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Age-related changes in endoplasmic reticulum (ER) are associated with stress of this cell organelle. Unfolded protein response
(UPR) is a normal physiological reaction of a cell in order to prevent accumulation of unfolded and misfolded proteins in the ER
and improve the normal ER function. However, in pathologic conditions such as atherosclerosis, obesity, and diabetes, ER function
becomes impaired, leading to the development of ER stress. In chronic ER stress, defective posttranslational protein folding results in
deposits of aberrantly folded proteins in the ER and the induction of cell apoptosis mediated by UPR sensors C/EBP𝛼-homologous
protein (CHOP) and inositol requiring protein-1 (IRE1). Since ER stress and ER-induced cell death play a nonredundant role in the
pathogenesis of atherosclerosis and diabetic macrovascular complications, pharmaceutical targeting of ER stress components and
pathways may be beneficial in the treatment and prevention of cardiovascular pathology.

1. Introduction

The endoplasmic reticulum (ER) is a complex cytoplasmic
membrane structure presented in eukaryotic cells. ER is
involved in protein folding, lipid synthesis, and regulation
of the intracellular calcium balance [1]. Secretory and mem-
brane proteins, which are synthesized in ER, undergo proper
folding in the ER lumen. ER chaperones such as glucose-
regulated protein 78 kDa (GRP78 or BiP) and GRP94, oxi-
doreductases, and high calcium concentrations are essential
for proper protein folding and assembling [2]. GRP78 is a
Ca2+-dependent chaperone that is responsible for the folding
of hydrophobic protein regions [3]. Protein disulfide iso-
merase (PDI) is involved in the formation of disulfide bonds
whereas ER thiol oxidase (ERO1) initiates disulfide transfer

to oxidized proteins [4]. Aging-related changes in ER are
associated with stress of this cell organelle [5]. The oxidative
protein folding is associated with advanced production of
reactive oxygen species (ROS) that may lead to extensive
oxidative stress and cell apoptosis [6]. Indeed, the ER is
vulnerable to various stressors capable of disturbing the redox
homeostasis in the ER lumen.

2. Unfolded Protein Response

Incompletely folded or misfolded proteins are subjected to
ER-associated degradation (ERAD) that occurs in cytoplasm.
ER-mediated protein synthesis and folding are strictly regu-
lated. Impairments in ER folding capacity may result in the
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accumulation of unfolded proteins and induce ER stress. In
the ER, three proteins are able to sense increase in misfolded
polypeptides and initiate the unfolded protein response
(UPR). The UPR sensors include activating transcription
factor-6 (ATF6), inositol requiring protein-1 (IRE1), and
protein kinase RNA-like ER kinase (PERK). All three proteins
have domains exposed to the ER lumen and are capable of
binding GRP78 [7]. In normal conditions, GRP78 is bound to
themolecules ofUPR sensors. In ER stress, GRP78 dissociates
from the UPR sensors that leads in turn to induction of UPR
(Figure 1).

The UPR applies several mechanisms to minimize ER
stress. One of those mechanisms involves the activation of
chaperone synthesis in order to improve and intensify the
intraluminal protein folding. Another mechanism includes
protein translation arrest in order to prevent further protein
load into the ER [26]. The ER folding capacity may be also
improved indirectly, through stimulating ER biogenesis [6].
In a case of chronic long-term or acute ER stress, when the
adaptive UPR is unable to stop the stress, apoptotic pathways
are activated in the stressed cell [27]. ER sensor proteins such
as IRE1 and PERK are involved in both the adaptive and the
proapoptotic UPR pathways.

2.1. IRE1. Among ER stress sensors, IRE1 is the most evolu-
tionarily preserved. In normal conditions, IRE1 and GRP78
interact with each other, and this prevents IRE1 activation
[6]. In ER stress, GRP78 becomes released from the complex
with IRE1. IRE1 is then activated by self-phosphorylation.The
active IRE1 is able to specifically splice mRNA encoding X-
box binding protein (XBP)1 thereby inducing translation of
functionally active XBP1 [1]. XBP1 induces transcription of
chaperones and other UPR-related proteins and enhances the
degradation ofmisfolded proteins [28]. By degradingmRNAs
other than XBP1, IRE1 contributes to reducing protein load to
the ER [29].

However, in long-lasting ER stress, IRE1 can be involved
in activation of proinflammatory pathways and apoptosis.
IRE1 forms a complex with the adaptor protein tumor
necrosis factor (TNF) receptor-associated factor (TRAF)2
[30] that in turn recruits mitogen-activated protein kinase,
apoptosis signal-regulating kinase (ASK) [31], and caspase
12 [32]. The complex activates I𝜅B kinase followed by I𝜅B
kinase-mediated suppression of the inhibitor of 𝜅B protein
and induction of the nuclear factor (NF)-𝜅B. Since NF-𝜅B
controls expression of many proinflammatory genes, IRE1 is
therefore suggested to provide a link between the ER stress
and inflammation [33].

2.2. PERK. This ER stress sensor molecule belongs to the
family of serine threonine kinase and has a high degree of
homology with ERE1. Both IRE1 and PERK share similar
mechanisms of activation involving dissociation of GRP78
from the luminal binding domain and self-phosphorylation
upon stress conditions. After activation, PERK downregu-
lates eukaryotic translation initiation factor 2𝛼 (eIF2𝛼) that
is needed for cap recognition and therefore is essential
for further induction of cap-dependent transcription. eIF2𝛼

inactivation results in marked decrease of protein load to
the ER [6]. Interestingly, phosphorylated eIF2𝛼 is responsi-
ble for translation of several mRNAs including mRNA for
transcriptional factor ATF4. This factor is responsible for the
induction of the negative feedback regulatory loop since it
activates expression of GADD34, a regulatory subunit of the
phosphatase that dephosphorylates eIF2𝛼 and restores cap-
dependent translation [34]. Indeed, ATF4 regulates protein
translation during ER stress.

