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Abstract: Cancer is a deadly disease worldwide, with an anticipated 19.3 million new cases and
10.0 million deaths occurring in 2020 according to GLOBOCAN 2020. It is well established that
carcinogenesis and cancer development are strongly linked to genetic changes and post-translational
modifications (PTMs). An important PTM process, ubiquitination, regulates every aspect of cellular
activity, and the crucial enzymes in the ubiquitination process are E3 ubiquitin ligases (E3s) that affect
substrate specificity and must therefore be carefully regulated. A surfeit of studies suggests that,
among the E3 ubiquitin ligases, neuronal precursor cell-expressed developmentally downregulated 4
(NEDD4)/NEDD4-like E3 ligases show key functions in cellular processes by controlling subsequent
protein degradation and substrate ubiquitination. In addition, it was demonstrated that NEDD4
mainly acts as an oncogene in various cancers, but also plays a tumor-suppressive role in some
cancers. In this review, to comprehend the proper function of NEDD4 in cancer development,
we summarize its function, both its tumor-suppressive and oncogenic role, in multiple types of
malignancies. Moreover, we briefly explain the role of NEDD4 in carcinogenesis and progression,
including cell survival, cell proliferation, autophagy, cell migration, invasion, metastasis, epithelial-
mesenchymal transition (EMT), chemoresistance, and multiple signaling pathways. In addition,
we briefly explain the significance of NEDD4 as a possible target for cancer treatment. Therefore,
we conclude that targeting NEDD4 as a therapeutic method for treating human tumors could be a
practical possibility.

Keywords: cancer; ubiquitination; NEDD4; E3 ligases; tumor suppressor; oncogene; targeted therapy

1. Introduction

Cancer is one of the top causes of death, which accounts for 19,292,789 new cases
and 9,958,133 deaths worldwide according to the GLOBOCAN 2020 [1–3]. It is a deadly
disease, and it is believed that human beings have been inflicted by cancer for more than
200 million years [4]. Among various cancers, prostate and breast cancer (BC) account
for a significant portion of cancer cases in men and women, respectively, and brain and
hematological malignancies account for the highest percentage of cancer cases among
children [1,5–8]. Importantly, cancer is generated by a series of gene mutations that alter the
functions of cells, and these include both oncogenes and tumor suppressor genes [1,4,9–17].
Several studies suggest tumorigenesis as a multistep process involving genetic changes
which cause typical cells to undergo a gradual change into extremely lethal variants [18–20].
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Interestingly, several biomarkers have been discovered to have diagnostic and therapeutic
utility, and globally increasing cancer incidence and mortality bring about a need for precise
biomarkers for better detection, diagnosis, prognosis, and monitoring [11,21–24]. Currently,
only a few cancer biomarkers are advised for clinical use, with the majority of them being
used to assess treatment response in advanced cancer patients. However, the majority of
cancer biomarkers now being used in clinical settings are less effective for mass screening
or early diagnosis, and only a few new and helpful cancer biomarkers are being discovered
and proven for screening and early diagnosis [24]. As a result, the discovery of novel
biomarkers is needed for the identification and detection of cancer.

The ubiquitin-proteasome system is an essential form of post-translational protein
modification (PTM) that is important in protein homeostasis, as well as in the regulation
of vital physiological activities [25–27]. Ubiquitination is extremely important in biolog-
ical processes and alters post-translationally modified proteins in a way that causes the
degradation, stabilization, or relocation of substrates [27–32]. The ubiquitin-mediated
proteolytic pathway is a highly adaptable and reversible process mediated by an enzyme
cascade [27]. Ubiquitination regulates thousands of intracellular protein levels in cells
and plays a role in practically all cell physiology and disease, including DNA damage
and repair, cell death, and immunological responses, by initiating selective proteolysis via
the 26S proteasome [27,33,34]. Ubiquitin (Ub) is a highly conserved regulatory protein
with 76 amino acids that can covalently tag target proteins through a series of enzymatic
processes involving the enzymes Ub-activating (E1), Ub-conjugating (E2), and Ub-ligating
(E3) [35–38]. Deubiquitinases (DUBs), which are also essential for nearly all cellular sig-
naling pathways, including the cell cycle, apoptosis, receptor downregulation, and gene
transcription, can similarly reverse the activity of Ub ligases by removing Ub from substrate
proteins [39,40]. Ubiquitination is activated via a sequential cascade including E1, E2, and
E3, with E1 first triggering Ub via an ATP-dependent process [35,41]. The activated Ub is
then transported to an E2 catalytic cysteine residue and finally binds to the specific target
(Figure 1) [42–44].

E3 ligases play the most important role in recognizing the target protein and regu-
lating the covalent connection between the target and ubiquitin moieties in this enzyme
cascade [44]. The human genome already has 600 E3s, which are mostly divided into three
groups: E3s from the RING finger family, the RING-between-RING (RBR) family, and the
E6-AP C-terminus (HECT) family [45]. The E3 subfamily’s pivotal members are HECT-type
E3s, which have a typical C-terminal module containing 350 amino acids [46–48]. These E3s
are classified into three groups, HERC (HECT and RCC-like domain) E3s, neural precursor
cell-expressed developmentally downregulated 4 (NEDD4)/NEDD4-like E3s, and other
E3s [46–48].

Numerous studies have reported that tumor formation and incidence have been linked
to abnormalities in ubiquitination [40,49,50]. As E3s are known to have a significant role in
the system’s substrate specificity, their abnormalities might contribute to the development
of human cancer [51,52]. Moreover, ubiquitination tightly regulates components in both
tumor-suppressing and tumor-promoting pathways [53,54]. There have been many targeted
therapies developed to battle carcinogenesis based on altered components such as the E3
ligases, E1, E2, deubiquitinases (DUBs), and proteasomes [27,55,56]. Among those, E3
ubiquitin ligases (E3s) are crucial ubiquitination enzymes and play a vital role in cancer
development [53,57]. Moreover, ubiquitin ligase mutations and changes are seen in a diverse
spectrum of tumors and have a significant impact on clinical outcomes [53,58,59]. In several
studies, it was reported that among the HECT family E3s, the function of NEDD4/NEDD4-
like E3 ligases influences cancer cell proliferation, migration, and invasion, as well as
anticancer therapy sensitivity, via regulating several substrates [53,54,60].
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Figure 1. Mechanistic role of E3 ligases ubiquitinating target substrates. (A) The E1, E2, and E3
catalyze ubiquitination. E1 activates ubiquitin in an ATP-dependent manner before transferring it to
E2. E2 then transfers the ubiquitin to E3 which in turn transfers to target substrates for degradation
by the 26S proteasome. In the case of RING-type E3s, the transfer of ubiquitin to the target substrate
requires an intermediate complex of the target, E3, E2, and Ub. For HECT-type E3s, prior to ubiquitin
transfer to the target, E2 with Ub binds and transfers the ubiquitin to the E3. (B) NEDD4 is a HECT-
type E3 ubiquitin ligase, ubiquitinated by E2, which then transfers the ubiquitin to the target substrate
leading to the degradation by the proteasome. Created using BioRender.com.

The NEDD4/NEDD4-like E3 ligase is a ubiquitin–protein ligase that could regulate
a variety of membrane proteins to help them internalize and turnover [61]. It also has
a significant impact on central nervous system development, hypertension regulation,
etc. [45]. The NEDD4 protein is mostly found in the cytoplasm, particularly near the nu-
cleus, and in humans the NEDD4 gene is located on chromosome 15q21.3 and has 33 exons
that code for 120 kDa protein [54,62,63]. The NEDD4 structure has a C-terminal HECT
domain for ubiquitin–protein ligation, an N-terminal C2 domain for membrane binding,
and a central two to four double tryptophan residue (WW) domain for protein–protein
interaction (Figure 2) [64]. The C2 domain is a 116-amino-acid-long calcium-dependent
lipid-binding region that directs proteins to phospholipid membranes and functions in
protein–protein interactions. WW domains regulate the protein–protein interactions that
are typically 40 amino acids long and hold two conserved tryptophan (W) residues sep-
arated by 21 amino acids. A conserved cysteine residue in the HECT domain creates an
intermediary thioester bond with active ubiquitin received from an E2 before catalyzing
lysine ubiquitination in the substrate protein [64–67].
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Figure 2. General structure of NEDD4/NEDD4-like E3 ligase. Contains an N-terminal C2 domain
for membrane binding, a central two to four double tryptophan residue (WW) domain for protein–
protein interaction and a C-terminal HECT domain for ubiquitin–protein ligation, Created using
BioRender.com.

