
122 https://www.ejast.org

Journal of Animal Science and Technology

REVIEW
J Anim Sci Technol 2019;61(3):122-137
https://doi.org/10.5187/jast.2019.61.3.122  pISSN 1598-9429  eISSN 2055-0391

Advanced estimation and mitigation strategies: 
a cumulative approach to enteric methane 
abatement from ruminants
Mahfuzul Islam and Sang-Suk Lee*

Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 
57922, Korea

Abstract
Methane, one of the important greenhouse gas, has a higher global warming potential than that of carbon dioxide. Agricul-
ture, especially livestock, is considered as the biggest sector in producing anthropogenic methane. Among livestock, rumi-
nants are the highest emitters of enteric methane. Methanogenesis, a continuous process in the rumen, carried out by ar-
chaea either with a hydrogenotrophic pathway that converts hydrogen and carbon dioxide to methane or with methylotrophic 
pathway, which the substrate for methanogenesis is methyl groups. For accurate estimation of methane from ruminants, 
three methods have been successfully used in various experiments under different environmental conditions such as res-
piration chamber, sulfur hexafluoride tracer technique, and the automated head-chamber or GreenFeed system. Methane 
production and emission from ruminants are increasing day by day with an increase of ruminants which help to meet up the 
nutrient demands of the increasing human population throughout the world. Several mitigation strategies have been taken 
separately for methane abatement from ruminant productions such as animal intervention, diet selection, dietary feed addi-
tives, probiotics, defaunation, supplementation of fats, oils, organic acids, plant secondary metabolites, etc. However, sus-
tainable mitigation strategies are not established yet. A cumulative approach of accurate enteric methane measurement and 
existing mitigation strategies with more focusing on the biological reduction of methane emission by direct-fed microbials 
could be the sustainable methane mitigation approaches.
Keywords: Accurate methane estimation, Methane mitigating approach, Direct-fed microbials

Background 

Methane (CH4), one of the three main greenhouse gases (GHG) 
besides of carbon dioxide (CO2) and nitrous oxide (N2O), have a 
global warming potential of 28-fold than that of carbon dioxide 
(CO2) [1]. Agricultural sector is considered to contribute the big-
gest methane emission, which calculated around 50.6% from an-
thropogenic methane [2]. Within agriculture, the livestock sector 

contributes approximately 18% of the global anthropogenic GHG 
emission [3]. Among livestock, ruminant contributes about 81% 
of GHG [4] due to massive methanogenesis by rumen microbes, 
which produce 90% of total CH4 production from ruminants [5]. 
Globally, CH4 emissions of dairy and beef cattle denote 30% and 
35% of the livestock sectors’ emissions. However, buffalos and 
small ruminants are lower contributors, demonstrating 8.7% and 
6.7% of sector emissions, respectively [6]. The CH4 production in 
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ruminants represents a gross energy loss from 2% to 14% of gross 
energy consumption [7]. Therefore, reduction of methane emission 
in animal conserves an energy and enhances productivity.

For the fulfilling of nutrition demand of growing population, 
the number of domesticated animals increasing rapidly. This high 
number of animals is directly proportional to CH4 production. In 
developed countries, it often recommends culling of nonproduc-
tive and low-producing animals to reduce CH4 budget [8]. They 
maintained high-producing animals in herds for reducing CH4 
emissions per unit of product. Conversely, this is often impractical 
for poor countries due to their socioeconomic and religious back-
ground. It is well established that with the increasing animal pro-
ductivity, CH4 emissions also decrease per unit of products. There 
are many options for enhancing the productivity of animals such 
as the proper formulation of diets, supplementation of protein and 
energy to low-quality forages, ionophores, bovine somatotrophin, 
and probiotics [9]. Lately, both the increasing of animal production 
as well as decreasing the methane emission by the animal especial-
ly ruminants are the main focus among researchers throughout the 
world. A number of CH4 abetment strategies from ruminants have 
been revised earlier [2,8,10–26]. However, these strategies summa-
rized more concreate and cumulative approaches to set up future 
research needs for sustainable methane mitigation strategies in 
ruminants focusing direct-feed microbials. As a part of cumulative 
approach, accurate estimation of methane production is also very 
important in order to make a suitable methane mitigation strategy. 
Therefore, this review also summarized the methods of enteric 
methane measurement and their applications. 

