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Abstract. Estimates of age-specific survival probabilities are needed for age-structured
population models and to inform conservation decisions. However, determining the age of
individuals in wildlife populations is often problematic. We present a hidden Markov model
for estimating age-specific survival from capture–recapture or capture–recapture–recovery data
when age is unknown and indicators of age, such as size and growth layer counts, are imprecise.
The model is evaluated through simulations, and its implementation is illustrated with maxi-
mum likelihood and Bayesian approaches in commonly used software. The model is then
applied to genetic capture–recapture data of Florida manatees to estimate age- and time-
variant survival probabilities. The approach is broadly applicable to studies aiming to quantify
age-specific effects of environmental change and management actions on population dynamics,
including studies that rely on minimally invasive methods such as genetic and photo identifi-
cation.

Key words: age-specific survival; capture–recapture; Florida manatee; genotyping; hidden Markov
model; multievent model.

INTRODUCTION

An understanding of population dynamics is neces-
sary to infer causes of changes in population size and
structure over time and to inform wildlife conservation
and management decisions. Survival probability strongly
influences population dynamics, so there is generally
interest in estimating variation in survival probabilities
across time, across locations, in response to environmen-
tal changes or management actions, and across age
classes (Clobert and Lebreton 1991). In particular,
age-structured population models, including population
viability analyses (Morris and Doak 2002), integrated
population models (Schaub and Abadi 2011), and fish-
ery stock assessment models (Hilborn and Walters
1992), require estimates of age-specific survival probabil-
ities. These models can be used to identify the most

vulnerable age classes and inform conservation efforts or
harvest regulations. Additionally, survival can vary sub-
stantially with age, and ignoring the effect of age can
lead to misguided management decisions (Coulson et al.
2001). When the age (or life-stage) of individuals sam-
pled from a wildlife population is known without error,
conventional capture–recapture methods, including mul-
tistate capture–recapture models, can be used to estimate
these survival probabilities (Pollock 1981, Nichols et al.
1992). However, the age of sampled individuals is typi-
cally unknown unless individuals are first captured and
marked soon after birth. This may be unfeasible for
many studies or result in a reduced sample size when
individuals of unknown age are censored from the
analysis.
Previous models developed to estimate age-specific

survival probabilities for individuals of unknown age
have required that some individuals in the study be of
known age (Colchero and Clark 2012, McCrea et al.
2013) or that the duration of the study be considerably
longer than the life span of the study species (Matechou
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et al. 2013). Other approaches incorporating size to
inform age estimates require a parametric growth model
and that individuals be physically captured and mea-
sured (Coggins et al. 2006, Reinke et al. 2020). Alterna-
tively, considering age as a latent state may facilitate the
use of hidden Markov models (MacDonald and Zuc-
chini 1997) to link discrete observations to uncertain
states. Hidden Markov models include multievent mod-
els, which extend multistate capture–recapture models
by accounting for uncertainty in state assignment (Pra-
del 2005). These models have been used to estimate sur-
vival probabilities while accounting for uncertainty in
disease state (Conn and Cooch 2009), sex (Nichols et al.
2004), and reproductive state (Kendall et al. 2012).
Here, we present a multievent model, treating age as a

latent state, to estimate age-specific survival probabilities
that (1) can be used when the ages of all individuals in
the study are unknown, (2) can be applied to long-lived
species, and (3) incorporates auxiliary indicators of age
that can be obtained with less invasive methods (e.g.,
observations of behavior, coloration, or relative size).
We illustrate this model with genotype-based capture–re-
capture data on Florida manatees (Trichechus manatus
latirostris), using relative size as an indicator of age. This
model should be applicable to a broad array of study
systems where researchers are interested in quantifying
differential environmental and management impacts on
survival across ages. In particular, it is relevant to cap-
ture–recapture studies using genotyping, camera trap-
ping, photo identification, and other emerging,
minimally invasive technologies in which animals are
not physically captured, measured, or aged.