In mammals, the NEDD4 family consists of nine members: NEDD4, NEDD4 Like E3
Ubiquitin Protein Ligase (NEDD4L) also known as NEDD4-2, the SMAD Ubiquitylation
Regulatory Factors 1 (SMURF1) and 2 (SMURF2), WW Domain Containing E3 Ubiquitin
Protein Ligase 1 (WWP1) and 2 (WWP2), NEDD4-like ubiquitin–protein ligase 1 (NEDL1) and
2 (NEDL2) and the Itchy E3 Ubiquitin–Protein Ligase Homolog protein (ITCH) (Figure 3) [62].
All of these members of the NEDD4 subfamily share a common functional domain structure
(Figure 4) [68,69]. The NEDD4 subfamily members are involved in a variety of cellular
processes. The proteins NEDD4 and NEDD4-2 were the first members of this subfamily to
be found and are now the most investigated. The subfamily members are considered to be
involved in a variety of illnesses, including cancer and neurological diseases [60,70].

NEDD4-2 functions in a variety of ion channels, including chloride, potassium, and
sodium [71–73]. It also interacts with proteins involved in the Wnt signaling pathway, the
TGF-β signaling pathway, and the autophagy process [74–76]. ITCH regulates a wide range
of biological mechanisms because of a large number of target proteins [77]. In addition,
ITCH regulates the TGF-β signaling pathway and influences cancer [78]. Another member,
WWP1, is a versatile protein that has many targets including ErbB4/HER4, JunB, Smad2,
Smad4, and p53. As a result, WWP1 is involved in cancer, protein degradation, protein
trafficking, transcription, viral budding, and infectious and neurological diseases [79].
WWP2 binds to substrates in many signaling pathways, including the PI3K/Akt and TGF-β
pathways, and is linked to cancer and immune system modification [80]. Both SMURF1
and SMURF2 suppress the TGF-β/BMP signaling pathways [81,82]. SMURF1 is involved in
the noncanonical Wnt and MAPK pathways and regulates cell growth and morphogenesis,
cell migration and polarity, and autophagy [83]. SMURF2 has been linked to similar
pathways. Its dual role in cancer is frequently studied, as it can serve both as a tumor
suppressor and an oncoprotein [83]. NEDL1 and NEDL2 are also known as the HECT, C2,
and WW domains containing E3 ubiquitin–protein ligase 1 (HECW1) and 2 (HECW2) [70].
By ubiquitinating and degrading Dishevelled-1(Dvl1), NEDL1 participates in the Wnt
signaling pathway [84,85]. Recent evidence suggests that NEDL1 is also involved in the
TGF-β signaling pathway via Smad4 ubiquitination. These two proteins, HECW1 and
HECW2, appear to interfere with a variety of physiological functions, including the enteric
nervous system and kidney development [86,87].
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Figure 3. Structural representation of the founding members of the NEDD4 family of E3 HECT
ubiquitin ligases in humans: NEDD4-1 (UniProt ID: P46934), NEDD4-2 (UniProt ID: Q96PU5),
WWP1 (UniProt ID: Q9H0M0), WWP2 (UniProt ID: O00308), SMURF1 (UniProt ID: Q9HCE7),
SMURF2 (UniProt ID: Q9HAU4), ITCH (UniProt ID: Q96J02), NEDL1 (UniProt ID: Q76N89), NEDL2
(UniProt ID: Q9P2P5). These proteins’ primary structures were taken from the UniProt database.
Using the AlphaFold protein structure database, the structures of these proteins were predicted.
The image generation and visualization of the structures of these proteins were conducted using
PyMOL [88–91]. Created using BioRender.com.

NEDD4 mediates receptor-mediated endocytosis along with proteasomal degradation
and ubiquitination of its substrate proteins [63]. NEDD4 E3 ligases modulate signaling
molecule trafficking by monoubiquitination and K63-linked polyubiquitination and hence
play a critical role in cellular activities [63]. The NEDD4 is an important regulator of various
cellular physiological processes such as endocytosis, cell growth, neuromuscular junctions,
and modulation of epithelial Na+ channels (ENaC) [92–94].
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Figure 4. Structures of the 9 NEDD4 subfamily proteins. NEDD4 subfamily ligases contain a
C2 domain, 2–4 WW domains that recognize PY motifs, and a HECT domain. Created using
BioRender.com.

In addition, NEDD4 is also linked to several diseases, including cancer, cardiovascular
disease, metabolic disease, neurological disorders, renal disease, and others. For example,
reduced NEDD4 function causes significant heart arrhythmia by changing cardiac ion-
channels following transcription [95]. Further, adult mice with conditional NEDD4L
deletion in lung epithelial cells were shown to develop chronic lung illness with increasing
fibrosis and bronchiolization. These mice also showed increased Muc5b expression in
peripheral airways, honeycombing, and distinctive changes in the lung proteome [96].
Another in vivo study found that NEDD4-2 loss causes an unanticipated progressive
kidney damage phenotype that includes increased Na+ reabsorption, increased Na+Cl−

and ENaC cotransporter expression, hypertension, and low aldosterone levels in animal
models [71].

2. NEDD4 and Cancer

NEDD4 has a significant role in the development and progression of various types
of cancers by targeting different substrates. Interestingly, it is found that there are many
genes upstream and downstream of NEDD4, and it has the potential to be employed as
a molecular switch to control tumor development via these competitive substrates [54].
Expectedly, NEDD4 has been associated with the regulation of several signaling pathways.
For example, the WW domain of NEDD4 contributes to polyubiquitination and degrada-
tion of Smad2/3, limiting TGF-β signaling by specifically recognizing the TGF-β-induced
phospho Thr-ProTyr motif in the junction region [74]. Further, NEDD4 causes the ubiq-
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uitination of Unc-51 like autophagy activating kinase 1 (ULK1), a protein involved in the
initiation of autophagy, and controls the process [75].

According to several studies, NEDD4 acts as an oncoprotein that promotes cancer cell
development. For example, a study demonstrated that siRNA reduction of NEDD4 resulted
in a decrease in cell proliferation and changed cell shape in LoVo and HCT-15 colon cancer
cells. According to Amodio et al., NEDD4 overexpression was found in non-small-cell
lung cancer (NSCLC) cell lines, while NEDD4 knockdown in vitro and in vivo dramatically
decreased NSCLC cell proliferation and tumor growth, respectively. NEDD4’s carcino-
genic effect in NSCLC cells can be due to the inactivation of PTEN [97]. NEDD4 is the
key pro-oncogenic ligase that mediates the ubiquitination of PTEN; however, NEDD4L is
mainly involved in the degradation of the tumor suppressor gene p53 [98–100]. Moreover,
in breast and prostate cancer cells, NEDD4 might enhance cell proliferation and migration
by regulating the PTEN/Akt signaling pathway [101]. However, Eide et al. reported that
NEDD4 increased colon cancer cell proliferation without relying on the PTEN or PI3K/Akt
signaling pathways [102]. A study reported that NEDD4 targets Myc oncoproteins, c-Myc
and N-Myc, for degradation by directly binding to them, which resulted in downregulation
of these proteins and suppression of cell proliferation in pancreatic cancer and neurob-
lastoma [63,103]. Several NEDD4 substrates, such as Ras, Notch, pAkt, VEGFR2, Mdm2,
and FGFR, have been identified as oncoproteins in carcinogenesis, suggesting that using
NEDD4 to target their breakdown could have anticancer effects [63].