Rumen microbiome and methanogenesis
The rumen microbiome including a wide variety of microorgan-
isms, viz. bacteria, archaea, ciliated protozoa, fungi, and viruses, stay 
in a symbiotic relationship in a strict anaerobic condition within 
the rumen [27]. The protozoa can comprise up to 50% of the mi-
crobial biomass in rumen [28]. While, the fungi were estimated at 
around 8% of the total biomass [29] but may reach 20% in sheep 
[30]. The archaea include only 0.3%–4% [31], and the bacteria 
cover the remainder, characteristically the largest component of 
the rumen microbial biomass [26]. This rumen microbiome plays a 
significant role in feed fermentation within the rumen and produc-
es different volatile fatty acids (VFAs), CO2 and H2. These VFAs 
are essential for energy metabolism and protein synthesis of the 
ruminant host [32]. Among the diverse rumen microbiomes, only 
a few of these have been successfully characterized earlier based 
on culture-techniques. Recently, the application of multi-omics 
techniques such as metagenomics by next-generation sequencing 
(NGS) or high-throughput sequencing [33–37], metatranscrip-

tomics [38–40], metaproteomics [41,42], and metabolomics 
[43–45] have been increased greatly [40].

Methanogenesis is a process of CH4 production in the rumen 
where H2 reduced the CO2 with the help of methanogenic archaea 
[46]. CH4 production is the main way for H2 clearance from fer-
mentation [47]. There are two main pathways of methanogenesis 
in the rumen, carried out by archaea, are presented in Table 1. The 
hydrogenotrophic pathway converts H2 and CO2 into CH4 by 
the bacteria, protozoa, and fungi [5,23]. It is usually implicit that 
formate can be used by most abundant ruminal archaea that equiv-
alent to H2+CO2, so formate is included in the hydrogenotrophic 
category [31,48]. Methylotrophic pathway is an another pathway 
of methanogenesis, which use methyl groups such as those present 
in methylamines and methanol as substrate [26,49,50]. The meth-
anogens species have classified into 28 genera and 113 species, but 
it can be expected to occur many more in nature [15,31]. From 
rumen, only a few methanogens have been so far isolated based on 
culture techniques such as Methanobrevibacter ruminantium, Metha-
nobrevibacter millerae, Methanobrevibacter olleyae, Methanobacterium 
formicicum, Methanobacterium bryantii, Methnaomicrobium mobile, 
Methanoculleus olentangyi, Methanobrevibacter smithii and Methano-
sarcina spp. [31]. Lately, multi-omics techniques are using to under-
stand greenhouse gas emission from ruminant production [51].

Enteric methane measurement and their applications
Accurate estimation of enteric methane production from animals 
is the key to take initiative for the setting up of mitigation strat-
egies. Mitigation strategy often was unsuccessful due to wrong 
measurement of CH4 production. A number of enteric methane 
measuring techniques have been developed. However, respiration 
chamber (RC), sulfur hexafluoride (SF6) tracer technique, and the 
automated head-chamber system (AHCS) (GreenFeed; C-Lock 
Inc., Rapid City, South Dakota, USA) were used successfully and 
widely in various experiments focusing dairy or beef cattle in sever-
al environmental conditions [18,52]. All three methods have been 
effectively used in a large number of trials with dairy or beef cattle 

Table 1. Methanogenesis pathways
Pathways Reactions References

Hydrogenotrophic 
pathway

CO2 + 4H2 → CH4 + 2H2O [57,58,87,89]

Methylotrophic
pathway

CH3OH + H2 → CH4 + H2O [98,121]

4CH3OH → 3CH4 + CO2 + 2H2O

CH3NH2 + H2 → CH4 + NH3

CO2, carbon dioxide; H2, hydrogen; CH4, methane; H2O, water; CH3OH, methanol; 
CH3NH2, methylamine.
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under a wide variety of environmental conditions. However, incon-
sistent results also observed while did comparative study among 
techniques [53]. The several enteric CH4 measurement approaches 
are presented in Fig. 1.

Exact measurements of CH4 emission can be gained by housing 
animals in RC, which then allow measurement of total methane 
emission directly. Reynolds et al. [54] and Cammell et al. [55] de-
scribed the details of RC and measurements of methane emission. 
For the measurements of gaseous emissions, two open-circuit RC 
was used (internal volume approximately 21 m3), with airlocks 
permitting access for faecal and urine collection [55]. An integra-
tive sample of ambient and RC exhaust air was analyzed at 4-min 
intervals, and there was a switch to calibration gases (oxygen-free 
nitrogen and nitrogen carrier with 20.5%, 3000 ppm, and 200 ppm 
oxygen, carbon dioxide, and methane, respectively) every 4 h to 
provide gas analyses with variation coefficients of 5% or less. This 
technique is relatively expensive, and are troublesome for the ani-
mal to behave normally like a natural that occurs within grassland 
environments.