ATF4 stimulates expression of C/EBP𝛼-homologous pro-
tein (CHOP, or GADD153). CHOP expression can be also
induced by ATF6 and XBP1, but the PERK-eIF2𝛼-dependent
pathway is prevalent [35]. CHOP is a transcription factor
that induces apoptosis through several mechanisms includ-
ing upregulation of ERO1𝛼, which then mediates Ca2+-
dependent apoptotic pathway, and downregulation of anti-
apoptotic factors Bcl-2 and Bnip3 [36, 37].

ERO1𝛼 is involved in reoxidation of PDI yielding pro-
duction of hydrogen peroxide, a byproduct of disulfide
bond formation [38]. Therefore, ER stress-induced upreg-
ulation of ERO1𝛼 may lead to ROS overproduction and
advanced oxidative stress that in turn contribute to cell
apoptosis [5]. ERO1𝛼 activation stimulates inositol-1,4,5-
trisphosphate receptor-1 (IP3R1), a ER-associated Ca2+ chan-
nel [39] that triggers depletion of the intraluminal calcium
reservoir. Increase in cytoplasmic Ca2+ promotes stimulation
of calcium/calmodulin-dependent protein kinase II, which
plays a key role in induction of several proapoptotic path-
ways including activation of the death receptor FAS and
mitochondrial release of apoptogens [40]. CHOP is directly
involved in induction of expression and translocation to the
ER membrane of the proapoptotic protein Bim [41].

2.3. ATF6. Upon initiation of ER stress, ATF6 is cleaved by
two (site 1 and site 2) proteases associated with the Golgi
complex. After cleavage, the cytosolic N-domain of ATF6
translocates into the nucleus where it triggers expression of
many UPR-related genes including GRP78 and XBP1 [26].
ATF6 activates expression of Derlin-3 that enhances the
ERAD activity [42]. Before degradation by the proteasome,
most of misfolded proteins are ubiquitinated and extracted
by the cytosolic ATPase p97 [43, 44].

3. Role of ER Stress in Atherosclerosis

Prolonged ER stress observed in atherosclerotic lesions is an
important contributor to proatherogenic progression [45].
ER stress was found in all major cell type in atheroscle-
rosis including macrophages, vascular smooth muscle cells
(VSMCs), and endothelial cells (ECs).

3.1. ER Stress in Macrophages. In normal macrophages, low
density lipoprotein (LDL) cholesterol particles are loaded
from late endosomes to the ER. In the ER, cholesterol is
esterified and accumulates to form inert lipid droplets [46].
In atherosclerotic macrophages, ER-mediated cholesterol
reesterification is markedly reduced or failed resulting in
heavy intracellular deposits of nonesterified cholesterol in
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Figure 1:The adaptive and proapoptotic UPR pathways. (a) Adaptive UPRmechanism. In nonstressed conditions, the ER chaperone GRP78
binds to all three ER stress sensors such as PERK, IRE1, and ATF6. In ER stress, GRP78 dissociates from the ER sensors, and this leads to their
activation. eIF2𝛼 is phosphorylated by PERK and dephosphorylated by GADD34. Phosphorylated eIF2𝛼 blocks global protein translation
but remains selective translation of several proteins including transcriptional factor ATF4. ATF4 then initiates expression of UPR-related
genes. Upon activation, ATF6 translocates from the ER to the Golgi complex where it is cleaved by proteases S1P and S2P. Cleaved ATF6
acts as a transcriptional factor activating expression of several UPR- and non-UPR genes including XBP1. Activated IRE1 specifically splices
XBP1 mRNA. Spliced XBP1 shows transcription factor activity to induce UPR- and non-UPR genes. Proteasome plays an important role in
degradation of unfolded and misfolded proteins. Thus, production of proteasome components is also stimulated to increase utilization of
misfolded proteins through the mechanism of ERAD. (b) Proapoptotic UPR mechanism. The apoptotic pathway is induced in chronic and
prolonged ER stress. CHOP plays a key role in mediating ER stress-induced apoptosis. CHOP expression is stimulated by ATF4- and ATF6.
CHOP represses expression of antiapoptotic proteins Bcl-2 and Bnip3 and activates translocation of proapoptotic protein Bim to the ER
membrane. IRE1𝛼 forms a complex with the adaptor protein TRAF2, which consequently activates ASK1 and JNK. Activation of JNK induces
apoptosis cell through phosphorylation of several Bcl-2 family members.The IRE1𝛼/TRAF2 complex also binds to I𝜅B kinase, and this results
in activation of transcription factor NF-𝜅B. Prolonged ER stress activates caspase 12 that in turn activates caspase-9/3 thereby leading to the
mitochondria-independent apoptotic pathway.

foam cells [47]. Electron microscopy observations revealed
that ER in atherosclerotic macrophages undergoes a remark-
able change (Figure 2). In foam cells, intraluminal ER oxi-
doreductases oxidize cholesterol to 7-ketocholesterol (7-KC)
and other oxysterols. Oxysterols are highly cytotoxic andmay
induce cell death through ROS-mediated oxidative damage
and other mechanisms [48].

