
Deciphering deterioration mechanisms
of complex diseases based on the
construction of dynamic networks and
systems analysis
Yuanyuan Li1,3*, Suoqin Jin1*, Lei Lei2, Zishu Pan2 & Xiufen Zou1

1School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China, 2State Key Laboratory of Virology, College of Life
Sciences, Wuhan University, Wuhan 430072, China, 3School of Science, Wuhan Institute of Technology, Wuhan 430074, China.

The early diagnosis and investigation of the pathogenic mechanisms of complex diseases are the most
challenging problems in the fields of biology and medicine. Network-based systems biology is an important
technique for the study of complex diseases. The present study constructed dynamic protein-protein
interaction (PPI) networks to identify dynamical network biomarkers (DNBs) and analyze the underlying
mechanisms of complex diseases from a systems level. We developed a model-based framework for the
construction of a series of time-sequenced networks by integrating high-throughput gene expression data
into PPI data. By combining the dynamic networks and molecular modules, we identified significant DNBs
for four complex diseases, including influenza caused by either H3N2 or H1N1, acute lung injury and type 2
diabetes mellitus, which can serve as warning signals for disease deterioration. Function and pathway
analyses revealed that the identified DNBs were significantly enriched during key events in early disease
development. Correlation and information flow analyses revealed that DNBs effectively discriminated
between different disease processes and that dysfunctional regulation and disproportional information flow
may contribute to the increased disease severity. This study provides a general paradigm for revealing the
deterioration mechanisms of complex diseases and offers new insights into their early diagnoses.

M
any complex diseases, including cancer, depression, inflammatory bowel disease, diabetes, obesity and
heart disease, are caused by perturbations of complex intracellular and intercellular networks that link
tissue and organ systems1,2. Recent studies have demonstrated that many complex diseases, such as

asthma attacks3, prostate cancer4 and depression5, have tipping points, at which the diseases are irreversible. The
detection of the pre-disease state of complex diseases is important for preventing qualitative deterioration
through appropriate intervention actions. However, prevention is a very challenging task because pre-disease
states are usually viewed as the limit of the normal state immediately before a critical transition occurs6–8.

Network-based approaches have recently emerged as powerful tools for the study of complex diseases2. One
novel concept is the dynamical network biomarkers (DNBs) (i.e., a group of genes or proteins), which serve as a
general early warning signal of a sudden deterioration before a critical transition occurs during disease initiation
and progression. During this transition, the biological system is steered from a normal (or stable) state to a disease
state. Previously, a composite index (CI) was theoretically derived to identify DNBs9. This index was subsequently
applied to the quantification of edge biomarkers in corresponding edge-based networks10. Many complex diseases
can use the CI or its derivational form to detect sudden deteriorations and discover underlying mechanisms
during disease progression, such as lung injury disease9, diabetes mellitus11,12 and influenza10.

The occurrence and development of complex diseases change dynamically, and dynamic networks can more
accurately simulate disease processes associated with gains, losses or modifications of gene functions through
evolutionary time13,14. The existing methods for the identification of DNBs were based on dynamic networks, but
these methods viewed networks as being fully connected without considering the actual network connections or
merely downloaded biomolecular interaction networks from various databases. The DNBs that were identified
using these rough networks usually contained hundreds of genes. For example, the identified DNBs included 220
genes for acute lung injury9, 143 genes for H3N2 influenza15 and 104 genes for breast cancer15. The DNBs are
usually a dominant module11. Previous studies have shown that biologically relevant functional modules of the
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desired size contained 10–100 genes, whereas very large modules
were highly redundant16. Therefore, it is unrealistic to use these
DNBs for clinical diagnoses.

To the best of our knowledge, few studies have constructed
dynamic PPI networks using time-course microarray data17–23. No
study has reported the combination of prior knowledge regarding
network topologies with optimization algorithms for identifying
dynamic PPI networks. This methodology may limit the effective-
ness of network-based strategies for the characterization and early
diagnosis of complex diseases. The present study addresses these
limitations by combining microarray data, novel computational
methods and metrics-based interfering DNBs to construct and quan-
titatively analyze dynamic PPI networks. We propose a general para-
digm for making an early diagnosis and unveiling the deterioration
mechanisms of complex diseases (Figure 1). Furthermore, we apply
this paradigm to four complex diseases, including influenza caused
by the H3N2 virus24, influenza caused by the H1N1 virus25, lung
injury induced by carbonyl chloride inhalation exposure26 and type
2 diabetes in rat adipose tissues27. These model-based computations
highlight novel DNB modules and their critical role in disease deteri-

oration. Our findings suggest a hypothesis for clinical diagnosis and a
novel therapeutic strategy for complex diseases.

Results
We established a general paradigm to make an early diagnosis and
reveal the deterioration mechanisms of complex diseases by con-
structing dynamic networks and performing system analyses. The
proposed paradigm is depicted in Figure 1. We applied our proposed
methodology to the high-throughput real microarray data of four
diseases, namely live influenza infection (humans) caused by the
H3N2 (GSE30550) and H1N1 (GSE52428) viruses, acute lung injury
(mice) induced by carbonyl chloride inhalation exposure (GSE2565)
and type 2 diabetes in rat adipose tissue (GSE13268).