The SF6 tracer technique [56,57] can be used to make esti-
mations of methane emissions either by eructation or expiration 
from animals that can easily select their diet in a way characteristic 
of farmed livestock especially in grazing. The SF6, a gas is easily 
measurable and traceable at low concentrations. In addition, it is 
synthetic in origin and not produced as part of any sort of biologi-
cal process. The SF6 is also idyllic as its background concentration, 
which is naturally very low (6 pmol/day) [58], while its concentra-
tion as a tracer typically ranges from 0.01 to 0.03 mmol/day [59]. 
In the gas technique, SF6 tracer gas is delivered via a permeation 
tube, which is positioned in the rumen, and the ratio of CH4 to 
SF6 in the breath of an animal is measured and corrected with 
reference to the background concentration. Though the concen-
tration of the tracer is known, the rate of production of CH4 can 
be calculated [47]. The assessments have challenged the accuracy 
of the SF6 technique for estimating CH4 emissions [60,61], with 
greater between-animal variation compared to RC [62]. The SF6 
technique has also delivered variable estimates of CH4 emission 
from animals on diverse herbages that have not been supported 

Fig. 1. Pictorial presentation of widely used enteric methane measurement techniques. (A) Respiration chambers (RC), (B) Sulfur hexafluoride (SF6) 
tracer technique, (C) Automated head-chamber system (AHCS), (D) Methane hood (MH) system [47,69,73].
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by RC measurements [63–66]. There was also some problem with 
halter and collection canisters, placed on the animal for CH4 esti-
mates can affect during grazing [67], especially in young animals, 
and a lower than predicted feed dry matter intake (DMI) will 
overestimate CH4 yields (g/kg DMI). Administration of rumen 
SF6 boluses and frequent handling of animal is needed which can 
be troublemaking to normal behavior and is relatively laborious. 
Though this technique is challenging to use in practice, standard 
operating techniques have been established [68].

In 2010, C-Lock Inc., Rapid City, South Dakota, USA has 
introduced the commercial GreenFeed (GF) system as a static 
short-term measurement device that measures CH4 emission from 
distinct cattle and uses head position sensors in combination with 
decision rules to assess the validity of measures obtained [52,69]. 
Depending on the experimental design, this GF system can be in-
stalled both conditions either grazing field or inside the farm. The 
animal remaining free to move about and voluntarily enters into 
the hood where a feed supplement is dropped. The measurements 
of CH4 emission by the GF system can be done typically over a 
short period (3–7 minutes), several times within a day, over several 
days. The GF system estimated CH4 emission using sensors that 
identified the animal and its head position within a sampling hood, 
air flow, and CH4 and CO2 concentrations in exhaust air. A radio 
frequency identification (RFID) reader recognized the animal’s ear 
tag and GF sampling was activated when the animal’s head was 
in the correct position within the hood. Satisfactory animal head 
position resulted in the dispensing of feed pellets which influenced 
the animal to maintain a suitable head position for accurate mea-
surements. Only one cattle can visit one GF unit at a time point 
and a ‘visit’ is defined as a visit that results in a methane measure-
ment. The system is automatically programmed using C-Lock Inc. 
software to control the timing of feed availability for each animal 
and thus, encourage animals to allocate their voluntary GF visita-
tion, and measure CH4 emission over a 24 h period. Each GF unit 
can be used for several animals, with manufacturer recommenda-
tions of 15–20 animals/unit when grazing and 20–25 animals/unit 
if housed in free stalls. Cattle are voluntarily participating to visit 
the GF unit if they adapt once. 

The face-masks method is one of the oldest technique for 
“spot-sampling” of respiratory exchange and CH4 emission from 
cattle, sheep, and goats. Face mask is only useful for short-term 
measurements of CH4 emission rate for screening of large numbers 
of animals, however may cause marked discomfort and distress 
which can change animal behaviors, and affect the gas measure-
ments [70]. The sniffer method, first reported by Garnsworthy et 
al. [71], is the measurement of CH4 concentration in air eructed 
by cattle during milking. In this technique, air in the manger is 
continuously sampled, analyzed, and logged at 1-second intervals 

using data loggers in order to measure CH4 and CO2 concentra-
tions in close proximity to the muzzle of the animal. Garnsworthy 
et al. [71] also reported a good relationship (r = 0.79) between RC 
technique and CH4 emission rate using this method. The hand 
laser CH4 detector (LMD) has been proposed to measures enteric 
CH4 concentrations in the air near the nose or mouth of an animal 
in normal environment [72]. The methane hood (MH) system, a 
novel method to quantify CH4 emission from cattle during group 
feeding in housed environment. This system measures CH4 con-
centrations exhausted from underneath a hood designed to partial-
ly enclose the volume above a feed bin. The principle is almost sim-
ilar to GF system except that there is no requirement to offer extra 
feed supplements needed to influence the visit of cattle into GF 
system [73]. There are also some other indirect approaches have 
been suggested and so far used to measure enteric CH4 emissions 
from animal however, associated with lower accuracy and greater 
uncertainty in the emission data [18].