A plethora of studies have shown that NEDD4 promotes tumor growth in diverse
types of cancers, and these studies suggest that the role of NEDD4 in tumor progression
is context-dependent [60,63]. This pleiotropic nature of NEDD4 is mainly attributed to its
ubiquitous expression in a wide range of tissues. NEDD4 proteins have several downstream
target substrates that arbitrate various functionalities, and numerous receptors that share
the same protein trafficking and endocytic machinery are controlled by various NEDD4-like
E3s [60]. Therefore, in malignancies, NEDD4 behaves as both an oncogene and a tumor
suppressor, thus NEDD4 inhibitors or activators are needed for cancer treatments [54,63].
NEDD4 was found to be an oncogene because of its role in inhibiting PTEN, a well-known
tumor suppressor [104]. In several types of human cancer cell lines, PTEN degradation and
increased NEDD4 levels have been discovered [104]. PTEN is a phosphatase that inhibits
tumor growth in a variety of malignancies by suppressing the PI3K/Akt signaling pathway,
which is required for the survival of cancer cells. NEDD4 has been identified as a PTEN-
specific E3 ligase and has been shown to promote Akt signaling by lowering the amount of
PTEN protein. Thus, NEDD4 has been proposed as an oncoprotein and a possible drug
target [60]. Aforementioned studies highlight NEDD4 as a potential biomarker for poor
prognosis as well as a therapeutic target for the treatment of different cancer types.

In the current article, we discuss the function of the NEDD4 protein in the development
and suppression of cancer. Then, we describe the vital roles of NEDD4 in carcinogenesis
and development, which include cell survival, cell proliferation, autophagy, cell migration,
invasion, metastasis, epithelial–mesenchymal transition (EMT), chemoresistance, multiple
signaling pathways, oncogenic role, and tumor-suppressive role (Figure 5). These studies
suggest that NEDD4 can be used as a drug target for human cancer; therefore, we briefly
discuss the clinical significance of NEDD4 in this article.
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Figure 5. Role of NEDD4 family proteins in cancer development and progression. A plethora of
studies have shown that NEDD4 family proteins are deregulated in various cancers. The imbalance in
the expression of tumor-growth-promoting NEDD4 family proteins such as NEDD4, NEDD4L, ITCH,
and WWP1 and tumor-growth-suppressing NEDD4 family proteins such as WWP2 and SMURF1
independently leads to increased proteasomal degradation of p53, downregulation of PTEN and pRB,
and upregulation of STAT3, Akt, MEK, MMP-1, and MMP-13. This disproportion in the expression of
tumor suppressors and oncogenes promotes cancer cell initiation, survival, proliferation, migration,
invasion, metastasis, and chemoresistance and inhibits apoptosis and autophagy. Created using
BioRender.com.

3. NEDD4 Functions in Human Cancers
3.1. NEDD4 and Cell Survival

NEDD4 is known to induce cancer cell survival in different cancers. For example,
NEDD4 overexpression leads to the suppression of PTEN expression and induces Notch-1,
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which leads to decreased apoptosis in RT4 bladder cancer (BCa) cells. Moreover, this study
also showed that suppression of NEDD4 leads to BCa cell apoptosis [105]. Similarly, in
QGY7703 and SMMC7721 liver cancer cells, NEDD4 acts as an oncoprotein, and overexpres-
sion of this protein was shown to suppress apoptosis via partially increasing large tumor
suppressor kinase 1 (LATS1) expression [106]. Moreover, LATS1/2 is ubiquitinated by
NEDD4 when it recognizes the PY motif in proteins [107]. In addition, NEDD4 downregula-
tion resulted in DU145 cell apoptosis via both death receptor and mitochondria-dependent
mechanisms [108]. A recent study showed that overexpression of FOXA1 reduces the pro-
liferation induced by NEDD4 upregulation and promotes apoptosis in Caco-2/LoVo colon
cancer cells [109]. In conclusion, NEDD4 has a crucial role in the survival of cancer cells.

3.2. NEDD4 and Cell Proliferation

The function of NEDD4 in cancer cell proliferation is demonstrated by several studies.
For example, the overexpression of NEDD4 increased the proliferation in HeLa cells [108].
Similarly, in QGY7703 and SMMC7721 liver cancer cells, the overexpression of NEDD4
suppressed LATS1, which results in enhanced cell proliferation [106]. Further, NEDD4
knockdown inhibits cell proliferation in Huh-7 HCC cells through overexpression of PTEN
and consequent inactivation of Akt, ERK1/2, and STAT3 [110]. A similar study also revealed
that in Huh7 HCC cells, depletion of NEDD4 has a detrimental effect on cell proliferation.
NEDD4 appears to be important in promoting HCC proliferation and spread through
the stimulation of the PTEN/PI3K/Akt signaling pathway [111]. In PANC-1 pancreatic
ductal adenocarcinoma (PDAC) cells, NEDD4 depletion suppresses cell growth partially by
regulating the PTEN/Akt signaling pathway [112]. In addition, downregulation of NEDD4
suppresses proliferation of RT4 BCa cells. Inhibition of NEDD4 activated PTEN while
suppressing Notch-1, indicating that NEDD4’s oncogenic activity was mediated partially
by downregulation of PTEN and overexpression of Notch-1 [105]. Interestingly, another
study suggested that NEDD4 can inhibit phosphatidylinositol 4-phosphate 5-kinase α
(PIP5Kα)-dependent phosphatidylinositol 4,5-bisphosphate (PIP2), leading to a significant
proliferation defect [113]. In conclusion, these studies have established that NEDD4 can
affect proliferation in various cancer cells.

3.3. NEDD4 and Autophagy

Autophagy is an evolutionarily conserved catabolic mechanism that eukaryotic cells use
to degrade or recycle internal contents through a membrane-trafficking pathway [114,115].
In distinct phases of cancer development, autophagy performs a dynamic tumor-promoting
or tumor-suppressing role [116,117]. It has shown that autophagy was suppressed in lung
and prostate carcinoma cell lines when NEDD4 was knocked out and this NEDD4 down-
regulation significantly increased activated mTOR (p-mTOR) levels, implying that mTOR
signaling was involved in NEDD4-mediated autophagy [108]. Another study has shown
that high levels of advanced glycation end product (AGE) levels increased NF-κB expression
in Hep3B and Saos-2 cell lines, which is amplified more in the absence of p53. The NF-κB-
dependent expression of NEDD4 enhances Beclin 1 cleavage, impairing autophagy and
causing autophagosome build-up, which leads to cell death [118]. Beclin 1 is a subunit of
the PI3K-III complex and a tumor suppressor that plays an important function in autophagy
and apoptosis. This protein has a sequence that looks like a PY motif (LPxY), and the WW
domains of NEDD4 interact with it specifically. NEDD4 was shown to polyubiquitinate
Beclin 1 and regulate its stability, which suppresses autophagy [60,119]. Further, in pancre-
atic cancer cells, NEDD4 prevents autophagy activity under metabolic stress by decreasing
mitochondrial function and limiting tumor development by destabilizing an autophagy
protein, ULK1, and a glutamine transporter, ASCT2 [75]. Taken together, NEDD4 seems to
prevent autophagy in cancer cells.
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3.4. NEDD4 and Cell Migration and Invasion