Construction of dynamic networks for control and case conditions.
In the present study, we developed a model-based framework for the
construction of dynamic regulatory networks using the integration of
gene expression profiles with a prior knowledge of PPI networks (see
Methods and Supplementary Figure S1). First, the initial PPI network
was constructed for each dataset using PPI databases. Next, based on

Figure 1 | Overview of the proposed paradigm for making early diagnoses and unveiling the deterioration mechanisms of complex diseases. (a)

Comparative time-series gene expression profile of binary conditions (Control vs. Case) was generated using the high-throughput technologies. Rows are

genes and columns samples. Prior knowledge of PPI network was integrated with the high-throughput data to construct dynamic networks. (b) The

further network inference using the ODE-based dynamic optimization method. The framework of network construction is depicted in Supplementary

Figure S1. (c) Comparison of the inferred dynamic networks between the control and case conditions. (d) Modules were detected in the temporary

network. (e) High-influence modules that appeared in each time point for both the control and case conditions were selected to identify DNBs using the

composite criterion (CC). The framework of DNB identification is shown in Supplementary Figure S2. (f) Quantitative analyses of DNBs, including the

correlation and information flow analysis, were employed to decipher the deterioration mechanisms of diseases.
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the initial PPI network and each dataset, the MI that measured the
non-linear dependence between paired nodes was used to filter the
highly noisy interactions, allowing us to obtain a series of time-
sequenced refined networks. We then built ordinary differential
equation (ODE) models for these time-sequenced networks and
used optimization algorithms to construct cell-specific regulatory
networks. We also further removed the redundant regulations in a
series of time-sequenced rewired networks to identify the parameters
in the models. Finally, we determined whether the interactions
between two proteins were significant by setting a threshold value
for the optimized parameters.

We applied the above framework to four datasets containing con-
trol (normal) and case (disease) samples. Therefore, we could
construct 3 (diseases) 3 2 (conditions) 5 6 context-based dynamic
networks for the control and case conditions of the four complex
diseases. The dynamic networks in the case conditions are displayed
in Supplementary Figures S10–S13. The basic information for the
dynamic networks of the four diseases, including the number of
nodes and edges in each time point, is listed in Supplementary
Tables S4–S7.

To quantify the accuracy of the constructed dynamic networks, we
defined two types of errors: average absolute error (AAE) and aver-
age relative error (ARE) (Supplementary text). Table 1 summarizes
the average values of the AAEs and the AREs for the control and case
dynamic networks. The lower AAEs and AREs indicate higher accu-
racy. The average values of AAEs for the four datasets were less than
0.4, and those of AREs were less than 0.04. These results showed the
accuracy of the constructed dynamic networks.

Furthermore, leave-one-out cross-validation (LOOCV) (Supple-
mentary text) was performed to assess the reliability of the con-
structed dynamic networks. The performances of our method with
respect to Sensitivity (SN), Specificity (SP), False positive rate (FPR),
Accuracy (ACC) and Matthews coefficient constant (MCC) for the
four datasets are shown in Table 2. Table 2 shows that all ACCs were
higher than 0.99. These results showed the reliability of the con-
structed dynamic networks.

Identification of DNBs for complex diseases. We first used the
ClusterONE algorithm28 based on the constructed dynamic
networks described above to detect protein modules at each time
point in the control and case networks (Supplementary Tables S8–
S15). The conserved protein modules that appeared in both the
control and case networks were obtained for the four datasets
according to the defined similarity between two given modules
(Supplementary Tables S16–S19). Moreover, we proposed a new

concept, ’’high influence modules’’, to further quantify the im-
portance of a module in a network (See Methods). We used the
influence index of a module (IIM) to calculate the influences of
these conserved modules for the four datasets. Comparisons of the
influence index for all the conserved modules for the four datasets are
depicted in Supplementary Figures S14 and S15. Table 3 lists the four
high influence modules (HM1, HM2, HM3 and HM4) in the control
and case networks for the four datasets.

We then calculated the composite criterions (CCs) of all identified
modules. The comparisons of CCs between the control and case
networks for high influence modules (HM1, HM2, HM3 and
HM4) (Table 3) for the four datasets are shown in Figure 2, and
the CCs for other conserved modules (Supplementary Tables S16–
S19) are shown in Supplementary Figure S16. These results indicated
that the CCs of the high influence modules (HM1, HM2, HM3 and
HM4) were obviously different from the other modules in the control
and case networks.

Biological experiments for human influenza infection caused by
the H3N2 virus (GSE30550) indicated that symptom onset began at
an average of 49.3 hours after inoculation and patients who became
ill experienced maximal symptoms at an average of 90.6 hours after
inoculation24. Biological experiments for human influenza infection
caused by the H1N1 virus (GSE52428) demonstrated that symptom
onset began at an average of 61.3 hours after inoculation and patients
who became ill experienced maximal symptoms at an average of
102.7 hours after inoculation25. Figure 2a and Figure 2b show that
the CCs of the HM1 and HM2 modules exhibited almost no changes
during the time points corresponding to the normal state, but the
CCs of these two modules abruptly increased and then decreased at
45 and 53 hours post-inoculation, respectively. These results indi-
cated that CCs reflect pre-disease states prior to critical deteriora-
tions, which was consistent with the observed biological phenotypes
of datasets GSE30550 and GSE52428. Therefore, the detected HM1
and HM2 modules may be useful as potential DNBs for human
influenza infection.

Biological experiments (GSE2565)26 revealed that the most prom-
inent physiological effects occurred within the first 8 hours after
exposure, resulting in the increase of pulmonary edema and ulti-
mately a decrease in survival rates. In mice with acute lung injury
induced by carbonyl chloride inhalation exposure, a 50%–60% mor-
tality was routinely observed after 12 hours, and a 60%–70% mor-
tality was observed after 24 hours26. Figure 2c shows an obvious rise
in CCs at 8 hours, indicating that the prediction based on the DNBs
coincides with the actual disease development.