Prolonged ER stress contributes to apoptosis of lesional
macrophages. Apoptosis associated with robust expression
of CHOP was shown in human lesions [45] and atheroscle-
rotic plaques of apolipoprotein (apo)E-deficient mice [49].
Inactivating Chop in apoE-deficient mice leads to decreased

rates of macrophage apoptosis and plaque necrosis [50,
51]. CHOP contributes to ER stress-induced macrophage
death by inducing Fas activation, depletion of ER-associated
calcium stores, and release of apoptogens frommitochondria
[52].

In early plaques, apoptotic cells are quickly phagocy-
tized by macrophages [53]. This process is driven by anti-
inflammatory cytokines such as transforming growth factor-
(TGF-) 𝛽 and interleukin- (IL-) 10 [54]. In advanced plaques,
macrophages cannot efficiently clear dying cells that become
necrotic [55]. This results in the formation of the inflamma-
tory necrotic core [56].
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Figure 2: Structural alterations of cisterns of granular endoplasmic reticulum (ER) inmacrophages residing in human atherosclerotic lesions
(identified by means of electron microscopy) (a–e). In contrast to intact ER cistern appearance (a), some ER cisterns display a notable
expansion of the intracisternal space (b) and demonstrate focal disappearance of ribosomes from the internal membranes of cisterns (a,
b). In some macrophages, the expansion of the intracisternal space is accompanied by degenerative alterations of ER cistern (d, e). (e) is a
detail of (d). The arrows in (e) show ribosomes which are still present on the internal surface of a degenerating ER cistern. In (c), L: lipid
droplet. Bars = 100 nm (a–c), 500 nm (d).

In some circumstances, ER stress alone is not strong
enough to induce apoptosis in macrophages. Additional
stimuli such as the activation of pattern recognition receptors
(PRRs) are required to initiate cell death [56]. PPRs include
various Toll-like receptors (TLRs) and scavenger receptors.
In plaque macrophages, PPRs may be activated by oxidized
lipids, and this leads to the induction of apoptosis via CD36-
TLR2 pathway and is accompanied with NADPH oxidase-
mediated oxidative stress [57]. NADPH oxidase contains a
subunit Nox2 whose inhibition minimizes ER stress-induced
macrophage death [58]. These findings suggest a central role
of this enzyme as a link between the oxidative stress and
ER stress in promoting macrophage apoptosis. In addition,
upregulation ofNADPHoxidase further aggravates apoptotic
process through stimulating PERK-CHOP-dependent mech-
anism.

At low doses, ER stress inducers such as modified (oxi-
dized and acetylated) LDL, 7-KC, and peroxynitrite donor
SIN are able to stimulate macrophage PRRs and cause
NADPH oxidase-mediated ROS production [56, 59]. In a
“two-hit” hypothesis, ER stress in plaquemacrophages should

be induced by a low-dose ER stressor such as PRR ligands that
in turn triggers macrophage apoptosis [57, 59].

Lipoprotein(a) [Lp(a)], an LDL-like lipoprotein, and oxi-
dized phospholipids are established to represent strong risk
factors for human atherosclerosis [59]. To initiate apoptosis
in ER-stressed macrophages, both atherogenic lipid inducers
utilize similar mechanisms involving the activation of CD36-
TLR2 signaling and oxidative stress [57].

Lp(a) is a major carrier of oxidized phospholipids in
human blood [60]. According to the “two-hit” hypothesis,
Lp(a) could therefore mediate apoptosis in human plaque
macrophages.

3.2. ER Stress in Endothelial Cells. In EC, various ER stress
inducers were shown to initiate UPR. For example, shear
stress activates IRE1-dependent UPR [61, 62] whereas oxi-
dized phospholipids and homocysteine induce both IRE1-
and CHOP-mediated pathways [63–65]. In dynamic models
of shear stress, a variety of UPR-related molecules including
ATF6, GRP78, IRE1, and XBP1 were upregulated in ECs
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[61, 62, 66, 67]. XBP1 is always overexpressed in advanced
plaques, a finding that may reflect a proatherogenic role of
long-term XBP1 upregulation whereas limited stimulation of
this ER stress effectormay be protective against ER stress [61].

ER stress induced by modified (oxidized and glycated)
LDL results in the development of oxidative stress and
oxidation-mediated inhibition of sarcoplasmic/endoplasmic
reticulum Ca2+-dependent ATPase (SERCA), a calcium
pomp resided in the ER [8]. AMP kinase (AMPK) 𝛼2
suppresses SERCA oxidation, and inhibition of this kinase
in LDL receptor- (Ldlr-) deficient mice leads to advanced
ER stress and atherogenesis [9]. Thus, alterations in calcium
homeostasis caused by oxidative stress play a crucial role
in ER stress-mediated endothelial dysfunction in atheroscle-
rotic vessels. ER stress-induced apoptosis diminishes the
barrier function of the vascular endothelium and induces
procoagulant phenotypic changes in ECs that may be directly
responsible for increased risk of thrombosis and other late
atherosclerotic complications [68].

3.3. ER Stress in VSMCs. A stable plaque phenotype may be
critically disturbed by apoptosis in VSMCs that alters the for-
mation of the protective fibrous cap [69]. In VSMCs, CHOP-
mediated apoptoticmechanismmay be induced by numerous
ER stressors such as 7-KC, homocysteine, glucosamine, free
cholesterol, and others [70–74]. CHOP-dependent apoptosis
is accompanied with enhanced formation and release of ROS,
and N-acetylcysteine, an anti-oxidant, may therefore protect
cultured VSMCs against apoptotic death [73].