According to several studies, it was noted that NEDD4 overexpression increases cell
migration and invasion in various cancers. For example, a study demonstrated that NEDD4
overexpression decreased PTEN and increased Notch-1 levels, resulting in invasion and
migration of RT4 BCa cells [105]. Another study in colon cancer tissues demonstrated that
NEDD4 promotes the progression of cancer by activating FOXA1 ubiquitination in conjunc-
tion with the inhibition of miRNA-340-5p and the overexpression of ATF1 [109]. Similarly,
downregulation of NEDD4 using curcumin in pancreatic cancer cell lines Patu8988 and
Panc-1 resulted in a considerable reduction in tumor cell development, in association
with increased expression of PTEN and p73 [120]. Further, in QGY7703 and SMMC7721
hepatocellular carcinoma (HCC) cells, NEDD4 increased cell migration and invasion via in-
hibiting the tumor suppressor LATS1 [106]. Another study reported that NEDD4 is closely
linked to the development and progression of lung cancer due to its overexpression in a
significant fraction of NSCLC, promotion of PTEN degradation, and enhancement of the
malignant characteristics of lung epithelial cells [97]. Similarly, an in vivo study in NSCLC
showed that silencing of NEDD4 inhibited cell invasion and migration by increasing PTEN
expression and by inhibiting PI3K/Akt signaling pathway [121]. Moreover, NEDD4 knock-
down in A549 NSCLC cells prevented EGF-induced cell migration through regulating its
interaction with the EGFR signaling complex and cathepsin B lysosomal secretion [122,123].
According to another study, the influence of proline-rich γ-carboxyglutamic acid protein 4
(PRRG4) on invasion and migration in BC cells is mediated via both NEDD4 binding and
Robo1 downregulation [124]. In U251 glioma cells, it was reported that NEDD4 overex-
pression enhanced the cell invasion and migration due to ubiquitination and degradation
of cyclic nucleotide ras guanine nucleotide exchange factor (CNrasGEF) [60]. Moreover,
NEDD4 promoted the ubiquitination of NEDD4/Rap2a, which eased the invasion and
migration of U251 and U87 cancer cells. In addition, human glioma cells showed suppres-
sion of invasion and migration when NEDD4 was downregulated, but overexpression of
NEDD4 reversed these effects. These findings imply that NEDD4 has a significant role
in glioma development [125]. It was also shown that NEDD4 mediates EGF-dependent
AGS and N87 gastric cancer cell line invasion and migration via EGFR-mediated metastasis
signaling [126]. Taken together, NEDD4 increases cell migration and invasion in human
cancer cells.

3.5. NEDD4 and Metastasis

Metastasis is the process by which cancer cells spread from the primary tumor to
surrounding tissues and distant organs, and it is the leading cause of cancer morbidity
and mortality [127–129]. In several studies, NEDD4 has been described to take part in the
progression of metastasis. For example, the stability of NEDD4 is regulated by p34SEI-1, a
34 kDa oncoprotein that controls PTEN degradation and induces the PI3K/Akt pathway,
which results in tumorigenesis and metastasis [130]. Another study revealed that PRRG4-
mediated recruitment of NEDD4 stimulates ubiquitination and degradation of Robo1 (a
tumor suppressor gene), subsequently leading to the activation of protein tyrosine kinases
Src and FAK, which are critical for BC cell motility, invasion, and metastasis [124]. An
in vivo study demonstrated that overexpression of NEDD4 in CC tissues and Caco-2/LoVo
cell lines aided in the development of xenograft tumors and metastasis, as well as tumorige-
nesis in mice models [109]. Interestingly, another study showed NEDD4 to be important in
gastric cardia adenocarcinoma (GCA) metastasis, as the shRNA-mediated NEDD4 decrease
in AGS and N87 gastric cancer cells impairs basal and EGF-stimulated cell invasion and
migration [126]. It was also shown that NEDD4 is important for lung cancer metastasis
by increasing cathepsin B secretion or causing PTEN degradation. However, NEDD4-2
has more complex functions than NEDD4 as it inhibits lung cancer cell metastasis; on the
other hand, it enhances lung cancer survival by causing general control nonderepressible 2
(GCN2) degradation [123]. Further, NEDD4 appears to play a significant role in promoting
HCC metastasis via stimulating the PTEN/PI3K/Akt signaling pathway [111].
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3.6. NEDD4 and EMT

The epithelial–mesenchymal transition (EMT) is a process that can be reversed and
temporarily transforms epithelial cells into quasi-mesenchymal cell types, and this process
plays a significant role in chemoresistance and metastasis [131–136]. In CNE1 and CNE2
nasopharyngeal carcinoma cells, it was found that partial overexpression of the NEDD4
signaling pathway caused EMT in DDP-resistant cells. Moreover, EMT shifts to MET when
NEDD4 is deleted via an shRNA, making DDP-resistant cells susceptible to DDP [137].
NEDD4 has been linked to lysosomal-associated protein transmembrane 5 (LAPTM5), and
the downregulation of LAPTM5 in T24 and 5637 BCa cells suppressed proliferation and
hindered invasion and migration through the inhibition of EMT markers, which hinted that
NEDD4 can be involved in LAPTM5-influenced EMT [138]. Another study showed that
miR-93 overexpression in Huh-7 cancer cells facilitated TGF-β-induced EMT by inhibiting
NEDD4L expression [139]. Notably, NEDD4 overexpression was observed to induce the
EMT, which might be responsible for its role in invasion and metastases.

3.7. NEDD4 and Chemoresistance

Chemoresistance is often cited as a primary cause of cancer therapeutic failure, re-
sulting in cancer relapse and spread [140–142]. NEDD4 has shown to play a major role in
chemoresistance in various cancers. A study on lung cancer proved that upregulation of
NEDD4 via the PI3K/Akt pathway might contribute to tumor growth and modulate lung
ADC chemoresistance [121]. As previously mentioned, NEDD4 is carcinogenic in CNE1
and CNE2 NPC cells because it increases the EMT features of DDP-resistant cells. It was
also discovered that knocking down NEDD4 with shRNA reversed EMT and sensitized
DDP-resistant cells. These data suggest that NEDD4 is involved in chemoresistance in NPC
cancer cells [137]. Moreover, a study on U87MG and U251 GBM cell lines demonstrated the
crucial role of NEDD4 in controlling the redox imbalance in temozolomide (TMZ)-resistant
GBM cells by PTEN degradation and activation of the Akt/NRF2/HO-1 signaling path-
way [143]. Another similar study in GBM revealed that glioma-linked oncogenic lncRNA
LINC01198 promotes proliferation of gliomas and temozolomide resistance by acting as a
scaffold and enlisting NEDD4 enzymes to attack certain proteins such as PTEN [144]. In
A375 melanoma cell lines, erastin, a ferroptosis activator, stimulates NEDD4 and FOXM1
expression, and it led to the ubiquitination and degradation of voltage-dependent anion
channels, VDAC2/3, which further led to the suppression of erastin-induced ferroptosis in
melanoma [145]. Another study in H1650/ER cells showed that NEDD4 might enhance
NSCLC-acquired resistance to erlotinib by lowering the expression of PTEN [146].