Table 1 | Average values of AAEs and AREs for the four datasets

Datasets

Dynamic networks in the control conditions Dynamic networks in the case conditions

AAE ARE AAE ARE

GSE30550 0.0069 0.0009 0.0073 0.0010
GSE52428 0.0534 0.0077 0.0530 0.0077
GSE2565 0.2810 0.0337 0.2817 0.0337
GSE13268 0.3539 0.0400 0.2745 0.0316

Table 2 | Results of cross-validation for the four datasets

Datasets

Dynamic networks in the control conditions Dynamic networks in the case conditions

SN SP FPR ACC MCC SN SP FPR ACC MCC

GSE30550 0.7329 0.9994 0.0006 0.9987 0.7384 0.7928 0.9994 0.0006 0.9988 0.7997
GSE52428 0.7895 0.9995 0.0005 0.9989 0.7903 0.8435 0.9995 0.0005 0.9990 0.8495
GSE2565 0.9067 0.9984 0.0016 0.9964 0.9147 0.9051 0.9984 0.0016 0.9964 0.9139
GSE13268 0.9298 0.9981 0.0019 0.9965 0.9244 0.9297 0.998 0.0020 0.9965 0.9224
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In rats at the age of 8 weeks, there was a critical transition period
for adipose in the disease evolution of T2DM (GSE13268)
(Figure 2d). This finding was consistent with the development of
T2DM in GK rats according to the experimental data provided prev-
iously27. These results demonstrated that the high influence modules
mentioned above (Table 3) were the DNBs, and their CCs can be
early warning signals for an early diagnosis of the four complex
diseases. Descriptions of the DNBs for these diseases are presented
in Supplementary Tables S20–S23.

Module-based DNBs provide superior performance in early
diagnosis. We used DAVID29 to perform functional enrichment
analysis of the identified DNBs for the four diseases to evaluate the
relevance of DNBs during the early stages of disease progression.
Gene Ontology functional annotation of the DNB genes showed
that these genes were significantly enriched in diseases-related
biological processes (Supplementary Tables S24–S27, P-values ,

0.001), indicating that DNB genes significantly overlapped with
disease-associated genes.

We analyzed the functional enrichment of the high influence
modules on a pathway level, as shown in Table 3 for the case (symp-
tomatic) networks. The pathway enrichment analysis for the influ-
enza virus infections showed that seven genes, including DDX58,

MX1, OAS1, OAS2, OAS3, IFIH1 and RASD2, were observed in
the Influenza A pathway (Supplementary Figure S17). We further
conducted a comprehensive analysis of the literature for the DNBs.
Notably, all of the DNBs participated in the innate immune response
(Figure 3). RIG-I (retinoic acid-inducible gene I; encoded by
DDX58) and MDA5 (melanoma differentiation-associated gene 5;
encoded by IFIH1) were the dominant cellular pathogen-recognition
receptors (PRRs). These proteins recognize viral nucleic acids and
trigger an innate immunity response that includes the activation of
transcription factors, such as IRF3, IRF7 and NF-kB, which induce
the production of type I IFNs and IFN-stimulated genes (ISGs), such
as OAS, ISG15, MX1 and IFITs30–34. This cascade normally results in
an innate antiviral response that controls infection, but the excessive
production of these proteins elicits an aberrant or disproportional
response that results in immunopathology32,35. Supplementary
Figures S18 and S19 reveal that the DNBs exhibited significantly
higher expression levels in symptomatic H3N2 and H1N1 infections
than in asymptomatic infections with these strains (P-values ,

0.0001). The disproportional induction of DNBs may contribute to
the severity of clinical symptoms.

Six genes in the Glycolysis or Gluconeogenesis pathway (Hk2,
Aldoa, Ldha, Pgk1, Pkm2 and Tpi1) were observed in acute lung

Table 3 | The identified DNBs are the modules with high influence appearing in both the control and case networks at each time point for the
four datasets. The common genes identified by other methods were noted in bold

Datasets Modules Genes in the corresponding module

GSE30550 HM1 {DDX58; HERC5; HERC6; IFI27; IFI35; IFI44; IFI44L; IFI6; IFIH1; IFIT1; IFIT2; IFIT3;
IRF7;IRF9;ISG15;MX1;OAS1;OAS2;OAS3; OASL; RSAD2; XAF1}

GSE52428 HM2 {ADAR; DDX58; GBP1; GBP2; HERC5; HERC6; IFI27; IFI35; IFI44; IFI44L; IFI6; IFIH1; IFIT1; IFIT2; IFIT3; IFIT5;
IFITM1; IRF1; IRF7; IRF9; ISG15; MX1; MX2; OAS1; OAS2; OAS3; OASL; RSAD2; RTP4; XAF1}

GSE2565 HM3 {Bnip3; Esd; Hk2; Aldoa; Ldha; Pgd; Pgk1; Pkm2; Taldo1; Tkt; Tpi1;Arhgef12; Pard6b; Prkci; Rhoj; Rhou;
Pkp3; Ppl; Scel; Gtf2f2; Pcf11; Papolg; Ptbp1; Thoc4; U2af1}

GSE13268 HM4 {Akr1b7; Fah; Glrx1; Gpx7; Gss; Gsta3; Gstm2; Gstm5; Gstm7; Gsto1; Gsto2; Gstp1; Gstt1; Gstt2;
Mgst2;Nit1; Prdx3; Xdh; Ankrd6; Frzb; Fzd1; Acpl2; Lef1; Nkd1; NlkSox17; C6; Ermp1; Ppap2c;
Sgms1; Smpd2; Smpd3; Cyp11a1; Cyp11b1; Tmem50b; Hsd11b2; Fdx1l}

Figure 2 | Comparisons of composite criterions (CCs) of HM1, HM2, HM3 and HM4 between the control and case networks for the four high-
throughput experimental datasets. (a) HM1 for GSE30550 dataset; (b) HM2 for GSE52428 dataset; (c) HM3 for GSE2565 dataset; (d) HM4 for