Methane mitigation approaches from ruminants
Methane mitigation from animal origin is a time demanding is-
sue throughout the world. There are several possible targets and 
mitigation strategies (Fig. 2) have been taken so far but still lack 
in sustainability. By 2050, the total CH4 emission from ruminant 
animals is expected to increase significantly due to the increasing 
demand for milk and meat of animal origin for a hurriedly grow-
ing world population [74]. So, it is highly needed to mitigate CH4 
emission from the livestock industry. Here, we summarized im-
portant methane mitigation approaches in ruminant productions.

Maintaining low methane emitters
Methane production is not consistent for all animal types and 
breeds [13]. Olijhoek et al. [75] reported that methane production 
per kilogram of dry matter intake (DMI) was lower in Holsteins 
in comparison to Jerseys (30.7 vs. 32.6 L/kg of DMI in case of 
High RFI and low concentrate group, 21.4 vs. 28.2 in High RFI 
and high concentrate group, 32.4 vs. 32.5 in Low RFI and high 
concentrate group and 24.5 vs. 27.9 in Low RFI and low con-
centrate group). It was also reported that CH4 production from 
different animals under the same feeding trial reveals significant 
variation among animals [8]. Pinares-Patino et al. [76] conducted 
an experiment on grazing sheep where some animals show as high 
and low CH4 emitters on the basis of CH4 output per unit of feed 
intake [8]. Some other researches have established that ruminants 
with low residual feed intake (RFI) emit less CH4 than the ani-
mals with high RFI [77]. Likewise, Hegarty et al. [78] stated that 
CH4 production was lower in low RFI Angus steers than in steers 
having high RFI (142 vs. 192g CH4/day). There was a positive 
genetic correlation between RFI and predicted methane emission 
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(PME; g/d) which indicated that the cows having lower RFI have 
lower PME (estimates ranging from 0.18 to 0.84) [79]. Though 
the cause is not clear, it might be due to differences in methanogen 
populations among animals [80]. It is proposing that rumen mi-
crobial community varies among animals or breeds depending on 
individual genetic variations that greatly influence CH4 production 
[42]. Therefore, the selection of low methane producer might be a 
possible and sustainable way to mitigate methane emission.

A good combination of diet reduces methane production
Methane production in ruminants is influenced by the composi-
tion of feed. Digestion in the rumen is dependent on the activity 
of microorganisms, which need energy, nitrogen and minerals [81]. 
Subsequently, the quality of forage affects the activity of rumen mi-
crobes and CH4 production in the rumen. The species, processing, 
and proportion of forages, and the grain sources of diets also in-
fluence CH4 production in ruminants. Methane production tends 
to decrease as the protein content of feed increases, and increases as 
the fiber content of feed increases [7,82,83].

High-quality forage, especially young plants, can mitigate CH4 
production by shifting the fermentation pathway as this forage 
contains lower amounts of NDF and higher easily fermentable 
carbohydrates, leading to a higher digestibility and passage rate [84]. 

On the other hand, more mature forage encourages a higher CH4 
yield mainly owing to an increased C: N ratio, which subsequently 
decreases the digestibility in ruminants [85]. The CH4 emission 
can also vary depending on types of forage due to the variation of 
their chemical composition [86]. Methane production also signifi-
cantly affected by the processing and preservation of forages [23] 
such as, chopping or pelleting of forages require less degradation 
in the rumen due to their smaller particles size as a consequent 
reduction of CH4 emission per kg of DMI [87]. Likewise, ensiling 
of forages, partially fermented, can reduce CH4 emission from ru-
minants [87].