3.8. NEDD4 and Multiple Signaling Pathways

NEDD4 is a protein that regulates many signaling pathways. Wnt/β-catenin signaling
is negatively regulated by NEDD4, which targets the LGR5 receptor and DVL2 for proteaso-
mal and lysosomal degradation. Moreover, inactivation of NEDD4 and NEDD4L promotes
Wnt activation, which improves tumor propensity and progression [147]. On the other
hand, knockdown of NEDD4 decreases pAkt levels, increases PTEN, and inhibits the de-
velopment and migration of the Hep3B HCC cell line [60,111]. According to another study,
NEDD4 promotes insulin-like growth factor-1 (IGF-1) signaling and mitogenic activity by
interacting and conjugating monoubiquitin to IRS-2, improving IRS-2-mediated signaling
and cell proliferation triggered by IGF-1. Interestingly, in PC-3 prostate cancer cells, the
NEDD4 and IRS-2 connection is also essential for optimal IGF-1 signaling activation and
cell proliferation [148]. Another study showed that NEDD4 ubiquitylates and destabilizes
WW45 kinase and LATS1/2, which are needed for active Hippo signaling. NEDD4 posi-
tively regulates cell proliferation through the negative regulation of LATS1/2 and WW45.
This suggests that NEDD4 influences cell proliferation and cancer growth through Hippo
signaling. As a result, NEDD4 functions as a regulator in the Hippo pathway, and the
depletion of NEDD4 causes an increase in apoptosis and a decrease in proliferation [149].
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4. Effect of NEED4 on Various Types of Cancer

A surfeit of studies suggests that the NEDD4 protein has both oncogenic and tumor-
suppressive properties. Several preclinical studies revealed that NEDD4 has cancer chemo-
preventive and therapeutic capabilities against various malignancies, which include solid
tumors such as brain, breast, colon, bladder, liver, pancreas, prostate cancers, etc., and
hematological cancers such as lymphoma and leukemia. Tables 1 and 2 summarize the
role of the NEDD4 protein in various types of cancers. These studies, which are briefly
discussed below, reveal that the NEDD4 protein has immense potential as a successful
target for both the prevention and treatment of many malignancies.

Table 1. Regulation of NEDD4-like E3 ligases in various cancers in clinical studies.

Cancer Type Tissues Results Reference

Breast Cancer

BC tissues ↑WWP1 a [150]

BC tissues ↑NEDD4, P34SEI-1 [151]

BC tissues ↑WWP1 [152]

BC tissues ↑NEDD4 [54]

Colorectal Cancer

CRC tissues ↑NEDD4 [153]

CRC tissues ↑NEDD4
↓NEDD4L [76]

CRC tissues ↑NEDD4 [109]

Endometrial Cancer
EC tissues ↓NEDD4L [154]

EC tissues ↑NEDD4, FoxM1 [155]

Gall bladder Cancer Gallbladder cancer tissues ↑NEDD4L, MMP-1,
MMP-13 [156]

Gastric Cancer

Gastric cancer tissues ↑NEDD4 [153]

Gastric cancer tissues ↓NEDD4L [157]

Gastric cancer tissues ↑NEDD4 [126]

Gastric cancer tissues ↓NEDD4L ↑HIF-1α [158]

Glioma/Glioblastoma

Glioma tissues ↓NEDD4L [159]

Glioma tissues ↑NEDD4 ↓CNrasGEF [160]

Glioma tissues ↑NEDD4 [161]

Glioma tissues ↑SMURF1 [162]

Liver Cancer
HCC tissues ↑NEDD4, p-Akt

↓PTEN [111]

HCC tissues ↓NEDD4L [163]

Lung
Adenocarcinoma

NSCLC tissues ↑NEDD4 ↓PTEN [97]

Lung adenocarcinoma tissues ↑NEDD4, p-Akt
↓PTEN [121]

NSCLC tissues ↓NEDD4L [164]

Melanoma Melanoma tissues ↑NEDD4L [165]

Ovarian Cancer Ovarian cancer tissues ↓NEDD4L [166]

Prostate Cancer
PC tissues ↓NEDD4L [167]

PC tissues ↑NEDD4L, PSMB5,
PSMC4 [168]

↑—Increase/upregulation; ↓—decrease/downregulation, a—Differential expression from Category I to IV.
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Table 2. Mechanistic role of NEDD4-like E3 ligase family in various cancers.

Cancer Type In Vitro/
In Vivo Model/Cell Lines NEDD4 Family Mechanism of

Action/Outcomes Reference

Bladder Carcinoma

In vitro RT4 cells NEDD4 (KD)

↓Cell proliferation,
Viability, Migration,
Invasion, Notch-1
↑PTEN, Apoptosis

[105]

NEDD4 (OE)

↑Cell proliferation,
Invasion, Migration,
Notch-1
↓Apoptosis, PTEN

Bone Cancer In vitro U2OS cells NEDD4L (KD) ↑OGG1 [169]

Breast Cancer

In vitro MCF-7, T47D WWP1 (KD) ↓Cell growth, Colony
formation [150]

In vitro MDA-MB-231 NEDD4 (KD) ↓NEDD4
↑MKP3 [170]

In vitro MCF-7/T47D WWP1 (KD) ↑LATS1
↓Cell number [171]

NEDD4, ITCH (KD) ↑LATS1

SMURF1 (KD) ↓LATS1

In vitro MCF-7 NEDD4 (KD)
NEDD4 (KD) + NRG-1

↑HER3
↑pAkt, pERK/2, Cell
proliferation, Colony
number, pHER

[172]

In vivo
MCF-7 (shNEDD4)
BALB/c- nu/nu mice
xenograft

NEDD4 (KD) + NRG-1 +
HER3 mAb ↓Tumor volume [172]

In vitro MDA-MB-231 WWP2 (KD)

↓WWP2, pAkt (S473),
Cell proliferation,
Colony number
↑Cdh1

[173]

In vitro MDA-MB-231
(shPIPKIγi5) NEDD4 (KD) ↑Mig6 [174]

In vitro MDA-MB-231, MCF-7 NEDD4 (KD) ↓ITG β4 ubiquitination [175]

In vitro MCF-7 (sh-NEDD4) NEDD4 (KD) + Estradiol ↓ER, HER3
↑Cell proliferation [176]

In vitro SKBR3 NEDD4 (OE) ↓PIP5Kα [113]

In vitro MCF-7, BT474 NEDD4 (Ac) (fulvestrant) ↓Cx43 [177]

In vitro
MDA-MB-231, T47D,
BT549, ZR-75-1,
MCF-7

NEDD4 (KD) ↓Cell growth [54]

MDA-MB-231, T47D NEDD4 (KD) ↓IGF-1R, p-AktSer473

↑PTEN

In vitro MDA-MB-231,
MDA-MB-436 NEDD4 (KD)

↓Cell proliferation,
Migration,
Mammosphere
formation, ALDH1A,
CD44

[178]

In vitro MDA-MB-231
(PRRG4-OE) NEDD4 (KD) ↑Robo1 [124]
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Table 2. Cont.

Cancer Type In Vitro/
In Vivo Model/Cell Lines NEDD4 Family Mechanism of

Action/Outcomes Reference

MDA-MB-231
(PRRG4-OE),
HCC1954

NEDD4 (KD) ↓Cell migration,
Invasion

In vitro SKBR3 SMURF1 (KD) ↑HER2 [179]

NEDD4 (KD) ↑SMURF1

In vitro MCF-7 NEDD4 (In) by RF-A
↑VDAC2, apoptosis,
Ferroptosis
↓Cell viability

[180]

Cervical Cancer

In vitro HeLa cells NEDD4 (OE)
↓PTEN,
PTEN-induced
apoptosis

[181]

In vitro HeLa cells NEDD4 (KD) ↑Beclin 1 [119]

In vitro HeLa cells NEDD4L (OE) ↓ULK1 [182]

NEDD4L (KD) ↑ULK1

In vitro HeLa-Cx43 cells NEDD4 (KD) ↑Cx43 [93]

HeLa-CCL2 cells NEDD4 (OE) ↓Cx43

C33A cells NEDD4 (OE) ↓Gap junction, Cx43

Colorectal Cancer

In vitro HCT-15, LoVo NEDD4 (KD)

↑Cell morphological
alterations,
Reorganization of the
actin cytoskeleton
↓Cell growth

[102]

In vitro SW1116 NEDD4 (KD) ↑p21, NDRG1 [183]

In vitro LoVo NEDD4 (OE)

↑Cell growth,
Vimentin, N-cadherin,
snail, ATF-1
↓E-cadherin, FOXA1,
miR-340

[109]

NEDD4 (KD) ↑ FOXA1

Caco-2 NEDD4 (KD)

↓Cell growth, Cell
proliferation, Colony
number, Vimentin,
N-cadherin, Snail,
ATF-1
↑Apoptosis, Cyto C,
PUMA, Apaf-1, Bax,
E-cadherin, FOXA1,
miR-340

NEDD4 (OE)

↑Cell proliferation,
Colony number
↓Apoptosis, Cyto C,
PUMA, Apaf-1, Bax,
FOXA1

Endometrial
Cancer In vitro Ishikawa NEDD4 (OE) ↑Cell growth, p-ERK,

pAkt, IGF-1R [155]

Gall bladder
Cancer In vitro TGBC1TKB NEDD4 (KD) ↓Invasion, MMP-1,

MMP-13 [156]
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Table 2. Cont.