GSE13268 dataset. The green rectangle indicates the time of the pre-disease state. Blue line with circle markers and red line with square markers represent

the composite criterion of the control (asymptomatic (Asx)) and case (symptomatic (Sx)) networks, respectively.
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injury (Supplementary Figure S20). Eleven genes in the Glutathione
metabolism pathway (Gpx7, Gss, Gsta3, Gstm2, Gstm5, Gstm7,
Gsto1, Gstp1, Gstt1, Gstt2 and Mgst2) were observed in type 2 dia-
betes mellitus (Supplementary Figure S21). Diabetic subjects had
lower concentrations of these genes compared to the control subjects
at most time points (Supplementary Figure S22). This result is con-
sistent with a previous study in which diminished glutathione syn-
thesis was a hallmark of uncontrolled diabetes in patients36.
Altogether, these related biological experiments confirmed that the
identified DNBs were significantly enriched in key events during
early disease development, which may improve early disease
diagnosis.

There are also several methods for identifying DNBs9,10. For each
disease, we detected one critical point before clinical symptoms
appeared. This critical point was the same as previous studies for
acute lung injury and T2DM. Two critical points for influenza infec-
tion have been found previously, but the one critical point identified
by our method was nearly identical to the first critical point. Most of
the genes that were identified by our method were also detected by
the other two methods (common genes are noted in bold in Table 3),
which indicates the reliability of our method. Our method detected a
smaller number of DNBs, which is different than the hundreds of
genes in the DNBs identified using other methods (Table 4). These
results showed the power of our method because it simultaneously
detected the critical points while also identifying DNBs with rela-
tively small sizes. Generally speaking, the DNBs were a functional
module, and biologically relevant functions were best described by

modules ranging from 10–100 genes in size. Moreover, the size of a
module influenced the probability of the module being a false pos-
itive16. Therefore, it is unrealistic for the DNBs that were identified
using other two methods to be used for clinical diagnosis. In contrast,
the DNBs discovered using our method are of great importance for
clinical applications in realistic cases. In addition, the DNB genes
found in previous studies were scattered in many different path-
ways9,10, and the genes were not connected into a molecular module.
However, the DNB genes found by our method were actually densely
connected and enriched in key pathways during disease progression.
For example, the identified DNBs for influenza are critical to the
innate immune response pathway. These results demonstrated that
the module-based DNBs derived from the constructed dynamic net-
works provided superior performance in early diagnoses, and these
genes and proteins can be used for clinical applications.

DNBs are negatively correlated with the S1P1R protein in case
networks. The innate immune response is important for the
regulation of viral infections. Therefore, there is considerable interest
in investigating the underlying regulatory mechanisms of these DNBs.
Earlier studies documented that sphingosine-1-phosphate receptor
1 (S1PR1) signaling suppresses detrimental innate immune responses
and global cytokine-chemokine amplification, which plays an essential
role in the clinical outcome and pathogenesis of influenza virus
infection37,38. The Pearson correlation coefficients (PCCs) of expres-
sion levels of S1PR1 and key proteins of the innate immune response
were computed to further assess the correlation between S1PR1
signaling and the innate immune response. Figure 4 shows that DNB
gene expressions were inversely correlated with S1PR1 in most
symptomatic subjects infected by the H3N2 strain. However, this
correlation was not observed in asymptomatic subjects. Furthermore,
significant differences were observed in the correlation distributions
between the two different clinical outcomes (Figure 4, P-values
, 0.05). The results of the H1N1 strain confirmed our findings
(Supplementary Figure S23). These results suggested that there may
be negative regulatory interactions between these DNBs and S1PR1
in symptomatic infections and different regulatory mechanisms in
these two different clinical outcomes.

The relationships between S1PR1 and 14 other key proteins (IRF3,
NFkB, IFN-a, IFN-b, TNF-a, IL6, TLR3, MyD88, IKKa, IKKb,
IKKe, TBK1, MAPK and IFN-c) were not obvious in both clinical
outcomes. Notably, the difference between the correlation distribu-
tions of the two clinical outcomes was not significant for the H3N2
and H1N1 strains (Supplementary Figures S24 and S25, P-values .

0.05). The detailed correlations between S1PR1 and these key pro-
teins are presented in Supplementary Tables S28–S31. Altogether,
the correlations between S1PR1 and these DNBs can discriminate
symptomatic infections from asymptomatic infections, but other key
proteins in the virus-induced innate immune response were ineffect-
ive. In addition, dysfunctional regulations between these DNBs and
S1PR1 may underlie the increased disease severity.

DNBs exhibit different information flow between normal and
disease networks. A better understanding of the transmission of
information flows and how they affect cellular responses may
provide new strategies to alter the outcome of complex diseases.
Previous studies revealed that cells encode and decode cellular
information to control the temporal behavior of their signaling
molecules39–41. Therefore, we investigated whether the information
flow transmission from the influenza virus to DNBs correlated
with disease severity. We proposed a definition of information
flow to test this hypothesis (see Methods). The experimental
data had only fifteen time points. Cubic spline interpolation
(using the Matlab toolbox) was used to obtain the interpolated
time points at each half hour between 0 h and 108 h, which
increased the accuracy of the information flow calculations. We
calculated the information flow every three hours using the first

Figure 3 | Schematic diagram of virus-triggered innate immunity
pathway. DNBs are highlighted in red font and soft blue background. Virus

activates RIG-I- or MDA5-mediated activation of NF-kB (not shown) and

IRF3 or IRF7, which leads to transcription of the type I interferon (IFN)

gene. Type I IFNs induce the expression of ISGF3 complex (consisting of

STAT1, STAT2, and IRF9)-mediated IFN-stimulated genes (ISGs), which

generates a large number of ISGs and antiviral proteins that can inhibit the

viral replication.