For increasing the production especially in the high producing 
dairy cattle higher energy supplementation is needed. Only forage 
is not sufficient to provide the nutrient for these high yielding 
cattle. So, concentrates must be supplemented with forages with a 
higher density of nutrients and less fiber. These concentrates con-
tain fewer cell walls and readily fermentable carbohydrates (starch 
and sugar) and contribute to the production of propionic acid 
however reducing CH4 production [23]. It was observed in one 
study that 80% and 90% concentrate supplementation decreased 
CH4 production, while no noticeable effect was found at 35% or 
60% concentrate supplementation [88]. Another study showed 
that a diet containing 90% concentrate produced extremely low 

Fig. 2. A schematic presentation of the possible targets to reduce CH4 emissions from ruminants. The boxes without dark shade could be 
the targets for CH4 mitigation and boxes with dark shade are the options that have been studied either in vitro or in vivo to reduce CH4 production 
[52,109,116,123,126,131].
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CH4 which represented a loss of only 2%–3% of the gross energy 
intake [7]. Conversely, a diet with high-concentrate contains low in 
structural fiber and influence to develop sub-acute or acute acido-
sis. Therefore, dietary manipulation such as feeding a good combi-
nation of F:C ration would be effective with respect to mitigating 
methane emission without hampering their productivity.

Supplementation of fats
The hydrogen and carbon dioxide or formate are the major sub-
strates for methanogens [89]. And, some microorganisms in the 
rumen use hydrogen to hydrogenate the double bonds of unsatu-
rated fatty acids. Hence, CH4 production is hampered due to the 
addition of unsaturated fatty acids to the diet [90,91]. Traditionally 
addition of fat in the diet has been used in order to increase dietary 
energy content to meet the energy demand of high-producing 
dairy cows. Very recent, energy supplementation in a ruminant’s 
diet is changed from carbohydrate to fat, which contributes to 
CH4 mitigation. The mechanism of CH4 reduction by fat is due 
to decreasing organic matter fermentation, fiber digestibility, and 
thus the methanogenic pathway as well as by the direct inhibition 
of methanogens in the rumen via the hydrogenation of unsaturat-
ed fatty acids [7]. Several other studies also revealed that dietary 
fat supplementation has potential effects on the reduction of CH4 
production from ruminants [92,93]. The unsaturated fatty acids act 
as an H2 sink within the rumen through dehydrogenation and re-
duction occurs with the highest rate [87]. It was also reported that 
supplementation of fat often reduces carbohydrate fermentation 
due to the toxic effects of fat on cellulolytic bacteria and protozoa, 
whereas starch fermentation was not affected [92]. Therefore, fat 
reduces CH4 emission from ruminants.

Supplementation of ionophores, mineral mixtures, and 
organic acids
Ionophores are antimicrobial compounds, for example, monensin, 
lasalocid and salinomycin, are typically used in beef and dairy cattle 
production to improve feed efficiency and animal performance 
[91,94]. They reduce CH4 emission from ruminants significantly. 
It was reported that monensin supplementation for lactating cows 
reduced CH4 production [95]. For instance, a 25.6% reduction in 
CH4 production was recorded with supplementation of monensin 
to Brahman steers without a reduction in daily gain [96]. Monen-
sin upsurges the acetate and propionate ratio in rumen fermenta-
tion through the increasing reducing equivalents which contribute 
propionate formation in ruminant [10]. Other studies showed that 
a high dose of monensin reduces CH4 production (g/d) by 4%–10% 
in dairy and beef cattle [97,98]. Likewise, another report revealed 
a 30% reduction of CH4 emission in beef cattle fed monensin at 
33 mg/kg [99]. Ionophores also hampers survival of protozoa as a 

consequence the reduction and subsequent recovery of protozoal 
numbers in the rumen help to CH4 decline up to 30% [99]. How-
ever, the inhibitory effects of ionophores on CH4 production may 
not persist over time, and several microbes already adapted to ion-
ophores [7,10]. 

Mineral mixture also has effects on enteric methane mitigation. 
For instance, dietary supplementation of illite feed additive, clay-
sized mineral mixture that contains Mg, Ca, K, Mn, Zn, P, Fe, Al, 
Si, Co, Se and Mo, at 1% on dry matter (DM) basis has a positive 
effect on CH4 reduction with increasing VFA production in Han-
woo steers [100]. 

The organic acids such as fumarate and malate, and propionate 
precursor or substances, are the potential feed additives that miti-
gate CH4 emission from ruminants when supplemented with feed 
[97,101–103]. They are supposed to stimulate increased production 
of propionic acid in the rumen by acting as an H2 sink, in this 
manner reducing CH4 production [104]. Some other study also 
reported that organic acids mitigate methane production by up to 
17% [103]. The in-vitro study showed that fumarate reduces the 
CH4 output by 38% in continuous fermenters using forage as a 
substrate [105]. Conversely, an in-vivo study with growing beef 
cattle reported CH4 reduction was unaffected by fumarate [106].

