phe may have yet other uses not yet known for the seedling. Phe facilitates

a robust response to UV via the phenylpropanoid family, and these actions are not

duplicated by tyrosine or tryptophan. Phe in a variety of contexts is important for

the germinating, then development in the seedling, illustrated in the combined

response of Phe and UV effects on pubescence, while not additive was an increase

over +Phe alone or UV exposure alone, as shown herein.

Although the goal of this study was not to develop an action spectrum per se,

the featured results are consistent with the steep UV-B response observed in

several commonly cited biological spectral weighting functions such as those of

Caldwell (1971) [45] and Flint et al., 2004 [46], and the DNA damage spectrum of

Tan et al., (1970) [47]. Likewise, the UV-A induced responses were also consistent

with those previous studies where negative effects of UV-A were reduced

compared to UV-B (i.e. more flat response) and with previous studies that

indicated the physiological importance of UV-A and its role in gene expression

and phenolic accumulation [48, 49].

Given that our studies focused on seeds and very young seedlings, some in

complete darkness from the time of planting, Phe utilization early in the

germination-to-seedling transition may be a general mechanism of UV-

preparedness in the absence of a fully functional chloroplast. Indeed, studies of

UVR8, a known UV-B receptor, indicate that mutation of a single tryptophan to

Phe enables a re-tuning of the photoreceptor to be able to detect UV-C

wavelengths [7]. Phe is an important building block, is the starting point of the

phenylpropanoids, and may assist in screening more energetic (below 280 nm)

wavelengths of UV, which was not tested herein, but others have observed that

there are UV-absorbing pigments induced in the low UV-B and UV-C ranges

[50]. The utilization of Phe demonstrated herein indicates that Phe may be

specifically required to supply the rapidly growing ‘sink’ of the new leaves,

chloroplasts, and defense structures.

UV effects on germination and growth

Seed germination was reduced by exposure to UV-B, but exposing seeds to low

levels of PAR (WLD) following UV exposure reversed the UV-B inhibition of seed

germination. Since germination in dark-grown control seeds was ,100%, it is not
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likely that the response to light was simply a function of light-induced

germination. The mitigation of UV-B damage by high levels of PAR has been

known for some time (e.g. [28, 29] and others), but the responses observed herein

suggest that the response is elicited at very low levels of PAR (e.g. 102 mmol

m22 s21 in this study). The mechanisms remain poorly understood. In this study

with low levels of PAR and etiolated seedlings it is not likely that photosynthetic

carbon gain or available energy was a factor in the response. Since the germination

rate varied with wavelength of UV even after subsequent exposure to white light,

the response could be linked to a either a UV-white light-reversible photoreceptor

or, more likely, a white-light-induced repair or reversal of some deleterious effects

of the UV exposure.

Hypocotyl elongation was also affected as a function of wavelength in a similar

fashion as germination. However, in contrast to germination, responses were

linear (in germination compare Dc to WLD) and subsequent exposure to white

light had very little impact on the response, except in the controls and at 368 nm

where hypocotyl elongation was reduced in the light. These hypocotyl elongation

data show a similar trend in the spectral responses to that reported by Gardner

et al., 2009 [4]. These data suggest that hypocotyl length may be a function of a

different receptor(s) or different mechanism(s) of control than germination.

Pubescence and UV-B Screening may be linked to Phe levels

The SEM, TEM, and deconvoluting microscopy data suggest that young etiolated

soybean leaves perceive UV-A radiation as a developmental signal. This response

may enhance UV protection of the nascent leaves by UV-absorbing compound

synthesis, increasing leaf reflectance, or screening potentially damaging UV-B

radiation by absorbance in the leaf hairs. Although leaf reflectance of UV-B is

generally below 10%, it has also been shown to be up to 70% in some plants

[51, 52]. Day [19] showed that herbaceous dicotyledons may permit penetration

of UV-B .30 mm into the leaf surface, which would span the epidermis, and

extend into forming mesophyll of soybean primary leaves in early seedling stage.