Cancer Type In Vitro/
In Vivo Model/Cell Lines NEDD4 Family Mechanism of

Action/Outcomes Reference

Gastric Cancer
In vitro AGS, N87 NEDD4 (KD) ↓Cell number,

Migration, Invasion [126]

In vitro MGC803 NEDD4 (Ac) ↑NEDD4, Migration,
Invasion [184]

Glioma/
Glioblastoma

In vitro NHA-E6/E7/hTERT NEDD4 (KD) ↑PTEN [185]

In vitro U251 NEDD4 (KD) ↓Migration, Invasion [160]

NEDD4 (OE) ↑Migration, Invasion

In vitro U251, U87 NEDD4 (KD) ↓Migration, Invasion [161]

NEDD4 (OE) ↑Migration, Invasion
↓Rap2a

In vitro A1207, SNB19 NEDD4 (In) ↓p-Akt, Notch-1,
Migration, Invasion [125]

NEDD4 (OE) ↓Apoptosis
↑Migration, Invasion

NEDD4 (KD)
↑Apoptosis
↓Migration, Invasion,
Notch-1, p-Akt

In vitro U87-MG SMURF1 (KD)

↓Migration, Invasion,
Vimentin, MDM2
↑E-cadherin, p53,
Cleaved Caspase-3,
Cleaved PARP

[162]

In vitro U87-MG, M059K NEDD4L (OE) ↓Cell viability
↑p-β-catenin [186]

U87-MG NEDD4L (OE) ↓β-catenin, Cyclin-D1

Liver Cancer

In vitro HepG2 cells NEDD4 (OE) ↓GUCD1 [187]

In vitro Huh7 cells NEDD4 (KD)

↓Cell proliferation,
Migration, Invasion,
p-ERK1/2, p-Akt,
p-STAT3
↑Cytoskeletal changes,
S phase cell cycle
arrest, PTEN

[110]

In vitro
Huh7, Hep3B,
PLC/PRF/5,
SMMC7721, LO2

NEDD4 (KD)

↑PTEN, E-cadherin
↓Cell proliferation,
Migration, p-Akt,
Vimentin

[111]

In vitro
SK-hep1

HCCLM3

NEDD4 (KD)

NEDD4 (OE)

↑Cell number,
p-ERK1/2
↓ Cleaved caspase 3
↑BIRC3, CASP2,
CASP7

[163]

In vivo Nude mice
(HCCLM3-NEDD4L) NEDD4L (OE) ↓Tumor weight

↑p-ERK1/2 [163]

In vitro QGY7703, SMMC7721 NEDD4 (KD)

↓NEDD4, Cell
proliferation, Cell
viability, Migration,
Invasion, p-Akt
↑Apoptosis, LATS1

[106]
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Table 2. Cont.

Cancer Type In Vitro/
In Vivo Model/Cell Lines NEDD4 Family Mechanism of

Action/Outcomes Reference

NEDD4 (OE)

↑NEDD4, Cell
proliferation, Cell
viability, Migration,
Invasion, p-Akt
↓Apoptosis, LATS1

Lung Cancer

In vitro NCI-H460 NEDD4 (OE) ↓PTEN
↑p-Akt, Cell growth [97]

NCI-H292 NEDD4 (KD)
↑PTEN, p21, Gelsolin
↓p-Akt, c-Myc, Cell
growth

In vivo
Nude mice
(NCI-H292-shNEDD4)
xenografts

NEDD4 (KD) ↓Tumor volume, p-Akt
↑PTEN [97]

Nude mice (NCI-H460-
NEDD4-HA)
xenografts

NEDD4 (OE) ↑Tumor volume, p-Akt
↓PTEN

In vitro A549 NEDD4 (KD) Transport of TMEPAI
to the lysosome [188]

In vitro A549 NEDD4 (KD) ↑GCN2 [189]

In vitro A549 NEDD4L (KD) ↑pSMAD2 [139]

In vitro HCC827/ER cells +
erlotinib NEDD4 (KD) ↑PTEN

↓p-Akt [146]

NEDD4 (OE) ↓PTEN
↑p-Akt

H1650/ER cells
+ erlotinib NEDD4 (KD) + PTEN(OE) ↑PTEN

In vivo
Nude mice
(HCC827/ER cells)
xenograft

NEDD4 (KD) ↓Tumor growth,
Tumor weight [146]

In vitro A549 NEDD4 (KD)

↓NEDD4, EGF
stimulated migration,
EGF stimulated
cathepsin expression

[122]

NEDD4 (KD) + NEDD4 ↑EGF stimulated
migration

In vitro A549 NEDD4 (KD)

↓NEDD4, Cell
proliferation,
Migration, Invasion,
p-Akt, NF-kB, mTOR
↑BAD, PTEN

[121]

In vitro H1975, HCC827 NEDD4L (KD)
↑Cell proliferation,
Migration, Invasion,
Cell number

[164]

In vivo
Nude mice (HCC827-
LUC-shNEDD4)
xenografts

NEDD4L (KD) ↑Tumor growth,
Metastasis [164]

Melanoma In vitro Melan-A transduced
SK-Mel-37 cells NEDD4, ITCH (KD) ↑Melan-A [190]



Int. J. Mol. Sci. 2022, 23, 12380 17 of 39

Table 2. Cont.

Cancer Type In Vitro/
In Vivo Model/Cell Lines NEDD4 Family Mechanism of

Action/Outcomes Reference

NEDD4, ITCH (OE) ↓Melan-A

In vitro G-361 + I3C NEDD4 (KD)
↑PTEN, MDM2
↓p-MDM2, Bcl-2,
Caspase 3

[191]

In vitro G-361 NEDD4L (KD) ↓NEDD4L, Cell
growth [165]

In vivo BALB/c nude mice
(A2058) xenograft NEDD4L (OE) ↑Tumor volume [165]

In vitro Jurkat cells NEDD4 (OE) ↓GITR
↑Foxp3, IL-2 [192]

NEDD4 (KD) ↑GITR
↓Foxp3, IL-2

A375 + Jurkat cells NEDD4 (OE)
↑Cell survival rate,
IL-2, Foxp3
↓GITR

In vitro A375 NEDD4L (OE) ↓Cell proliferation,
Migration, SP-1 [193]

In vitro A375 + erastin Wt-NEDD4 (OE)

↓VDAC2/3 protein
level
↑K48-linked
ubiquitination of
VDAC2/3

[145]

NEDD4 (KD) ↑VDAC2/3

A375 and G361 NEDD4 (KD)

↑Erastin-induced cell
death, ROS
production, Iron
accumulation, GSH
depletion, GSSG
generation

NEDD4 (OE) ↑Cell viability

In vivo Nude mice (A375)
xenografts NEDD4 (KD)

↓Tumor size, GSH
levels
↑MDA levels

[145]

In vitro A375 NEDD4 (KD) ↓NEDD4
↑IGPR-1 [194]

SK-MEL-28 NEDD4 (OE) ↓IGPR-1

Nasopharyngeal
Carcinoma In vitro CNE1-DDP,

CNE2-DDP NEDD4 (KD)

↑MET, E-cadherin,
ZO-1
↓Cell attachment and
detachment capacity,
Migration, Invasion,
N-cadherin,
Vimentin, Slug

[137]

Neuroblastoma

In vitro BE (2)-C NEDD4 (KD) ↑N-Myc, c-Myc
protein [103]

In vitro SK-N-SH NEDD4 (KD)
↓NEDD4 mRNA, JEV
infection
↑LC3-II, Beclin 1

[195]

NEDD4 (OE) ↑JEV NS3 expression
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Table 2. Cont.