METHODS

Multievent models are conditioned on the time of an
individual’s first capture, and their parameters include:
initial state probability, π, given that the state of an indi-
vidual at first capture may be unknown; state transition
probabilities (including survival, S, and conditional state
transition probability, ψ), which describe how individu-
als transition among states between sampling occasions;
recapture probability, p; and state assignment probabil-
ity, δ, which is the probability of recording a specific
observation event, conditional on capture and the indi-
vidual’s underlying state (Pradel 2005, Conn and Cooch
2009). We use superscripts to indicate state (age) depen-
dence and subscripts to indicate time dependence.
We define N age classes, a = {a0, a1, . . ., aN−1}, where

a0 denotes individuals alive age 0 (<12 months old), a1

denotes individuals alive age 1 yr, . . ., and aN−1 denotes
individuals alive age N − 1 yr or older. On sampling
occasion t, an individual may be in one of N + 1 states,
where the additional state denotes dead individuals. We
assume that survival and other parameters do not vary
with age beyond N − 1 yr. The state dynamics and
observation processes of multievent models can be repre-
sented as matrices, following Pradel (2005). We illustrate

an example with N = 5 age classes, which correspond to
our manatee example below. All matrices in this model
are row-stochastic such that rows are constrained to sum
to 1. Initial state probabilities are a row vector:

πt ¼ π0t π1t π2t π3t π4þt 0
� �

:

Here, individuals cannot be in the dead state at the
time of first capture. The transition matrix (from row to
column) representing survival from year t to year t + 1 is

Φt ¼

0 S0
t 0 0 0 1�S0

t

0 0 S1
t 0 0 1�S1

t

0 0 0 S2
t 0 1�S2

t

0 0 0 0 S3
t 1�S3

t

0 0 0 0 S4þ
t 1�S4þ

t

0 0 0 0 0 1

2
666666664

3
777777775
:

At each sampling occasion, one of L observation
events is possible for each individual. These observation
events may denote: the individual’s age if the individual
is detected and age is known, an indicator of age (e.g.,
behavior, coloration pattern, size) if the individual is
detected but age is uncertain, or that the individual was
not detected. We illustrate an example with L = 4 events,
where one event denotes that the individual was not
detected and the other three denote indicators of age
with uncertainty (based on approximate size: small, s,
medium, m, or large, l) for when the individual was
detected. The matrix of observation event probabilities is
then

Bt ¼

1�p0t p0t �δsj0t p0t �δmj0
t p0t �δlj0t

1�p1t p1t �δsj1t p1t �δmj1
t p1t �δlj1t

1�p2t p2t �δsj2t p2t �δmj2
t p2t �δlj2t

1�p3t p3t �δsj3t p3t �δmj3
t p3t �δlj3t

1�p4þt p4þt �δsj4þt p4þt �δmj4þ
t p4þt �δlj4þt

1 0 0 0

2
66666666664

3
77777777775

,

where the rows represent the states defined above and
the columns (from left to right) represent the observa-
tions: not detected, detected and recorded as small,
detected and medium, and detected and large. Note that
p = 1 for the occasion when an individual is first cap-
tured and marked. Superscripts for δ denote that
recorded indicators of age are conditional on the true
underlying age.
Extensions of this model can incorporate robust sam-

pling design and carcass recovery data, which we antici-
pate would lead to gains in the precision of survival
estimates (Kendall et al. 2013). A robust design
approach can be used when, within a primary occasion,
there are multiple secondary sampling occasions during
which states do not change (Pollock 1982). Carcass
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recoveries can be incorporated by adding newly dead
states for each age class and a previously dead state,
based on the assumption that carcasses cannot be recov-
ered and individually identified more than 1 yr after an
individual has died (Lebreton et al. 1999). For the obser-
vation process with carcass recovery data, we add
parameters for carcass recovery probability (r) and car-
cass state assignment probability (ε), which are analo-
gous to p and δ. See Appendix S1 for additional details
on incorporating robust sampling design and carcass
recovery data. Temporary emigration can be modeled by
including one or more unobservable states, with corre-
sponding transition probabilities and where p is fixed to
0, for individuals that are temporarily unavailable for
recapture (Kendall and Nichols 2002). Extensions to
improve parsimony by modeling δ and ε as a function of
latent age or to account for individual heterogeneity are
also possible (Appendix S2).