Table 4 | Comparisons of the sizes of the DNBs identified by differ-
ent methods. ‘‘—’’ indicates that the results were not calculated by
this method. Method 1 is from the literatures9 and Method 2 is from
the study10

Datasets

Size of DNBs

Our method Method 1 Method 2

GSE30550 22 143 22
GSE52428 30 -- --
GSE2565 25 220 --
GSE13268 36 104 --

www.nature.com/scientificreports
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few interpolated data before the current time point. Calculations
and comparisons demonstrated that local information flows in the
symptomatic subjects (disease network) exhibited significantly
higher values than in the asymptomatic subjects (normal
network) (Figure 5, P-values , 0.005). The global information
flows of the disease networks were also significantly higher than
normal networks (Figure 6, P-value 5 3.58e 2 06). These results
indicated that the information flows of DNBs provided good
discrimination between normal and disease networks, which
generated different patterns of genetic expression.

The previous section showed that DNBs were enriched in virus-
induced innate immune pathways. Therefore, we chose 14 vital pro-
teins based on the literature31,32,35,42,43 and calculated information
flow transmission from the virus to these proteins to investigate
whether information flows of other important proteins of the innate
immune pathways are also discriminated in the disease networks.
Supplementary Figures S26 and S27 show that no significant differ-
ences were observed in local and global information flows between
normal and disease networks. Taken together, these data demon-
strated that the DNBs performed better than other proteins in

characterizing the disease networks. The disproportional informa-
tion flows of DNBs and the resulting immunopathology may also
underlie the increased severity of symptoms in people during influ-
enza virus infection.

Discussion
This study developed a new method to construct dynamic networks
based on the combination of high-throughput gene expression data,
a prior knowledge of network topology and ODEs-based optimiza-
tion. We also presented a novel computational framework for the
detection of a critical stage and key DNBs during disease occurrence
and progression from the constructed dynamical networks. The suc-
cessful application of the framework in four real datasets demon-
strated the effectiveness of our method in the identification of early
warning signals of complex diseases. The application of our frame-
work also provided a powerful way to capture deterioration mechan-
isms during disease development from information flows and
statistical analyses.

Our study provides three main contributions. First, we proposed
an efficient model-based framework to construct time-evolving

Figure 4 | Comparison of the correlation distributions for the H3N2 strain. Blue circles and red squares indicate Pearson correlation coefficients (PCCs)

between the S1PR1 expression values and DNBs in the asymptomatic infection (Asx) and symptomatic infection (Sx), respectively. X-axis represents

the Asx or Sx subjects, namely control or case groups. Each data point corresponds to a correlation in one subject. P-values are from a two-tailed Wilcoxon

rank-sum test.
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networks, which is of practical relevance and importance to network
analyses in diverse contexts ranging from biology to the social
sciences. Dynamic network analysis provides a valuable model for
biological functioning that reveals more disease-related information
than static networks13,44,45. Second, the module-based method for
detecting DNBs is a powerful tool for dynamically modeling the early
development of complex diseases. Notably, the sizes of the identified
DNBs using our method were of the desired module sizes and
avoided redundancy, which can best describe the biologically rel-
evant functions. Smaller module sizes are of great importance for
clinical application in realistic cases because they provide a chem-
ically tractable approach for effectively controlling control strategies
of complex diseases. Third, we presented a new definition of global
information flow and found that disease networks possessed more
information, especially DNB information flows, that can provide
good discrimination between normal and disease networks. These
results further confirmed that the identified DNBs can be considered
to be warning signals of diseases from the viewpoint of information

transmission. This provides an interesting approach for revealing the
deterioration mechanisms of diseases.

We applied our methodology to real data from four diseases, and
the results provided new insights into deterioration mechanisms and
early diagnosis of these diseases. Notably, we discovered that all of the
DNBs for the two groups of influenza data were located in the virus-
induced innate immunity signaling pathway. Furthermore, correla-
tion analysis of S1PR1 and these DNBs indicated that dysfunctional
regulations between these factors may lead to different clinical out-
comes. Experimental and clinical validation of these predictions and
hypotheses are required to further estimate their potential value, but
our findings provide a significant foundation for further exploration
of the molecular mechanisms of infectious diseases and the develop-
ment of control strategies.

In summary, we established a paradigm for revealing the deteri-
oration mechanisms of complex diseases by constructing dynamic
networks and systems analysis and also provided new insights into
the early diagnosis of complex diseases.

Figure 5 | Comparison of local information flow (LIF) transmission from virus to DNBs in the symptomatic subjects (Sx) and asymptomatic subjects
(Asx) infected by the H3N2 influenza strain. Blue and red lines denote local information flow in Asx and Sx, respectively. Two-sample t-tests

showed that local information flows in the symptomatic subjects exhibited significantly higher values than in the asymptomatic subjects (P-values

, 0.005).
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Methods
Data collection. Four gene expression profiling datasets were downloaded from the
NCBI GEO database (GSE30550, GSE52428, GSE2565 and GSE13268)46. Probe sets
from these datasets lacking the corresponding gene symbols were ignored in our
analysis. The expression values of the probe sets that mapped to the same gene were
averaged. The diseases from the first two datasets were two influenza strains, H3N2
and H1N1, whereas the other two datasets were for acute lung injury and type 2
diabetes mellitus.

The biological data GSE3055024 contained 17 healthy subjects who received
intranasal inoculations of influenza H3N2/Wisconsin. Nine of these 17 subjects
developed severe infection symptoms, and the other 8 subjects remained in good
health. Gene expression profiles were measured in whole peripheral blood drawn
from all subjects approximately every 8 hours post-inoculation (hpi) through
108 hpi. In total, 268 gene expression profiles were obtained for all subjects at 16 time
points, including baseline (224 hpi). The gene expression profiles of subject 8 at
21 hpi, subject 13 at baseline and 36 hpi, and subject 17 at 36 hpi were missing.