Direct-fed microbials: a biological CH4 mitigating agent
Modification of rumen ecosystem through direct-fed microbials 
(DFM) or probiotics, is one of the most possible approach to re-
duce methane production in rumen. Probiotics such as bacterial 
species including Bacillus, Bifidobacterium, Enterococcus, Lactobacillus, 
Propionibacterium, Megasphaera elsdeniiand Prevotella bryantii and 
yeast (Saccharomyces cerevisiae), are used to improve rumen fermen-
tation and feed efficiency [107,108] which could also reduce CH4 
emissions from ruminants. Several pieces of research so far have 
been conducted earlier in order to mitigate CH4 emissions from 
ruminant with the supplementation of dietary probiotics. Jeyana-
than et al. [109] summarized the several rumen biochemical path-
ways that could be modulated by direct feed microbials to reduce 
CH4 production from ruminants (Fig. 2). The production of VFAs 
such as acetic, propionic and butyric acids are mainly depends on 
the diet offered to the animal. Ruminants produce comparatively 
more propionate, fed a concentrate-based diet than those fed a 
high forage diet, which produces more acetate. 

Propionate formation, also considered as H2-utilisation path-
way, consumes reducing equivalents, pyruvate which is reduced to 
propionate [110]. Though these H2 are the key precursor for the 
production of CH4, the increase in propionate formation is propor-
tionally linked with decrease CH4 production. The succinate path-
way is the major pathway of propionate production in the rumen 
where malate, fumarate, and succinate are formed as intermediate 
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products. In this pathway, a mixture of bacteria such as fumarate 
reducers (e.g. Wolinella succinogenes), succinate producers (Fibrobacter 
succinogenes), and succinate utilizers (e.g. Selenomonas ruminantium) 
also involve. The acrylate pathway is an another important propio-
nate producing pathway in the rumen by lactate-utilizing bacteria 
(Megasphaera elsdenii) [111]. The lactate is required in this pathway, 
therefore lactate-producing bacteria such as Streptococcus bovis play 
a regulatory role. There are several studies have been conducted to 
enhance propionate production in the rumen targeting increase 
animal productivity through dietary probiotics [112–114] which 
are indirectly linked with methane mitigation approaches. The 
decrease in CH4 production was recorded in lactating dairy cows 
consumed a mixed Propionibacterium jensenii – Lactobacillus spp. 
direct feed microbials [115]. Mamuad et al. [116] reported that fu-
marate reducing bacteria alters the rumen microbiome and helping 
ruminal fermentation, and reducing CH4 production in-vitro. Re-
cently, CH4 production was also reduced through supplementation 
of fumarate reductase-producing enterococci (Enterococcus faecium 
SROD) with the increasing of total VFAs in an in-vitro experi-
ment [117]. 

Nitrate, an alternative H2 sink to CO2 in the rumen, decreases 
rumen methanogenesis and reduce the toxicity of the intermediate 
product nitrite during their metabolism. Rumen microbes hastily 
reduce the nitrate to nitrite, however the reduction rate of nitrite 
to ammonia is slower. This can cause nitrite accumulation in the 
rumen [118] and methemoglobinemia in blood. Methemoglobin-
emia declines the blood’s capacity to transport oxygen to tissues, 
resulting in low performances or even death of animal in severe 
cases [119]. The use of nitrate and/or nitrite-reducing bacteria as 
probiotic is one of the potential solution to avoid this toxicity [120]. 
The bacteria having the ability to reduce nitrate, nitrite or both 
compounds are already existing in the rumen, but their concentra-
tion is lower than that of their counterpart methanogens [109,121, 
122]. The main nitrate-reducing bacteria in the rumen are W. suc-
cinogenes and S. ruminantium [121,122]. So, it may be beneficial to 
increase the number and/or the activity of nitrate- and/or nitrite 
reducing bacteria in the rumen to decrease methanogenesis. Addi-
tion of nitrate in the diet increased the number of nitrate reducing 
bacteria (W. succinogenes and Veillonella parvula) in-vitro [123] 
but this is may be insufficient to compete with methanogenesis. 
Thus, giving nitrate and/or nitrite-reducing bacteria as probiotics 
along with nitrate may progress the nitrate reduction process and 
subsequently avoid nitrite toxicity. Along with nitrate, Denitrobac-
terium detoxificans strain NPOH1 decreased 95% [120], and W. 
succinogenes, S. ruminantium or V. parvula reduced >70% [123] of 
CH4 production in in-vitro trial. Conversely, there is a lacking on 
in-vivo data regarding this issue. 