Implementation and simulation study

Variation in parameters across time, state/age, groups,
individuals, or as a function of external covariates can
be modeled using generalized linear models, as with
other capture–recapture models (Lebreton et al. 1992).
Specifically, probabilities within a matrix row can be
modeled using a multinomial logit link function. Model
parameters can be estimated using maximum likelihood
(Pradel 2005, Choquet et al. 2009) or Bayesian (Turek
et al. 2016) approaches that have been developed for
other hidden Markov models.
Using simulated data based on our starting model

(i.e., no robust design or carcass recovery data), we
assessed model performance with a maximum-
likelihood approach using program E-SURGE (version
2.2.3; Choquet et al. 2009) and with a Bayesian Markov
chain Monte Carlo (MCMC) approach using the NIM-
BLE package (version 0.7.1; NIMBLE Development
Team 2019) in program R (version 3.6.0). To reduce
MCMC runtime, we used a custom function to calcu-
late the likelihood of each capture history by integrat-
ing over all possible latent states, which was then
passed to the BUGS model code in NIMBLE (Turek
et al. 2016). We used uniform and diffuse normal priors
and ran three MCMC chains of at least 2,000 samples
after discarding 2,000 as burn-in; the chains were
extended until the Gelman-Rubin statistic was <1.3 for
all parameters or until 10,000 samples were run. We
simulated data for eight sampling occasions, with 100
individuals first captured and marked on each occasion.
We set all parameters constant across time, survival as
a linear (on the logit scale) function of age, p0 = p1,
and p2 = p3; otherwise, all parameters varied categori-
cally across age. Code to simulate the data in R and fit
the model with NIMBLE are included in Data S1. We
ran 1,000 simulations and report the absolute bias,
mean absolute error, and coverage (based on 95% credi-
ble intervals) for NIMBLE. Because of lack of

automation, we ran only 100 simulations and do not
report coverage for E-SURGE.

Manatee example

Tissue samples for genotype-based individual identifi-
cation were collected from manatees in southwest Flor-
ida over 10 winters using a custom biopsy needle. The
size class of individuals was estimated at the time of
sampling and was recorded as calf, subadult, or adult
based on observed behaviors (e.g., nursing) and previous
work relating manatee body length to age (Schwarz and
Runge 2009). However, manatees were not physically
captured and measured during sampling, and length-at-
age is likely to vary (Schwarz and Runge 2009), resulting
in uncertainty in age. Biopsy samples were also collected
from manatee carcasses reported to the Florida Fish and
Wildlife Conservation Commission, and carcasses were
assigned to one of the same three size classes based on
measured or estimated total length. We modeled survival
for five age classes (a0, a1, a2, a3, a4+) to align with exist-
ing manatee population models (Runge et al. 2017). To
implement the robust design, we pooled sampling trips
within each winter (primary occasion) into two sec-
ondary occasions. See Appendix S3 for more details on
manatee sampling and genetic analysis. Capture history
data are available (see Open Research).
We fit models to the manatee data using program E-

SURGE, which we found more convenient for model
construction and selection, and faster in achieving con-
vergence, than Bayesian MCMC methods. Details for
implementing the model in E-SURGE are described in
Appendix S4. We used Akaike’s information criterion
corrected for small sample sizes (AICc; Burnham and
Anderson 2002) and a build-up approach for model
selection (Morin et al. 2020), focusing first on age effects
then on time effects and temporal covariates. Candidate
models included an age effect for all probabilities and
time effects for p, r, ψ (temporary emigration; i.e., the
probability that an individual transitioned out of or into
the sampling area, given that it survived from the previ-
ous year), and S. Temporal covariates included sampling
effort and needle design for p, a winter cold severity
index for S and ψ, and a red tide severity index for S (see
Appendix S3 for details on covariates tested). For S, we
considered age as either a categorical or a logit-linear
covariate, and we considered both additive and interac-
tive time effects with age (see Appendix S5 for a table of
all candidate models).

RESULTS

Simulations

Using simulated data sets, absolute bias was <0.08 for
all parameters and <0.04 for all survival probabilities
with both E-SURGE and NIMBLE (Table 1). Coverage
in NIMBLE was close to the nominal 0.95
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(range = 0.88–0.98 for all parameters, 0.95–0.96 for sur-
vival probabilities). Mean absolute error for S, p, and δ
tended to be greater for younger age classes, which had
sparser data in this simulation, than for older age
classes.