Elevated plasma levels of homocysteine are considered
to increase atherosclerotic risk in humans and animal mod-
els [71, 75]. Hyperhomocysteinemia is believed to induce
ER stress through alterations of calcium balance [76] and
upregulation of sterol response element binding protein-2
(SREBP-2) that increases lipid deposits in VSMCs [77, 78].
Glucosamine that accumulates in vascular cells in diabetes
may have a primary responsibility for ER stress induction in
VSMCs of diabetic patients associated with GRP78 upregu-
lation [74]. However, the mechanisms of ER stress-mediated
apoptosis in VSMCs are significantly less studied compared
to those of macrophages and ECs.

4. ER Stress and Obesity

Thehuman body is able to accumulate extra fat in the adipose
tissue to survive in starvation. Normally, fat is deposited
in adipocytes. However, regular intake of fat-rich diet and
alterations in lipid metabolism may lead to the phenomenon
of ectopic fat storage, when fat accumulates not only in
adipocytes but also in nonadipocyte cells. In obesity, higher
free fatty acids levels may enhance lipid accumulation in
macrophages and promote formation of foam cells [79].

In obese people, adipocytes are particularly vulnerable
to ER stress and apoptosis due to abnormal fat deposits and
upregulated lipid metabolism [80]. Macrophages resided in
the adipose tissue phagocytize both the extra fat droplets
and apoptotic adipocytes releasing high amounts of ROS
by mitochondria. Excessive ROS production drives further

progression of cellular stress and increases secretion of
adipokines in adipocytes [81]. Adipokines promote preferen-
tial differentiation ofmacrophages towards the proinflamma-
tory M1 phenotype [82].

Adiposity is associated with enhanced M1 macrophage-
dependent production of multiple proinflammatory medi-
ators such as IL-1𝛽, IL-6, TNF-𝛼, andCXCL10.M1macropha-
ges inhibit adipocyte hypertrophy and adipogenesis [83] and
support low-grade inflammation in the adipose and nonadi-
pose tissues including vessels [84]. In lesional macrophages,
adiposity promotes ER stress by activation of themacrophage
fatty acid-binding protein-4, also known as adipocyte fatty
acid binding protein aP2 that mediates transfer of saturated
fatty acids (SFAs) [19]. Increase in SFA levels leads to
the induction of apoptosis in macrophages. ApoE-deficient
mice lacking aP2 have reduced atherosclerotic lesions, in
which expression of XBP1 and PERK is downregulated and
macrophage apoptosis is decreased [85]. Inactivation of aP2
protects macrophages from palmitate-induced ER stress and
apoptosis [19]. In aP2-deficient macrophages, expression of
transcription factor LXR𝛼 is activated, and this factor stim-
ulates transcription of stearoyl-CoA-desaturase 1, an enzyme
converting SFAs to monounsaturated fatty acids, which are
significantly less potent of inducing ER stress [86]. Indeed,
activation of LXR𝛼 in aP2-deficient macrophages prevents
ER stress while overexpression of aP2 in macrophages and
adipocytes, in contrast, supports ER stress induction and
atherogenesis.

This protective effect is mediated by increased expression
of transcription factor LXR𝛼 in aP2-deficient macrophages.
This factor activates expression of stearoyl-CoA-desaturase
1, converting SFAs to monounsaturated fatty acids that are
significantly less capable of inducing ER stress [86].

5. ER Stress and Diabetes

5.1. Insulin Resistance-Induced ER Stress in Macrophages. In
diabetic subjects with atherosclerosis, the proatherogenic role
of ER stress and CHOP-mediated macrophage apoptosis is
significantly enhanced that results in the development of
advanced plaques with the especially large necrotic core [87,
88]. Macrophages were shown to have functional insulin
receptors, and insulin resistance (IR) is a potent inducer of
chronic ER stress in macrophages [89]. High insulin doses
suppress insulin signaling in macrophages [88]. Under dia-
betic conditions, insulin signal transduction in macrophages
is also inhibited by diacylglycerol-dependent activation of
protein kinase C [90].

Expression of the scavenger receptor SRA is markedly
upregulated in IR macrophages. Indeed, according to the
“two-hit” hypothesis, these macrophages should be par-
ticularly sensitive to PRR-driven ER stress and apop-
tosis [91]. Experiments with cultured IR macrophages
loaded with lipoprotein-derived free cholesterol do show
markedly increased apoptosis that suggest a key role of SRA-
induced mechanism of ER stress in mediating death of IR
macrophages [92]. In these macrophages, MEK/ERK/cAMP-
responsive element-binding protein (CREBP) signaling and
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calcium homeostasis are disturbed [89]. Alterations in intra-
cellular calcium balance involve depletion of ER calcium
stores and reduced SERCA activity. Antidiabetic agent exe-
natide rescues IR macrophages from apoptosis by activation
of the macrophage glucagon-like peptide 1 (GLP-1) receptor
followed by restoring MEK/ERK signaling and inhibition of
Ca2+-dependent apoptosis [89].

In IR and ER-stressed macrophages, activity of the
serine/threonine-specific protein kinase Akt is lowered and
Akt- and NF-𝜅B-dependent pathways responsible for cell
survival are suppressed [92]. Insufficient Akt activity in IR
macrophages is associated with preferential localization of
transcription factor FoxO1 in the nucleus [93]. Normally,
Akt-dependent phosphorylation of FoxO1 in response to
insulin signaling initiates translocation of this factor to
cytoplasm where it is inactivated by proteolytic degradation.
Macrophages deficient for FoxO1, 3, and 4 are resistant to ER
stress-driven apoptosis [93].The preferential nuclear location
of FoxO1 correlates with enhanced expression of I𝜅B𝜀, an
inhibitor of NF-𝜅B, which in turn increases apoptosis of IR
macrophages [94].