The biological dataset GSE5242825 contained 24 healthy subjects who received
intranasal inoculations of influenza H1N1/Brisbane. 12 of these 24 subjects developed
severe infection symptoms and 11 subjects remained in good health. One subject was
excluded from all analyses because the symptoms began late and were thought to be
related to infection acquired in the facility rather than from the primary infection
related to inoculation. Gene expression profiles were measured as described for the
biological dataset GSE30550.

The biological dataset GSE256526 contained 6 control samples (control group) and
6 case samples (case group). CD-1 male mice were divided into two groups that were
exposed to air or phosgene. Lung tissues were collected from air- or phosgene-
exposed mice at 0.5, 1, 4, 8, 12, 24, 48 and 72 hours (h) after exposure.

In the biological dataset GSE1326827, 50 adipose tissue samples were collected from
GK (GotoKakizake) rats fed a normal diet (ND) or a high-fat diet (HFD) that were
sacrificed at 5 different ages: 4, 8, 12, 16 and 20 weeks (w). Thus, each time point
contained 5 GK samples with ND and 5 GK samples with HFD.

Protein selection. Student’s t-test with a significance level p-value , 0.05 was used to
choose genes that showed significant expression changes between asymptomatic (or
control) subjects and symptomatic (or case) subjects at each time point. The false
discovery rate adjusted p-value , 0.05 was used to correct multiple comparisons or
multiple Student’s t-tests for the genes that were selected by Student’s t-test at each
time point (note that this significance level, 0.05, is frequently used in differential
expression analysis47). The selected proteins for the four datasets are presented in
Supplementary Tables S1–S3.

Construction of dynamic networks. The framework used in construction the
dynamic network is shown in Supplementary Figure S1 and mainly included three
steps.

Construction of an initial network. A rough PPI network was constructed from
three PPI databases: Search Tool for the Retrieval of Interacting Genes/Proteins
(STRING)48, Human Protein Reference Database (HPRD)49 and Biological
General Repository for Interaction Datasets (BioGRID)50. After self-interactions
and repeated interactions were filtered, the largest connected component of the
rough network was considered the initial network. Finally, we obtained an initial
PPI network for the selected proteins in each dataset (Supplementary Figures S3–
S5).

Detection of noisy interactions. Two interacting proteins always have a temporal
relationship between their expression profiles. To filter the interactions with high
amounts of noise, we calculated the mutual information (MI) for interacting proteins
based on their gene expression data. MI provides a natural generalization of cor-
relation due to its capability of characterizing non-linear dependency51,52. For two
paired proteins X and Y, MI can be defined as follows53:

I(X,Y)~
X
x[X

X
y[Y

p(x,y)log
p(x,y)

p(x)p(y)
: ð1Þ

With the widely adopted hypothesis of Gaussian distribution for protein
expression, equation (1) can be easily calculated using the following equivalent
equation54.

I(X,Y)~
1
2

log
C(X)j j: C(Y)j j

C(X,Y)j j , ð2Þ

where C is the covariance matrix of variable X and jCj is the determinant of matrix C.
A high MI score indicates a close relationship between paired proteins, while a low

MI score implies protein independence. At each time point, we calculated the MIs of
the interactions in the initial network based on their gene expression samples
respectively for control and case conditions. If the MI score is below a given threshold
h, the interaction is regarded as a noisy interaction and is deleted for further analysis.
Because the MI value was only the first discrimination parameter in the overall
procedure of gradual refinement, it is necessary to avoid missing any possible PPI
pairs during this early stage. The primary aim in this step is to delete only the highly
unlikely PPIs. After selecting the possible PPIs, we obtained the refined network in the
control and case conditions, respectively.

Optimization of the dynamic network. Generally, the dynamic network can be
described by the following nonlinear ordinary differential equations:

dXi(t)
dt

~fi X1(t),X2(t), � � � ,Xn(t),B(t)ð Þ~
Xn

j~1

bij(t)vij(t), ð3Þ

where Xi(t)~ x1
i (t),x2

i (t), � � � ,xm
i (t)

� �T
,i~1,2, � � � ,n is a continuous vector about

time t, representing the expression level of a protein i (i 5 1,2,???,n) at time t, n is the
number of proteins, and m is the number of samples. vij(t) and bij(t) denote the
reaction and reaction rate (the interaction ability), respectively, from the j-th protein
to i-th protein at time point t. Therefore, B(t) 5 {bij(t),i,j 5 1,2,???,n} is a parameter
set.

The construction of dynamic regulatory networks is to search the optimal to find
the set of parameters V 5 {B(t),t 5 t1,t2,???,tK} in equation (3). This problem can be
transformed into the following optimization problem used in finding the set of
parameters V 5 {B(t),t 5 t1,t2,???,tK} to make the simulation results fit the
experimental data:

min
bij(t)[B(t)

J(bij)~
Xm

k~1

xk
i (t)(sim){xk

i (t)( exp )
�� ��

p1

s:t:
dXi(t)

dt
~fi X1(t),X2(t), � � � ,Xn(t),B(t)ð Þ~

Xn

j~1

bij(t)vij(t),

ð4Þ

Figure 6 | Comparison of global information flow transmission from the virus to DNBs in the symptomatic subjects (Sx) and asymptomatic subjects
(Asx) infected by the H3N2 influenza strain. P-value is from a two-sample t-test. Blue and red lines denote the global information flows in Asx

and Sx, respectively.
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where xk
i (t)( exp ) and xk

i (t)(sim) are the experimental and simulation data, respectively,
at time point t for the k-th sample. jj?jjp1 is 1-norm or 2-norm.