Leaf hairs have been shown herein to accumulate UV-screening compounds,

hence it is possible that the more dense isoline of Harosoy may possess more

phenylpropanoids in strategic locations for defense compared to the glabrous line.

Pubescence and leaf surface waxes affects leaf optical properties ([53–55] and can

enhance tolerance to UV radiation [56].

Importance of Phe in structures and screening molecules

The synthesis of UV-screening compounds in response to exposure to UV

radiation and its role as an adaptive response of plants to UV radiation has been

well documented [9, 13, 49, 57–59]. Most previous research has focused on the

genes coding for synthesis of enzymes that define key steps in the phenylpro-

panoid pathway or its major branch points or terminal steps (e.g. PAL, CHS).

Almost no studies have focused on the availability or synthesis of Phe, especially in
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the seed to seedling transition in seedlings, when seedlings are dependent on the

contents of the seed and environmental signals.

Phe, synthesized by plants de novo, serves as both a building block for proteins,

as well as the precursor or first step to the thousands of compounds synthesized in

higher plants by the phenylpropanoid pathway. Levels of Phe can be low enough

to limit the production of UV-protective compounds such as UV waxes and UV-

screening pigments [3, 15–17, 41]. Depending upon the quality and quantity of

the materials stored in the endosperm, emergent seedlings may not have sufficient

Phe to serve primary metabolism (protein) and the ability to achieve UV-B

protection, since only particular areas of the growing seedling (i.e. root tip)

appear to possess measurable phenylpropanoids [60, 61] and the plastid is still

developing. Voll et al. [42] reported the interesting finding that increasing carbon

availability affected growth of plants that were being fed exogenous amino acids

including Phe, but the relationship to plastid status is unclear.

The results of this study demonstrate that supplementing Phe in soybean

prevents potential damage by UV, providing a competency to etiolated seedlings

to respond to UV-B. The ability to prevent UV-B stress in etiolated soybean by the

feeding of Phe to the imbibing seed in the absence of any pre-irradiation, suggests

that a significant amount of Phe is committed to the phenylpropanoid pathway

[3, 17, 62]. In addition, the significant and measurable chemical change in hairs in

response to 317 nm was the increased accumulation of sinapate esters, a

phenylpropanoid demonstrated to be important in UV screening (11,12). Hence,

Phe may be a limiting factor in seedling responses to UV.

It is not known however whether soybean is similar to Arabidopsis

mechanistically where exposure of etiolated Arabidopsis seedlings to BL or to UV-

A radiation activates a G-protein-mediated pathway that increases the rate of

synthesis of the amino acid Phe and subsequently increases UV radiation-

absorbing pigments [3, 41]. The larger seed and seedling size in soybean compared

to Arabidopsis may also affect the dynamics of seed/leaf optical properties and

thus UV-screening may differ inherently between the two species. However, like

Arabidopsis, it is possible that sinapate esters [11–12] are also very important in

screening for soybean given our data herein for the pubescence. Day [19] and Day

et al., [63] have shown that epidermal screening effectively varies widely among

species and it is related to growth habit and ecological role. It is also unclear how

these responses may vary in more mature plants. The 5-d-old seedlings in dark-

grown conditions observed herein possess proplastids like other legumes [64],

which are different from a mature seedling, or adult plant with developed

chloroplasts. Light-grown, mature plants possess fully functioning chloroplasts,

and presumably ability to synthesize Phe by various means.

UV-exposure and acclimation to environmental UV

UV-A above 317 nm promoted strong developmental responses (pubescence,

sinapate accumulation) with some indicators of stress or damage at 317 nm

(vacuolar changes, Harosoy data). There were no apparent developmental
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responses and minimal pigment production at 300 nm, indicating there may be a

range of photoreceptors spanning the UV-B range, and the photoreceptors

concerned may be less efficient at higher energy wavelengths like 300 nm.