5.2. Glucosamine-Induced ER Stress. Diabetic hyperglycemia
significantly increases cardiovascular risk inducing vascular
dysfunction through inhibitory effects on proliferation of
vascular cells and enhancement of their apoptosis [95–98].
Several pathologic mechanisms link diabetic hyperglycemia
and atherosclerosis. Activation of the aldose reductase path-
way alters redox homeostasis and promotes oxidative stress-
mediated damage of vascular cells [99]. High glucose induces
overactivity of protein kinase C that leads to reduced
endothelial vasodilation [100] and increased ROS production
[101]. Nonenzymatic glycation is markedly increased in dia-
betic patients, and this results in uncontrolled production of
advanced glycation end-products (AGEs) [102] whose accu-
mulation in blood plasma is related to enhancedmodification
of lipoproteins thereby increasing their atherogenicity [103].
Receptor for AGE (RAGE) is expressed inmacrophages, ECs,
and VSMCs [104], and AGE-RAGE interaction induces sig-
naling pathways associated with increased ROS production
and activation of inflammatory response in vascular cells
[105].

In the hexosamine pathway, glutamine : fructose-6 phos-
phate amidotransferase (GFAT) catalyzes conversion of glu-
cose to glucosamine-6 phosphate (G-6P) [106]. Diabetic
hyperglycemia activates the hexosamine pathway that leads
to the production of elevated G-6P levels in vascular cells
[107, 108]. UDP-N-acetylglucosamine (UDP-GlcNAc), an
end-product of the hexosamine pathway, is involved in both
O- and N-linked protein glycation. N-glycosylation is an
important stage of posttranslational modifications of newly
synthesized proteins performed in the ER lumen [109].
Inhibition of N-glycosylation by tunicamycin (UDP-GlcNAc
antagonist) activates the UPR [110].

GFAT is a rate-limiting enzyme in the hexosamine
pathway. Overactivity of this enzyme in diabetic conditions
promotes ER stress via stimulation of expression of UPR-
related genes and contributes to downstreamevents including

lipid accumulation and activation of proinflammatory and
apoptotic pathways [111]. In contrast, GFAT inhibition atten-
uates ER stress [74]. Cultured human aortic VSMCs and
macrophages treated with glucosamine develop apoptosis
[74, 112, 113]. Therefore, suppression of GFAT could have a
therapeutic potential in prevention of glucosamine-induced
ER stress and apoptosis.

Glycogen synthase kinase (GSK)-3 whose expression is
activated in glucosamine-induced ER stress may represent
another potential target for antiatherogenic therapy [114].
GSK-3𝛽 activation in the aorta apoE-deficient hyperglycemic
hyperhomocysteinemic mice fed on high-fat diet correlates
with advanced atherosclerosis [115]. GSK-3𝛼 and 𝛽 are two
enzyme isoforms implicated in a variety of signaling path-
ways [116]. Upon the UPR induction, the inactive enzyme
phosphorylated at Ser(21/9) is rapidly degraded in lysosomes
that yields increase inGSK-3 activity [117]. Inhibition ofGSK-
3 displays both atheroprotective and anti-ER stress effects
in cell cultures [118, 119] and hyperglycemic murine models
[120].

6. Therapeutic Targeting of UPR Components
and Its Clinical Potential

Targeting of proteins in ER stress and ER stress-induced
apoptosis may be of high therapeutic value for treatment
of human diseases in which ER stress plays a substantial
role (Table 1). Promoters of GRP78 and GRP94 genes share
significant sequence homology that explains the high con-
cordance in coordinated expression of both ER chaperones
[121]. Activation of ER chaperones plays an important role in
adaptive UPR since it improves protein folding and prevents
ER stress-induced apoptosis. Overexpression or stimulation
of GRP78/94 had beneficial effect on ER-stressed cardiomy-
ocytes [122–124] and showed cardioprotective properties in
experiments in vivo [11–13].

Chemical chaperones such as phenylbutyrate and tau-
roursodeoxycholic acid (TUDCA) are able to stabilize pro-
teins in their native conformation thereby mimicking prop-
erties of native ER chaperones [125]. Murine macrophages
and adipocytes treated with chemical chaperones showed
resistance to ER stress [19]. At present, phenylbutyric acid
(PBA) in its sodium salt form is approved for therapy of
urea cycle disorders [126] and is in process of clinical testing
for treatment of some genetic disorders related to protein
misfolding [127, 128]. PBA was shown to reduce ER stress
and normalize glucose levels in diabetic mice [129]. Taking
into account clinical approval of PBA for therapy of several
diseases, it would be interesting to check whether PBA is
efficient for treatment of cardiovascular pathology.

TUDCA was shown to display antiapoptotic and anti-ER
stress properties for many types of cells and many diseases
including atherosclerosis. TUDCA was able to block ER
stress and slow lesion progression in Ldlr-deficient mice [9]
and efficiently prevent apoptosis and ER stress induced by
oxidized LDL in murine macrophages transgenic for human
APOE4, a genetic risk variant for Alzheimer disease and
atherosclerosis [130]. The antiapoptotic function of TUDCA
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Table 1: Therapeutics targeting molecular components of ER stress and ER stress-induced apoptosis.