The optimization problem (4) is a nonlinear dynamic optimization problem
(DOPs), which is one of the most challenging problems in the optimization and
engineering fields55,56. For simplicity, we assumed that the interactions among
proteins are linear over each time interval [tr,tr 1 Dt] and we used the piecewise
linearization to approximate equation (3).

dXi(t)
dt t[ tr ,trzDt½ �

�� ~
Xn

j~1

aij(tr)Xj(t) ð5Þ

where aij(tr) denotes the interaction ability from the j-th protein to i-th protein at time
point tr.

In general, the PPI networks are sparse. Therefore, most parameters in equations
(5) are zero. Moreover, there are slight changes between two consecutive networks for
different time points. Therefore, optimization problem (4) was changed into the
following problem:

min
Ai(tr )

Xm

k~1

xk
i (t)(sim){xk

i (t)( exp )
�� ��

p1
zl1 Ai(tr)k kp2zl2 Ai(tr){Ai(tr{1)k kp3

( )

s:t:
dXi(t)

dt t[ tr ,trzDt½ �
�� ~

Xn

j~1

aij(tr)Xj(t),
6ð Þ

where Ai(tr) 5 (ai1(tr),ai2(tr),???,ain(tr))T and, jj?jjp2 and jj?jjp3 are 1-norm or 2-norm.
In equation (6), the first term is used to guarantee the accuracy of the optimal
parameters of networks, the second term is used to guarantee the sparsity of networks
and the third term is used to guarantee the continuity of the dynamic network. l1 and
l2 are regularization parameters that are used to balance the accuracy, sparsity and
continuous terms in the objective function. Here, we set jj?jjp1, jj?jjp2 and jj?jjp3 at
1-norm.

Cubic spline interpolation was applied to the microarray data of each sample to
obtain data containing the desired samples. Then, the derivative values could be
substituted with the central difference for convenience.

By letting Yi(tr)~
dXi(t)

dt t[ tr ,trzDt½ �
�� , the problem (6) could be approximately

transformed into the following problem:

min
Ai(tr )

Xm

k~1

yk
i (tr){

Xn

j~1

aij(tr)x
k
j (tr)

�����
�����zl1

Xn

j~1

aij(tr)
�� ��zl2

Xn

j~1

aij(tr){aij(tr{1)
�� �� ð7Þ

Let

ukzvk~ yk
i (tr){

Xn

j~1

aij(tr)x
k
j (tr)

�����
�����,uk{vk~yk

i (tr){
Xn

j~1

aij(tr)x
k
j (tr),

jjzgj~ aij(tr)
�� ��,jj{gj~aij(tr),

ajzbj~ aij(tr){aij(tr{1)
�� ��,aj{bj~aij(tr){aij(tr{1),

where k 5 1,2,???,m, j 5 1, 2,???,n. uk, vk, jj, gj, aj, bj $ 0. Then, problem (7) can be
written as a standard linear programming (LP) problem.

min
Ai(tr )

Xm

k~1

(ukzvk)zl1

Xn

j~1

(jjzgj)zl2

Xn

j~1

(ajzbj)

s:t: uk{vk~yk
i (tr){

Xn

j~1

1
2

jj{gjzaj{bjzaij(tr{1)
� �

xk
j (tr)

jj{gj{ajzbj~aij(tr{1)

ð8Þ

The above LP problem (8) could be solved using MATLAB’s linprog function.

Selection of regularization parameters l1 and l2. The regularization parameters l1 and
l2 in model (8) trade off sparseness and continuity versus the precision of the
resulting dynamic networks. On the one hand, setting l1 to zero most likely results in
a complete network. As l1 increases, fewer edges are recovered until an empty net-
work is reached for larger values of l1.Therefore, small values of l1 favor recall
whereas larger values favor precision of the recovered edges. On the other hand, larger
values of l2 degenerate the problem of constructing a dynamic network into a static
network in which all parameters are equal to each other at every time point. By setting
l2 to zero, model (8) is transformed into a set of independent l1-regularized logistic
regression problems57. Therefore, it is important to select proper l1 and l2 from the
different candidates. Here, we used the Bayesian information criterion (BIC) score to
optimize l1 and l2. The optimization problem can be formulated as follows:

min
l1 ,l2[L

BIC(l1,l2) ~
Xm

k~1

yk
i (tr){

Xn

j~1

aij(tr)x
k
j (tr)

�����
�����{ log (m)

2
Dim aij trð Þ

� �
, ð9Þ

aij(tr)~arg min

Xm

k~1

yk
i (tr){

Xn

j~1

aij(tr)x
k
j (tr)

�����
�����zl1

Xn

j~1

aij(tr)
�� ��zl2

Xn

j~1

aij(tr){aij(tr{1)
�� ��( )

,
ð10Þ

where L 5 {a0, a1,???, aL},ai 5 a0r,0 , r , 1, Dim(?) denotes the dimensionality of
the estimated values. We adopted the following definition, which counts the number
of runs of nonzero parameter values:

Dim(V)~Dim aij(tr)
� 	� �

~ i,j aij(tr)=0,aij(tr{1)~0,i,j~1,2, � � � ,n:
��� 	�� ��: ð11Þ

The whole procedure for solving this optimization problem is presented as follows:
First, for a given l1,l2gL, aij(tr) is identified by solving optimization problem (10).

Second, by substituting the identified aij(tr) into (9), we could obtain a BIC score.
Finally, we obtained the optimal l1,l2 by minimizing BIC.