It is of interest to consider the presumed enhancement of UV-B tolerance or

acclimation to UV-B via putative UV-A signal perception. Perhaps this can be

rationalized by the fact that incident levels of UV-A are several orders of

magnitude larger than those of UV-B in the natural environment, and the high

degree of epidermal attenuation of UV-B in many species [19, 64, 65]. It could

also be due to DNA damage at the shorter wavelengths. For example Buchholz

et al. (1995) [66] suggested that UV-B inhibition of flavonoid synthesis may have

been due in part to DNA damage since BL/UV-A induced photoreactivation

partially reversed the inhibition. In plants exposed to UV-A and UV-B, there are

likely interactions between UV-A and UV-B systems that we still have very little

information regarding, as yet [67]. It would not be surprising if selective pressure

led to UV-A rather than sole UV-B photoreceptors in plants not adapted to a very

high UV environment (i.e. adapted to low altitudes). This would be somewhat

analogous to the BL/UV-A induction of photolyase and the repair of cyclobutane

pyrimidine dimers (CPD) [32, 68]. UV-A also stimulated greater accumulation of

pigments in the pubescence that absorbed in UV (shown in Fig. 3).

The possible selective value of such a UV-A response is further evident when

one considers the range of ecophysiological benefits such as improved drought

and pest tolerance, and photoprotection is generally attributed to development of

leaf pubescence and glaucousness [53, 69–73]. Phenylpropanoids in general are

part of defense mechanisms, where adequate induction of the phenylpropanoid

pathway is important in the first three weeks post-germination, influencing ability

to respond to subsequent stresses [1, 74–77]. Hence, the level of Phe present in a

germinating seed may be critical for the ability to acclimate to new environmental

conditions. Further studies are needed in order to further elucidate the

importance of initial levels of Phe and the interactions with development and

environmental signaling modifiers.

Supporting Information

S1 Fig. Z stack of 368 nm-irradiated seedlings showing individual channels for

the Z1 slice. Seeds were planted as described for Fig. 3A. The image shown

indicates the black and white contrast of the individual channels for DAPI, FITC,

and Texas Red, indicating the impact of each excitation and emission. DAPI

excites in UV and emission is in the blue range and is false-colored in blue, FITC

excites in blue and blue-green, and emission is in blue-to-green range and is false-

colored in green, Texas Red excites in the yellow to red, and emission is in orange

to red.

doi:10.1371/journal.pone.0112301.s001 (PPT)
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S2 Fig. Mass Spectrometry (MS) chromatogram data for UV and untreated

samples. Arrow indicating peak of interest, sinapate, was confirmed by purified

standard. Peak area was calculated by computer software described in Methods.

doi:10.1371/journal.pone.0112301.s002 (DOCX)

S3 Fig. Phe prevents deleterious effects of UV-B on germination and hypocotyl

elongation. Seeds were planted as described for Fig. 1 except that in +Phe

(1.0 mM) trays, Phe was included in the top agarose medium. On d 3 after

sowing, the trays were irradiated with 300, 305, 311 or 317 nm as described in

methods, then placed in WLD and photographed (A), scored and hypocotyls

measured (B) 5 d later.

doi:10.1371/journal.pone.0112301.s003 (PPT)

S4 Fig. Phe and aromatic amino acid impact on UV-irradiated hypocotyl

length. Images of seedlings grown and exposed to UV radiation (300, 305, 311,

317) as described in Fig. 1, except that seedlings were grown on media with (+)

and without (–) inclusion of 1.0–500 mM Phe (upper panel), or 100 or 500 mM

tryptophan (Trp) or 500 mM tyrosine (Tyr) (lower panel), Hypocotyls were

measured in cm 5 d after irradiation. Symbols are indicated on the Figure. Some

of the symbols plotted are obscured, by coinciding data points. Stars indicate

significant differences (T-test, Welch correction) between the 100 and 500 mM

Phe treatments (*5P,.05; ***5P,.001; ****5P,.0001).

doi:10.1371/journal.pone.0112301.s004 (PPT)
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