Drug Mechanism Potential indication Reference
5-Aminoimidazole-4-
carboxyamide-1-𝛽-D-
ribofuranoside
(AICAR)

Reduction of ER
stress by AMPK
activation

Ischemic heart disease, heart
failure, cardiac hypertrophy,
atherosclerosis

[8–10]

BiP inducer X Induction of GRP78 Heart failure, stroke [11, 12]

Curcumin Induction of GRP94

Heart failure, atherosclerosis,
thrombosis, diabetes, diabetic
cardiomyopathy, inflammation,
dyslipidemia

[13]

CS-866
Reduction of ER
stress by
pressure-overload

Heart failure, cardiac
hypertrophy [14]

EN460 ERO1𝛼 inhibitor Prevention/reduction of ER
stress-induced oxidative stress [15, 16]

Benzodiazepinones ASK1 inhibitor Atherosclerosis, cerebrovascular
ischemia [16]

QM295 ERO1𝛼 inhibitor Prevention/reduction of ER
stress-induced oxidative stress [15]

Isoproterenol Proteasome activation
and assembly Heart failure, atherosclerosis [17]

Pioglitazone Reduction of ER
stress Heart failure, atherosclerosis [18]

Phenylbutyrate Chemical chaperone Heart failure, atherosclerosis,
pulmonary hypertension [19–21]

Pravastatin
Reduction of ER
stress by
pressure-overload

Heart failure, cardiac
hypertrophy [22]

Salubrinal Prevention of eIF2a
dephosphorylation

Heart failure, cardiac
hypertrophy [23]

SB203580 CHOP
phosphorylation

Heart failure, cardiac
hypertrophy, atherosclerosis [24]

SP600125 Prevention of CHOP
induction by stretch

Heart failure, cardiac
hypertrophy, atherosclerosis [24]

Sunitinib IRE1 activation Heart failure, atherosclerosis [25]
Tauroursodeoxycholic
acid (TUDCA) Chemical chaperone Heart failure, atherosclerosis [19]

can be released through restoring calcium homeostasis and
SERCA activity [131] and downregulation of proapoptotic
protein Bad [132].

Salubrinal specifically inhibits eIF2𝛼 phosphatases [23]
and therefore supports blocking protein synthesis medi-
ated by phosphorylated eIF2𝛼 [133]. Salubrinal is able to
stop ER stress-induced apoptosis by inhibiting synthesis
of members of proapoptotic signaling such as CHOP and
caspase-12 in cardiacmyocytes [134] and upregulatingGRP78
in neurons [23]. However, in pancreatic 𝛽-cells, salubrinal
induced activation of ATF4-CHOP mechanism that resulted
in severe ER stress and apoptosis [133]. Thus, various cell
types differently respond to salubrinal, and this limits its
utility as a broad spectrum antiapoptotic drug [135].

CHOP is crucial in inducing ER stress-mediated apop-
tosis and hence development of CHOP inhibitors would be
beneficial in prevention of atherosclerosis and treatment of

heart failure and cardiac hypertrophy [50]. To date, no phar-
macological agents specific for CHOP are available but there
are drugs able to target molecular components of CHOP-
mediated signaling. For example, SB203580, an inhibitor of
p38 mitogen-activated protein kinase disrupts CHOP phos-
phorylation [136]. Mitogen-activated protein kinase blockers
indirectly inhibit CHOP-dependent signaling in ER stress-
induced apoptosis. JNK inhibitor SP600125 showed ability
to suppress mechanical stretch-induced activation of CHOP
[24].

Inhibition of ERO1𝛼 results in disruption of ER stress
induced by oxidative stress and CHOP. Furthermore, several
selective ERO1𝛼 inhibitors were developed. The inhibitor
EN460 inactivates ERO1𝛼 by blocking its reoxidation [15].
Inhibitors EN460 and QM295 are able to launch the adaptive
UPR signaling that prevents ER stress [15, 16]. Advanced
ROS production induced by ERO1𝛼 overactivation may be
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efficiently suppressed by the antioxidant N-acetylcysteine
[137] and by the treatment with curcumin and masoprocol
that protect PDI from oxidative inactivation [138].

Restoring proteasome function, which is inhibited in
ER stress [139], by protein kinase A activators such as iso-
proterenol or forskolin helps to attenuate ER stress-induced
apoptosis [17]. TNF-𝛼 is significantly upregulated in ER
stress, and inhibition of this cytokine by pravastatin [22]
or TNF-𝛼-specific antibody [24] results in significant pro-
tection of cardiomyocytes and other cells against apoptotic
death. Hyperactivity of ASK1, a downstream target of IRE1-
mediated signaling, contributes to the development of cardiac
hypertrophy and heart failure, and inhibition of ASK1 by
benzodiazepinones may be helpful for therapy of these
cardiopathies [140, 141].

AMPK regulates switching from anabolic pathways (fatty
acid synthesis, protein synthesis, etc.) to catabolism (fatty
acid oxidation, glucose transport, etc.) thereby elevating
energy levels in the cell [142]. The RNAse activity of IRE1
is probably required to activate AMPK that leads to the
induction of the proper UPR and increases cell survival [143].
AMPK activation has the cardioprotective effect through
reducing cardiac ER stress [10, 144]. Inactivation of AMPK
is associated with severe ER stress and atherosclerosis that
can be reduced by ER stress suppressors such as tempol or
TUDCA [8, 9]. In contrast, multiple AMPK agonists such
as 5-aminoimidazole-4-carboxyamide-1-𝛽-D-ribofuranoside
(AICAR), atorvastatin, A-769662, and PT1 reduce cardio-
vascular disease by blocking ER stress [10, 145]. Currently,
AMPK activators are implicated in the treatment of obesity
and metabolic syndrome. However, these drugs may be very
helpful in antiatherogenic and cardioprotective therapy [146].