The detailed steps for calculating the two parameters l1 and l2 are presented as
follows:

Step 1. For each protein in the network, the regularization parameters l1 and l2

were selected from the set {1025, 1024, 1023, 1022, 1021} using the BIC score.
Step 2. The average values of l1 and l2 of all proteins were calculated and denoted

by �l1~a|10{m,�l2~b|10{n,1ƒav10,1ƒbv10:
Step 3. For every protein in the network, the regularization parameters l1 and l2

were again selected from the set {1 3 102m, 2 3 102m, 3 3 102m,???,9 3 102m } for l1

and {1 3 102n, 2 3 102n, 3 3 102n,???,9 3 102n} for l2 using the BIC score.
Step 4. The average values for the two parameters were selected.

Determination of significant interactions. The selection of the significant interactions
in the resulting dynamic networks is very important. A large threshold value h of the
variable parameter aij(tr) will result in dynamic networks with fewer nodes and edges.
This study investigated the relationship between the number of nodes and edges and
the threshold value h at the first time point for control (asymptomatic) and case
(symptomatic) samples from four datasets, which are displayed in Supplementary
Figures S6–S9. If the model residual was no longer significantly reduced when h was
less than h*, we chose the threshold value h as h*. Therefore, we chose a value of h* of
0.001 for GSE30550 and GSE52428, and 0.01 for GSE2565 and GSE13268.

Identification of dynamical network biomarkers. Different from previous studies
on the identification of DNBs9–12, we aimed to develop a new strategy for detecting the
critical transition and its DNB (or pre-disease module) for a complex disease by
combining the constructed dynamic networks and the identified dynamic network
modules. The computational framework of DNB identification is shown in
Supplementary Figure S2, which mainly included four steps.

Detection of dynamic network modules. First, we identified the dynamic network
modules from the constructed dynamic network using module detection methods,
such as the ClusterONE algorithm28. Specifically, we employed this algorithm to
identify significantly inter-connected clusters of nodes in the control (asymptomatic)
and case (symptomatic) networks at each time point (Figure 1d).

Discovery of conserved modules. Network modules showing conservation through
evolutionary time are likely to reflect well preserved ’core’ functions that are main-
tained by natural selection58,59. We defined the similarity score of two modules, Mi

and Mj, denoted by SS(Mi, Mj), to identify conserved modules (i.e., permitting the
rewired structural difference of a module possibly representing the same biological
function) across multiple conditions and time points as follows:

SS(Mi,Mj)~
Mi\Mj

�� ��
Mi|Mj

�� �� , ð12Þ

where Mi\Mj

�� �� is the number of elements in the intersection of two modules Mi and
Mj, and Mi|Mj

�� �� is the number of elements in their union set. We considered two
modules as the same module when the SS was larger than a threshold p. As the
functional modules were highly overlapped, p was generally set from 0.5 to 0.828,60,61.
The discovery of conserved modules was only the first step in the overall procedure.
Therefore, it was necessary to avoid missing any possible conserved modules at this
early stage, and we set p to 0.5.

If T 5 {t1,t2,???,tK} contained the time points we considered, then the frequency
fT(Mi) of a module Mi was defined as the number of time points at which module Mi

appeared. We called module Mi a conserved module if fT(Mi) 5 K, i.e., the module
appeared in all time points. In other words, conserved modules were those that
appeared in each time point for both the control and case conditions.

Identification of high influence modules. Based on the identified conserved modules,
we proposed the new concept of ’’high influence modules’’ to further quantify the
importance of a module in a network. We defined an influence index of a module
(IIM) as follows:

IIM~
Dm
Dg

, ð13Þ

where Dm and Dg are the average degrees of the module and whole network,
respectively. If IIM was larger than 1, the module was taken to be a high influence
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module. In other words, the average degree of the global network was concentrated in
this module.

Identification of DNBs by composite criterion. According to the previously proposed
composite criterion of DNB9, we defined the composite criterion for a module as
follows:

CC~
PCCi

:SDi

PCCo
, ð14Þ

where PCCi is the average absolute value of Pearson’s correlation coefficient (PCC)
between the expression of molecules within the module across samples within a
phenotype; PCCo is the average absolute value of PCC between the expression of
molecules inside and outside the module; and SDi is the average standard deviation
(SD) of the molecules inside the module across samples within a phenotype. This
composite criterion still satisfies the three previously proposed criteria9 when the
system approaches the critical transition: correlations between the expression of
proteins in the same module become stronger; correlations between the expression of
proteins from different modules become weaker; and the average standard deviation
of protein expressions in one module become larger. Therefore, we could identify the
DNBs from high influence modules when the three criteria are satisfied and the
composite criterion achieved its largest value in the case condition with no obvious
changes in the control condition.

Calculation of information flow. According to Shannon’s information theory, if
cellular signaling pathways are considered to be communication channels, the
amount of information flow can be quantified by mutual information40,41. In this
study, we defined information flow as global or local.

Local information flow. The local information flow (LIF) was formulated the same as
in equation (1).

Global information flow. When cells process information, information is carried
through multiple paths. To determine the global influence of input signal on the
network response, we defined a global information flow (GIF). GIF is the weighted
sum of LIF through each path, where the weight measures the contribution of
information transmission through each path to the GIF. Accordingly, GIF can be
formulated as follows:

GIF~
Xm

i~1

wiIi(X,Y), ð15Þ

where m is the number of output signals, Ii is the local information flow between the
input signal (X) and the i-th output signal (Y), and wi is the weight, which measures
the contribution to the global information flow. This can be quantified by the Pearson
correlation coefficient (PCC) between the input signal and i-th output signal. Higher
weights had greater contributions. The correlations measured the dependence
between the input signal and output signals, and higher correlations indicate rela-
tively greater path importance within the whole network. Thus, we employed the
product of the correlation and LIF to measure the GIF. In this study, we calculated the
information flow transmission from the influenza virus (the input signal) to DNBs
and 14 other key proteins of interest (the output signals).
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