The ability of sulphate-reducing bacteria (SRB) to compete 

with methanogens is largely determined by the introduction of sul-
phate into the rumen. In anaerobic environments, where sulphate 
is unlimited, SRB compete with methanogens for common sub-
strates such as H2, formate and acetate. The population of SRB in 
the rumen is low (105 to 106 cells/mL) and largely from the genus 
Desulfovibrio and Desulfotomaculum [124,125]. Recently, another 
SRB belonging to the genus Fusobacterium was isolated from buf-
falo [126]. Only few studies were conducted on effect of sulphate 
supplementation alone in rumen methanogenesis [127,128] due 
to their toxic end product hydrogen sulfide (H2S). Therefore, the 
sulphate reduction, owing to decrease methanogenesis, may be 
facilitated by SRB only when sulphate is added as a feed additive. 
For example, a reduction in CH4 production was recorded in an 
in-vitro experiment using Fusobacterium sp., as a probiotic with a 
high sulphate diet where CH4 production at 72h was reduced from 
2.66 to 1.64 mmol/g digested dry matter (DM) without H2S ac-
cumulation [126]. 

The reductive acetogenesis is an accepted mechanism of H2 uti-
lization that coexists with methanogenesis in the rumen [129,130]. 
Acetate, the end product of this reaction, has the additional advan-
tage of being a source of energy for the animal. However, acetogens 
are less numerous in the rumen environment and less efficient than 
methanogens in respect of competing for reducing equivalents. 
Therefore, it is needed to increase the number of acetogenic bacte-
ria in the rumen, which compete with methanogens for hydrogen, 
as a result of CH4 reduction. Kim et al. [131] and Martin et al. [23] 
stated that CH4 production was reduced with the dietary supple-
mentation of acetogen probiotics in ruminants. 

It is strongly suggested that yeast probiotics possibly stimulates 
the acetogenic bacteria to compete with methanogens or to co-me-
tabolize H2 as a consequence reducing CH4 formation [81,132]. A 
20% reduction in CH4 production was recorded after 48 h of in-
cubation of mixed rumen microorganisms containing alfalfa and a 
live yeast product [133]. Aspergillus oryzae reduced CH4 production 
by the reduction of protozoal population (45%) [134]. Therefore, 
still, there is a big scope to search the more suitable probiotic can-
didates for the sustainable CH4 mitigation strategy.

Supplementation of botanical extract or plants second-
ary metabolites
Botanical extract or plants secondary metabolites (PSM), viz. sapo-
nins, tannins, flavonoids, organosulphur compounds, and essential 
oils, have potential anti-microbial effects against several types of 
microorganisms [135]. Several PSMs have been so far identified 
as a potential agent to reduce CH4 production by methanogens in 
the rumen [136,137]. Depending on the type, sources, molecular 
weight, doses, and diet types, the methane reductive capability of 
PSMs varies significantly. For instance, Joch et al. [138] examined 
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in-vitro methane abetment properties of nine (09) concentrations 
of α-terpineol, 8-hydroxyquinoline, bornyl acetate, camphor, thy-
moquinone, α-pinene, and thymol. They reported all compounds 
tested validated as CH4 reducing agent however effective concen-
trations varied among individual PSMs. Recently, some see weeds 
also have potential effects on methane abatement [139] however, 
need more researches in this regard.

Saponins (triterpenoid saponin, tea saponin, methanol extract 
saponin) are the potential additives which cause a significant re-
duction of protozoa population in the rumen, as a result, methane 
production is reduced [140–142]. Saponins also contribute rumen 
fermentation, enhance rumen bacterial populations, and ruminant 
productivity [50,136,137]. Saponins from different sources show 
various results. Application of Quillaja saponin at 1.2 g/L de-
creased CH4 production in-vitro, but not at 0.6 g/L [143]. The ivy 
fruit saponin decreased CH4 production by 40% [144] and sapo-
nins from Saponaria officinalis reduced CH4 and abundance of both 
methanogens and protozoa in-vitro [145]. However, the opposite 
result was found in other in-vitro studies, where Quillaja saponins 
at 0.6 g/L did not reduce CH4 production or abundance of meth-
anogen [146,147]. Similarly, Tea saponins (30 g/day) also did not 
reduce CH4 emission from steers or methanogens abundance [148]. 
Though, the effects of saponins on methanogenesis and methano-
gen abundance are greatly inconstant among different studies, still 
needed to study more.