7. Conclusion: Limitations and Challenges in
Anti-ER Stress Therapy

TheUPR can be targeted by twoways including the activation
of components of the adaptive mechanism of UPR and
inhibition of those involved in the proapoptotic pathways
of UPR. However, several questions should be answered to
increase our understanding of mechanisms by which UPR
targeting may help in therapy of cardiovascular disease. For
example, one ER stressor (ATF6) has a cardioprotective role
[147, 148] while two others (IRE1𝛼 and PERK) are involved in
both the adaptive and proapoptotic UPR pathways. To date,
the mechanisms controlling the switch from cell survival to
death are not fully understood. Indeed, we do not know
precisely when to activate or inhibit ER stress sensor proteins
for treatment.

A variety of chemical inhibitors of protein kinases
including receptor tyrosine kinase inhibitors are available.
Some of those including sunitinib can directly activate IRE1
that results in XBP1 splicing and decreased ER stress [25].
Sunitinib malate is approved for use in treating renal cell
carcinoma and gastrointestinal stromal tumor. However, in
patients with a previous history of hypertension and coronary
heart disease, sunitinib increases risk for cardiovascular
events [149].Thus, kinase inhibitors especially those that have

a broad target spectrum should be carefully evaluated to pre-
vent acute side effects.

In preclinical studies, chemical chaperones showed
promising results in the improvement of ER folding capacity
[125].However, there are some limitations that seriously affect
the therapeutic efficiency of these agents. Typically, high
doses of these small molecule drugs are required to reach the
desired effect. In addition, the UPR components are broadly
expressed and their inhibition/activation in one tissue or
organmay negatively influence the function of another tissue
or organ. Targeting cell-specific ER components such as
cAMP-responsive element-binding transcription factor H
(CREBH) may be a promising strategy. The implementation
of nanotherapeutic targeting approaches would be helpful
for resolving these problems and providing new advances in
efficient prevention of ER stress and treatment of ER stress-
related diseases.

Using nanoparticles loaded with a therapeutic agent and
coated with a monoclonal antibody against a tissue-specific
antigen is a promising strategy for targeted delivery of a drug
at high local concentrations. However, the development of
nanotherapeutic tools for targeting cardiovascular ER stress-
induced apoptosis is still in its infancy. Delie et al. [150]
constructed polymeric nanoparticles capable of recognizing
the COOH-terminal ER retention domain of GRP78, which
ismarkedly overexpressed in prostate and ovarian cancer.The
nanoparticleswere able to deliver a cytotoxic agent, paclitaxel,
to GRP-78-positive cancer cells. Niu et al. [151] reported a
cardioprotective effect of nanoparticles loaded with cerium
oxide (CeO

2
), a ROS scavenger, in transgenic mice with

cardiac-specific expression of monocyte chemoattractant
protein- (MCP-) 1 that causes ischemic cardiomyopathy asso-
ciated with the activation of ER stress. In heart failure, MCP-
1 is involved in cardiomyocyte death through ROS-induced
ER stress and apoptosis mediated by MCP-1-induced protein
(MCPIP), a proapoptotic transcription factor [152]. CeO

2

nanoparticles injected intravenously inhibited progressive
left ventricular dysfunction and dilatation in MCP mice
by reducing oxidative stress and ER stress associated with
suppression of expression of key ER-stress-related proteins
[151].

The development of therapeutic nanoparticles capable
of prolonged circulation in the bloodstream may provide
an effective alternative method for treating ER stress in
atherosclerosis and other cardiovascular diseases. For exam-
ple, liposomal encapsulation of a drug and further liposomal
pegylation significantly increase drug stability and residence
time in blood as well as decreasing its cardiotoxicity [153]. In
a rat ischemia/reperfusionmodel of cardiac injury, Takahama
et al. [154] showed significantly advanced cardioprotective
properties for prolonged adenosine encapsulated in pegy-
lated liposomes compared to free adenosine. Knowledge
regarding the mechanisms of the UPR and ER-stress-related
diseases has rapidly accumulated in recent years, but many
questions remain unanswered. Investigations of the mecha-
nisms and pharmacological actions of ER stress are important
in providing new mechanistic insights and developing novel
targets for ER stress-related diseases. We believe that a more
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deep understanding of ER stress will open promising avenues
for the development of clinically useful drugs.
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[108] N. Fülöp, M. M. Mason, K. Dutta et al., “Impact of type 2
diabetes and aging on cardiomyocyte function and O-linked
N-acetylglucosamine levels in the heart,”The American Journal
of Physiology: Cell Physiology, vol. 292, no. 4, pp. C1370–C1378,
2007.

[109] A. Helenius, “How N-linked oligosaccharides affect glycopro-
tein folding in the endoplasmic reticulum,” Molecular Biology
of the Cell, vol. 5, no. 3, pp. 253–265, 1994.

[110] H. P. Harding, Y. Zhang, and D. Ron, “Protein translation
and folding are coupled by an endoplasmic-reticulum-resident
kinase,” Nature, vol. 397, pp. 271–274, 1999.

[111] A. T. Sage, L. A. Walter, Y. Shi et al., “Hexosamine biosyn-
thesis pathway flux promotes endoplasmic reticulum stress,
lipid accumulation, and inflammatory gene expression in hep-
atic cells,” American Journal of Physiology: Endocrinology and
Metabolism, vol. 298, no. 3, pp. E499–E511, 2010.