Manatee example

A total of 2,046 unique individuals were genetically
identified from the sampling of live manatees. Our
model results suggested that most manatees were age
4 yr or older when first captured (π4+ = 0.71, 95% confi-
dence interval = [0.45, 0.89]), with initial state probabili-
ties equal among the younger age classes in models best
supported by the data based on AICc (Appendix S5:
Table S1). Most manatees (78%) were detected alive only
once during the study, and no individuals recorded as a
live calf were detected in both secondary occasions in
the same winter. Correspondingly, recapture probability
estimates were low overall (p < 0.16 across all age classes
and secondary occasions) and lowest for age 0 manatees
(p0 = 0.00 [0.00, 0.01] in all secondary occasions). Of the
2,046 manatees in this study, 119 were recovered dead.
Carcass recovery probability was estimated to be 0.25
[0.17, 0.36], and AICc did not support models for which

r varied across age or years, likely due to sparse data.
Live age 0 manatees were most often, but not always,
recorded as a calf (δcalf|0 = 0.65 [0.45, 0.80]), whereas live
age 1, age 2, and age 3 manatees were most often
recorded as a subadult (Fig. 1). Live manatees age 4 and
older were almost always recorded as an adult (δadult|
4+ = 0.97 [0.95, 0.98]). Size class assignment probabili-
ties for manatee carcasses had a similar pattern as for
live manatees, although estimates were less precise (εcalf|
0 = 0.82 [0.01, 1.00]; εadult|4+ = 0.92 [0.84, 0.97]).
The models with most support based on AICc

included age as a logit-linear covariate and a red tide
effect on survival, and models in which the red tide effect
was additive across age classes had more support than
models in which the red tide effect was different for each
age class (Appendix S5: Table S1). The relative support
of models with age as a logit-linear covariate resulted in
survival estimates increasing predictably with age, and
the red tide effect resulted in lowest survival probabilities

TABLE 1. Simulation results for estimating age class-specific
survival probabilities when age is unknown using maximum
likelihood (program E-SURGE) and Bayesian (R package
NIMBLE) approaches.

Parameter
True
value

E-SURGE NIMBLE

Mean MAE Mean MAE Coverage

S0 0.70 0.70 0.06 0.67 0.06 0.947
S1 0.79 0.80 0.03 0.77 0.03 0.945
S2 0.86 0.87 0.02 0.86 0.01 0.957
S3 0.91 0.92 0.01 0.91 0.01 0.945
S4+ 0.95 0.95 0.01 0.95 0.01 0.958
p0, p1 0.5 0.56 0.13 0.52 0.10 0.973
p2, p3 0.6 0.61 0.04 0.60 0.04 0.956
p4+ 0.7 0.70 0.01 0.70 0.01 0.945
π0 0.1 0.15 0.07 0.09 0.03 0.949
π1 0.2 0.17 0.06 0.19 0.04 0.948
π2 0.2 0.20 0.06 0.19 0.04 0.966
π3 0.2 0.21 0.09 0.21 0.04 0.975
δs|0 0.8 0.75 0.14 0.81 0.14 0.918
δs|1 0.6 0.54 0.16 0.60 0.10 0.938
δs|2 0.2 0.17 0.09 0.24 0.08 0.922
δs|3 0.1 0.09 0.05 0.13 0.05 0.954
δs|4+ 0 0.00 0.00 0.00 0.00 NA
δm|0 0.2 0.23 0.13 0.17 0.14 0.875
δm|1 0.4 0.40 0.11 0.37 0.10 0.936
δm|2 0.5 0.55 0.10 0.53 0.07 0.948
δm|3 0.6 0.53 0.15 0.59 0.08 0.951
δm|4+ 0.2 0.20 0.01 0.21 0.01 0.939

Notes: Metrics are mean estimate, mean absolute error
(MAE), and coverage. Coverage is not reported for E-SURGE
results, which used only 100 simulated data sets, or for probabil-
ities with true value = 0.