Tannins (condensed and hydrolysable tannin) also have the po-
tentials to reduce CH4 production from ruminants. Tannins exert 
their effects by directly inhibiting methanogens as well as indirectly 
decreasing H2 production as a consequence decreased fiber diges-
tion and the number of protozoa in the rumen [149]. Tannins ex-
tracted from Lotus pedunculatus showed inhibitory effects on pure 
cultures of methanogens [150]. Likewise, inhibition of methano-
gens in the rumen of goats supplementing tannins as feed additives 
was reported by Puchala et al. [151]. However, the inconsistent 
result was found in the case of condensed tannins [152]. Recently, 
forages with higher levels of tannins, such as clover and other le-
gumes, including trefoil, vetch, sulla and chicory are considering as 
mitigating agent [153]. For instance, CH4 production was reduced 
(up to 55%) while ruminants were fed tannin-rich forages [154]. 
Tannins may exert a similar mechanism like bactericidal or bacte-
riostatic and inhibit the growth or activity of rumen methanogens 
and protozoa [155].

Essential oils, another plant secondary metabolites, are volatile 
components [153] and aromatic lipophilic compounds [156]. It 
contains the chemical constituents and functional groups such as 
terpenoids, phenolic and phenols, having potential antimicrobial 
activities [157], which inhibit the growth and existence of great-
est number of microorganisms in the rumen [158]. Due to their 

lipophilic nature, they have a very high affinity to microbial cell 
membranes, and at the same time, their functional groups interact 
with the microbial cell membrane [159]. With the application of 
essential oil, the methanogenesis decreases especially by reducing 
microbial populations [160]. The Allium arenarium oil (garlic oil), 
a highly promising essential oil, was significantly reduced methane 
production both in-vivo and in-vitro by 12% and 36%, respectively 
[161]. 

Supplementation of enzyme additives
Enzyme feed additives having fibrolytic activities are used to en-
hancing fibre digestibility [162], feed conversion efficiency [163], 
and milk production [163–165] of dairy cows. A reduction in the 
enteric CH4 production was reported by Arriola et al. [163] where 
a fibrolytic enzyme additive was supplemented with a lactating 
cows’ diet (52% dietary forage). Conversely, some other studies 
revealed that exogenous fibrolytic enzyme additive increased CH4 
yield and altered rumen methanogen community composition, 
without affecting overall density of methanogens [166,167]. Re-
cently, Biswas et al. reported that dietary supplementation of lyso-
zyme enzyme may improve rumen fermentation and reduce CH4 
emission in an in-vitro trial [168]. Therefore, more in-vivo study is 
needed before use of enzymes for methane mitigation strategy. 

Defaunation: lowering available H2 for methanogenesis
Defaunation, the removal of protozoa from the rumen, is often 
linked with an increased microbial protein supply and enhance-
ment of animal productivity. Though protozoa generate a relatively 
large volume of H2 and formate, and the methanogenic bacteria 
attach to the surface of ciliated protozoa [169], defaunation is 
effective to decline CH4 emission. Morgavi et al. [170] revealed 
that CH4 emission reduced by 20% over a period of 2 years in de-
faunated sheep. Due to unclear reason, partial defaunation is not 
effectively reduce CH4 production [171,172]. So far, a variety of 
techniques have been tested for defaunation experimentally, but 
none is used routinely due to its’ toxicity problems to the rest of the 
rumen microbiome as well as the host animals [9]. It has been also 
reported that immunization or vaccination of sheep with entodin-
ial or mixed protozoal antigens reduced protozoal populations, and 
produced Immunoglobulin G (IgG) against rumen protozoa [173]. 
Recently, plant secondary metabolites have been used as potential 
defaunating agents. Moreover, defaunation technology needs more 
valuation before use widely and still has a big scope to do more 
research. 

Conclusion
Ruminant production is increasing rapidly for providing good 
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quality meat, milk, and their products to the large population in the 
earth. Methane production is also rising proportionally that con-
tribute negatively to global warming as a greenhouse gas. There-
fore, we should give more concentration on sustainable methane 
mitigation strategy which could be achievable through a cumu-
lative approach. There are several methane mitigation strategies 
such as animal intervention, diet selection, dietary feed additives, 
probiotics, defaunation, supplementation of fats, oils, organic acids, 
plant secondary metabolites, etc. however, sustainable mitigation 
strategies are not established yet. We should give more emphasis 
on biological regulation of methane mitigation through searching 
of suitable candidates of direct feed microbials. Accurate measure-
ment of methane is also highly needed to make the mitigation 
approach successful. 
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