Cancer Type In Vitro/
In Vivo Model/Cell Lines NEDD4 Family Mechanism of

Action/Outcomes Reference

In vitro SK-N-SH NEDD4 (OE) ↓Cell proliferation,
Migration [196]

NEDD4 (OE)+
hsa-miR199a-3p mimic

↑Cell proliferation,
Migration

Ovarian Cancer

In vitro CP70, CP70−
DDB2, PEO1 NEDD4L, DDB2 (KD) ↑p-Smad2 [197]

CP70 NEDD4L, DDB2 (OE)+
TGF-β ↑p-Smad2

In vitro OVCAR3 NEDD4 (KD) ↓NEDD4 [198]

NEDD4 (KD) + RSL3
↑Cell death, MDA,
Oxidative stress, LTF
protein expression

NEDD4 (KD) + Erastin
↑Cell death, MDA,
Oxidative stress, LTF
protein expression

Pancreatic Cancer

In vitro MiaPaca-2 NEDD4 (KD)
↓NEDD4
↑N-Myc, c-Myc
protein, SIRT2

[103]

In vitro Patu8988, Panc-1 NEDD4 (OE) + Curcumin

↑Cell proliferation,
Migration, Invasion
↓Apoptosis, PTEN,
p73

[120]

NEDD4 (KD) + Curcumin

↓Cell growth,
Migration, Invasion
↑Apoptosis, PTEN,
p73

In vitro Panc-1 NEDD4 (KD) ↓NEDD4 [198]

NEDD4 (KD) + RSL3
↑Cell death, MDA,
Oxidative stress, LTF
protein expression

NEDD4 (KD) + Erastin
↑Cell death, MDA,
Oxidative stress, LTF
protein expression

Prostate Cancer

In vitro DU145 WWP2 (KD)
↑PTEN
↓p-Akt, Cell
proliferation

[199]

WWP2 (KD) +
Doxorubicin ↑Apoptosis

In vivo
Nude mice
(DU145-shWWP2)
xenograft

WWP2 (KD) ↓Tumor growth [199]

In vitro DU145 NEDD4 (KD) + NRG-1

↑Cell proliferation,
Migration, p-HER3,
p-Akt1, Spheroid
formations, HER3

[172]

↑—Increase/upregulation; ↓—decrease/downregulation, OE—overexpression, KD—knockdown, Ac—activation,
In—inhibition.
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4.1. Bladder Cancer (BCa)

Bladder cancer (BCa) is one of the most frequently occurring malignancies of the
urinary bladder, which accounts for 3 percentage of global cancer diagnoses according to
GLOBOCAN 2020 [105,138,200–202]. Interestingly, it was noted that downregulation of
NEDD4 resulted in the inhibition of cell proliferation, invasion, and migration in RT4 BCa
cells. Moreover, NEDD4 inhibition activated PTEN while suppressing Notch-1. Therefore,
downregulation of NEDD4 in BCa cells reduced cell proliferation, induced apoptosis, and
hindered cell migration [105]. This study pointed out the importance of the development
of NEDD4 inhibitors for the treatment of human BCa.

4.2. Breast Cancer (BC)

BC is the most frequent type of cancer in women all over the world, and triple-negative
breast cancer (TNBC) is characterized as a very aggressive malignancy with a bad progno-
sis and no viable targeted therapy available for its treatment [203–210]. NEDD4’s role in
the development of BC has been reported in several studies [54,104,178,211]. It has been
observed that NEDD4 is predominantly overexpressed in HER2-amplified BC [212]. The
expression of NEDD4L was also reported to be associated with a better prognosis for BC
survivors [213]. A study revealed p34SEI-1 as a highly expressed oncoprotein in human
BC tissues which causes tumorigenesis by triggering NEDD4 which in turn causes poly-
ubiquitination and degradation of PTEN, thereby promoting tumorigenesis by favorably
regulating the PI3K/Akt pathway [151]. According to another study, PRRG4’s influence
on migration and invasion in BC cells is mediated via both NEDD4 binding and Robo1
downregulation [124]. Another in vitro study suggests that using the MDA-MB-231 cell
line, Cdh1 suppressed the E3 ligase activity of WWP2 in the MDA-MB-231 cell line in a
manner that is distinct from the anaphase-promoting complex and cyclosome. Therefore,
the lack of Cdh1 activates WWP2, which in turn causes a decrease in the abundance of
WWP2 substrates such as PTEN, which stimulates PI3K/Akt oncogenic signaling and
promotes cancer growth [173]. Another study in the MDA-MB-231 cell line revealed that
the expression of the tumor suppressor Mig6 is stabilized by type I γ phosphatidylinositol
phosphate 5-kinase i5 (PIPKIγi5). Mig6 expression is lost as a result of PIPKIγi5 knock-
down, which significantly increases and prolongs EGFR-mediated cell signaling. Direct
interaction between PIPKIγi5 and NEDD4 disrupts the process of Mig6 ubiquitination
and subsequent proteasomal destruction. Therefore, in PIPKIγi5-knockdown cells, a lack
of NEDD4 can restore the expression of Mig6 [174]. NEDD4 was more likely to bind
to connexin 43 (Cx43) when ER was inhibited, which caused Cx43 to be ubiquitinated.
Additionally, tamoxifen and fulvestrant suppressed ER and phosphorylated the MAPK
subunit p38, and downregulated Rac and MKK3/6. Further, pretreatment with Akt and
MAPK inhibitors reversed fulvestrant-reduced Cx43 expression. These results demonstrate
that in ER-dependent ER-positive BC cells and Cx43 expression might positively influence
cell motility [177]. ARRDC3 (arrestin domain-containing 3) is a metastasis suppressor
that blocks EGF-driven endocytic recycling of ITGβ4 by promoting NEDD4-dependent
ubiquitination. By lowering ITGβ4 levels in EVs, ARRDC3 lowers the metastatic capacity of
BC-cell-derived extracellular vesicles (EVs) [175]. Histopathological evaluation has shown
that WWP1, as well as NEDD4 expression, were modulated in the BC tissues [150,152].
Moreover, knockdown of WWP1 in MCF-7 and T47D BC cells has shown a decrease in
cell growth and colony formation. Hence, WWP1 might function as a co-activator or
anti-apoptotic factor to encourage the survival and growth of BC cells [150]. Another study
in MCF-7 and T47D cell lines reported that WWP1 negatively regulates LATS1, a tumor
suppressor, through its degradation by polyubiquitination and the 26S proteasome pathway.
Moreover, it was reported that the knockdown of NEDD4 and ITCH increased the level of
LATS1, whereas the knockdown of SMURF1 decreased the level of LATS1 [171]. In addi-
tion, robustaflavone-A (RF-A) dramatically increased MCF-7 ferroptosis, resulting in lipid
peroxidation and ROS generation by increasing the expression of VDAC2 channels and
decreasing the expression of NEDD4 [180]. Apart from the oncogenic property of NEDD4
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revealed in several studies, some reports state the tumor-suppressing role of NEDD4 in BC.
For example, a study has demonstrated the tumor-suppressing role of NEDD4 by which
PIP5Kα, a ubiquitinated protein that enhances the proliferation, invasion, and migration of
BC cells, was impeded by NEDD4. PIP5Kα produces PIP2, a key regulator of lipids in a
variety of physiological activities. The oncogenic PI3K/Akt pathway can also act upstream
via PIP5K-dependent PIP2 production. PIP5Ka was ubiquitinated and proteasomally
degraded by NEDD4, resulting in a decrease in plasma membrane PIP2. Furthermore,
deletion of the PIP5Ka gene reduced EGF-induced Akt activation and produced a major
proliferation deficit [113]. In another study, the knockdown of NEDD4 showed to increase
the levels of MAPK phosphatase 3 (MKP3) in MDA-MB-231 BC cells [170]. Another study
demonstrated a negative correlation between HER3, a key player in cancer, and NEDD4
levels. More significantly, the NEDD4 knockdown increased HER3 expression, sensitizing
cancer cells to the anti-HER3 antibody’s ability to suppress cell proliferation. Collectively,
these findings imply that low NEDD4 levels might be able to anticipate when HER3 sig-
naling is activated. In addition, NEDD4 knockdown along with NRG-1 and HER3 mAb
in an MCF-7 (shNEDD4) mice xenograft showed decreased tumor volume [172]. Further,
an in vitro study showed decreased ER and HER3 expression and increased proliferation
rate in shNEDD4 knockdown MCF-7 cells [176]. Another in vitro study demonstrated
that SMURF1 knockdown increased HER2 expression in BT474 cells [179]. In summary,
NEDD4-like E3 ligases were found to be a feasible therapeutic target as well as a potential
prognostic predictor for BC.