FIG. 1. Estimated probabilities (with 95% confidence inter-
vals) of recording a live manatee as a calf (top panel) or suba-
dult (bottom panel) for five age classes.
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in 2013, a year with extensive red tide concentrations
(Fig. 2). Annual survival estimates for age 0 manatees
ranged from 0.85 [0.51, 0.97] to 0.89 [0.74, 0.96], and
those for age 4+ manatees ranged from 0.88 [0.80, 0.93]
to 0.96 [0.93, 0.97] (Fig. 2). Models with temporary emi-
gration were not well supported by the data (Appendix
S5: Table S1), and estimates for the probability of mov-
ing from inside to outside of the sampling area were gen-
erally low (0.09 [0.01, 0.43] in the best supported model
that included temporary emigration).

DISCUSSION

Age-structured population models are a useful and
common tool for wildlife conservation and management,
but it can be difficult to estimate age-specific demo-
graphic parameters for these models because the ages of
wild animals are often unknown. We have presented a
multievent model to estimate age-specific survival proba-
bilities when age is unknown for all sampled individuals.
As with other open capture–recapture models, the preci-
sion of survival estimates is influenced by the number of
marked animals, recapture rates, and duration of the
study (Lindberg 2012). In the manatee example, survival
estimates were reasonably precise, particularly for the
older age classes (CV = 1.2–3.6% for age 4+ manatees),
despite low recapture probabilities. We attribute this to a
large sample size of individuals and incorporating car-
cass recovery and robust design data. However, data for
the younger age classes were sparse, resulting in less pre-
cise survival estimates (CV = 4.7–12.9% for age 0 mana-
tees) and potentially contributing to support for

constrained models with age as a linear covariate. The
simulation code we provided can be used to inform study
design, including sample sizes, recapture rates (via sam-
pling effort), and the value of ancillary information (e.g.,
carcass recoveries and robust sampling design), for a
desired level of precision and to evaluate parameter
estimability.
The number of possible observation events and their

ability to differentiate latent age will also likely con-
tribute to the accuracy and precision of estimates. How-
ever, the number of state assignment parameters (δ and
ε) in the model will increase with the number of possible
events, which may reduce bias but also increase variance,
so constrained models may be advantageous. For exam-
ple, we fixed to 0 the probability of recording age 0 and
age 1 manatees as adults (Appendix S4). Alternatively,
using data such as actual size measurements or growth
layer counts (Lonati et al. 2019) as imperfect indicators
of age can also be considered for extending our model,
in which observation events are continuous rather than
discrete and assumed to be a parametric function of age
(also see Appendix S2 for modeling discrete observation
events as a function of age). Such functional relation-
ships could be estimated jointly from capture–recapture
studies (Reinke et al. 2020) or estimated from a separate
study and used to inform priors in a Bayesian analysis.
In any case, including some individuals of known age
(i.e., marked soon after birth) in the study is expected to
improve estimates (McCrea et al. 2013).
Parameter estimability may also depend on the num-

ber of age classes considered relative to the duration of
the study (Matechou et al. 2013). In our example,

FIG. 2. Estimated annual survival probabilities (with 95% confidence intervals) for manatees by age class.
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individuals recaptured at least 4 yr since their initial cap-
ture were known with certainty to be in the age 4+ class,
likely improving estimates for this age class. However,
rather than modeling age as a categorical covariate on
survival, parametric curves could be used to reduce the
number of model parameters while testing hypotheses
regarding whether survival increases with age (e.g., logit-
linear model as in our example), senescence (e.g., Gom-
pertz, Weibull), or prime-age survival (e.g., logit-
quadratic; Nussey et al. 2008).
The utility of population models is limited when direct

estimates of age-specific survival are unavailable. For
instance, because it is difficult to estimate age-specific
survival from manatee photo identification data, previ-
ous manatee population models have generally assumed
that the ratio of calf mortality to subadult and adult
mortality is constant across regions and years (Runge
et al. 2017). In contrast, our model framework and the
use of genetic identification allow testing of hypotheses
as to how environmental effects and management
actions, which vary across space and time, impact sur-
vival for different age classes in different ways. For
example, although our results supported models where
the effect of red tide was additive across age and where
cold severity did not affect survival, the approach pre-
sented here allowed us to test models where these effects
varied across age classes. This model provides an
approach for estimating age-specific survival when age is
uncertain and can be applied to other species that are
monitored with minimally invasive techniques.
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