[112] G. S. Hossain, J. V. vanThienen, G. H.Werstuck et al., “TDAG51
is induced by homocysteine, promotes detachment-mediated
programmed cell death, and contributes to the development
of atherosclerosis in hyperhomocysteinemia,” The Journal of
Biological Chemistry, vol. 278, no. 32, pp. 30317–30327, 2003.

[113] M. I. Khan, B. A. Pichna, Y. Shi, A. J. Bowes, andG.H.Werstuck,
“Evidence supporting a role for endoplasmic reticulum stress in
the development of atherosclerosis in a hyperglycaemic mouse
model,” Antioxidants and Redox Signaling, vol. 11, no. 9, pp.
2289–2298, 2009.

[114] L. A. Robertson, A. J. Kim, and G. H. Werstuck, “Mechanisms
linking diabetes mellitus to the development of a role forendo-
plasmic reticulum stress synthase kinase-3,” Canadian Journal
of Physiology and Pharmacology, vol. 84, pp. 39–48, 2006.

[115] C. S. McAlpine, A. J. Bowes, M. I. Khan, Y. Shi, and G.
H. Werstuck, “Endoplasmic reticulum stress and glycogen
synthase kinase-3𝛽 activation in apolipoprotein E–deficient
mouse models of accelerated atherosclerosis,” Arteriosclerosis,
Thrombosis, and Vascular Biology, vol. 32, pp. 82–91, 2012.

[116] B.W. Doble and J. R.Woodgett, “GSK-3: tricks of the trade for a
multi-tasking kinase,” Journal of Cell Science, vol. 116, no. 7, pp.
1175–1186, 2003.

[117] D. A. T. Nijholt, A. Nölle, E. S. van Haastert et al., “Unfolded
protein response activates glycogen synthase kinase-3 via selec-
tive lysosomal degradation,” Neurobiology of Aging, vol. 34, no.
7, pp. 1759–1771, 2013.

[118] G. H. Werstuck, A. J. Kim, T. Brenstrum, S. A. Ohnmacht, E.
Panna, and A. Capretta, “Examining the correlations between
GSK-3 inhibitory properties and anti-convulsant efficacy of
valproate and valproate-related compounds,” Bioorganic and
Medicinal Chemistry Letters, vol. 14, no. 22, pp. 5465–5467, 2004.

[119] Y. Shi, D. Gerritsma, A. J. Bowes, A. Capretta, and G. H.
Werstuck, “Induction of GRP78 by valproic acid is dependent
upon histone deacetylase inhibition,” Bioorganic & Medicinal
Chemistry Letters, vol. 17, no. 16, pp. 4491–4494, 2007.

[120] A. J. Bowes, M. I. Khan, Y. Shi, L. Robertson, and G. H.
Werstuck, “Valproate attenuates accelerated atherosclerosis in
hyperglycemic ApoE-deficient mice: Evidence in support of a
role for endoplasmic reticulum stress and glycogen synthase
kinase-3 in lesion development and hepatic steatosis,” The
American Journal of Pathology, vol. 174, no. 1, pp. 330–342, 2009.

[121] S. C. Chang, A. E. Erwin, and A. S. Lee, “Glucose-regulated
protein (GRP94 and GRP78) genes share common regulatory
domains and are coordinately regulated by common trans-
acting factors,”Molecular and Cellular Biology, vol. 9, pp. 2153–
2162, 1989.

[122] M. Vitadello, D. Penzo, V. Petronilli et al., “Overexpression of
the stress protein Grp94 reduces cardiomyocyte necrosis due to
calcium overload and simulated ischemia.,”The FASEB Journal,
vol. 17, no. 8, pp. 923–925, 2003.

[123] R. K. Reddy, C. Mao, P. Baumeister, R. C. Austin, R. J. Kaufman,
and A. S. Lee, “Endoplasmic reticulum chaperone protein
GRP78 protects cells from apoptosis induced by topoisomerase
inhibitors. Role of ATP binding site in suppression of caspase-7
activation,” Journal of Biological Chemistry, vol. 278, no. 23, pp.
20915–20924, 2003.

[124] H. Y. Fu, T. Minamino, O. Tsukamoto et al., “Overexpression
of endoplasmic reticulum-resident chaperone attenuates car-
diomyocyte death induced by proteasome inhibition,” Cardio-
vascular Research, vol. 79, no. 4, pp. 600–610, 2008.

[125] F. Engin and G. S. Hotamisligil, “Restoring endoplasmic retic-
ulum function by chemical chaperones: an emerging thera-
peutic approach for metabolic diseases,” Diabetes, Obesity and
Metabolism, vol. 12, no. 2, pp. 108–115, 2010.

[126] J. V. Leonard and A. A. M. Morris, “Urea cycle disorders,”
Seminars in Neonatology, vol. 7, no. 1, pp. 27–35, 2002.

[127] M. E. Cudkowicz, P. L. Andres, S. A. Macdonald et al., “Phase
2 study of sodium phenylbutyrate in ALS,” Amyotrophic Lateral
Sclerosis, vol. 10, no. 2, pp. 99–106, 2009.

[128] B. Lee, W. Rhead, G. A. Diaz et al., “Phase 2 comparison of a
novel ammonia scavenging agent with sodium phenylbutyrate
in patients with urea cycle disorders: safety, pharmacokinetics
and ammonia control,”Molecular Genetics andMetabolism, vol.
100, no. 3, pp. 221–228, 2010.
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