4.3. Cervical Cancer

Cervical cancer is the fourth most prevalent cancer in women worldwide and it is
the most common gynecological malignancy in developing nations, and has an incidence
rate of less than 1 percentage and mortality of less than 0.5 percentage [214–219]. A
study in HeLa cells reported that NEDD4 prevented PTEN from inducing apoptotic cell
death, and PTEN, in turn, decreased the level of NEDD4 [181]. Another study in HeLa
cells described NEDD4 as a novel binding partner of Beclin 1, and this study showed
that NEDD4 polyubiquitinates Beclin 1 with Lys11 and Lys63 linked chains. Importantly,
NEDD4 expression regulates Beclin 1 stability, and it is degraded by the proteasome via
Lys11-linked polyubiquitin chains when the Beclin 1 interacting protein VPS34 is depleted.
Therefore, Beclin 1 is the first tumor suppressor to be described as being under the control
of Lys11-linked polyubiquitination [119]. Further, NEDD4L overexpression specifically
downregulates ULK1 protein levels by preferentially ubiquitylating it for degradation
by the proteasome, which actively transcribes ULK1 mRNA. Basal levels of ULK1 are
immediately restored upon reactivation of mTOR-dependent protein synthesis; however,
mTOR inhibits the function of newly synthesized ULK1. This gets the cell ready for another
round of potential autophagy stimulation in HeLa cells [182]. Furthermore, a study in HeLa
cells demonstrated that NEDD4 controls the level of Cx43, which acts as a tumor suppressor
both at basal conditions and in response to protein kinase C activation. Additionally, it was
discovered that NEDD4 expression led to the total loss of gap junctions and an increase in
the lysosomal degradation of Cx43 in HeLa cancer cells [93].

4.4. Colorectal Cancer (CRC)

Colorectal cancer is one of the most common cancers in women and men world-
wide. Both hereditary and environmental factors play a key role in colorectal cancer
etiology [220–222]. A study revealed that NEDD4 was found to be expressed in 80 percent-
age of colorectal carcinomas and has tumorigenic activity by inducing ubiquitination and
degradation of the PTEN gene [153]. Another study on HCT-15 and LoVo colon cancer
cells observed that PTEN and PI3K/Akt signaling are not required for NEDD4 to induce
colon cancer cell growth. Moreover, NEDD4 knockdown induced alterations in cell mor-
phology and reorganization of the actin cytoskeleton [102]. Another study demonstrated
that the expression of NEDD4 has a proportional effect on cell growth and metastasis
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by varying vimentin, N-cadherin, snail, and ATF-1 expression in LoVo and Caco-2 cells.
Further, in LoVo cells, the overexpression of NEDD4 reduced the expression of E-cadherin,
FOXA1, and miR-340. Furthermore, in Caco-2 cells, overexpression of NEDD4 increased
cell proliferation and colony number and reduced apoptosis by decreasing Cyto-C, PUMA,
Apaf-1, Bax, and FOXA1 expression [109]. However, a couple of studies demonstrated the
tumor-suppressive role of NEDD4 in colon cancer. For example, a clinical study discovered
that NEDD4 is upregulated and NEDD4L downregulated in CRC tissues. Interestingly,
patients with high expression of NEDD4L have shown to have longer disease-specific
survival compared to patients with lower expression [76]. In CRC, NDRG1 prevented
tumor growth by increasing p21 expression and decreasing its ubiquitylation. NDRG1 was
found to be downregulated in CRC tissues, and a positive connection between NDRG1 and
p21 was shown in vitro and in vivo. Mechanistically, NEDD4 directly interacts with p21
and targets it for degradation, which is inhibited by NDRG1, resulting in reduced growth of
tumors. Further, it was demonstrated that the knockdown of NEDD4 with siRNA increased
the expression of both p21 and NDRG1 [183]. Taken together, more studies are required for
the proper understanding of the function of NEDD4 in CRC.

4.5. Endometrial Cancer (EC)

EC is the most frequent gynecologic malignancy in women, with an anticipated
61,880 new cases and 12,160 deaths in 2019 [223–225]. A study demonstrated the rela-
tionship between NEDD4 and EC, in which the cancer tissues showed increased levels of
NEDD4. Moreover, immunohistochemistry analysis revealed strong NEDD4 staining, with
higher NEDD4 expression in the most aggressive tumors. Furthermore, NEDD4 expression
in EC was found to be favorably linked with the Akt downstream effector FoxM1 and
increased cell growth, p-ERK, pAkt, and IGF-1R expression [155]. On the contrary, a clinical
study showed considerably lower levels of NEDD4L expression in EC patients than those
with benign endometrial diseases [154]. However, there is a paucity of evidence on the
association between NEDD4 levels and the onset, progression, and prognosis of EC.

4.6. Gastric Cancer (GC)

Gastric carcinoma (GC) is one of the most common and deadly cancers in the
world [226–228]. A study revealed that NEDD4 was found to be expressed in GC and has
tumorigenic activity by inducing ubiquitination and degradation of the PTEN [153]. To
date, it has been reported that NEDD4 is overexpressed in 83 percentage of GC tumors.
NEDD4 is probably involved in the signaling that leads to tumor metastasis caused by the
EGFR because NEDD4 facilitates EGF-dependent GC cell invasion and migration [126].
Further, a high level of NEDD4L was associated with a low level of HIF-1α, indicating a
positive prognosis [158]. In addition, another study revealed tumors that exhibited negative
NEDD4L expression were highly linked to GC invasion and metastasis [157]. Another
study demonstrated the prognostic value of this protein in GC. Decitabine (DAC), an
inhibitor of DNA methylation, was found to increase NEDD4 expression in MGC803 GC
cells, thus promoting the cells’ ability to invade and migrate [184]. However, to determine
the role of NEDD4 in the development of GC, more in vitro, in vivo, and clinical research
are needed.

4.7. Glioma/Glioblastoma

In adults, glioblastoma is the most common form of adult brain cancer and is one
of the top ten malignant tumors, despite surgery, radiation therapy, and chemotherapy,
with an average nine-month survival time [161,229,230]. NEDD4 was shown to promote
cell motility and invasion of malignant U251 glioma cells in vitro by ubiquitinating CNras-
GEF [160]. Another study in U251 and U87 demonstrated that NEDD4 regulates glioma cell
motility and invasion via the NEDD4/Rap2a pathway [161]. Moreover, it was shown that
FOXM1 overexpression upregulated NEDD4, and the subsequent degradation of PTEN and
activation of the Akt pathway in turn resulted in astrocyte transformation and GBM devel-
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opment [185]. Another study revealed that curcumin can reduce the expression of NEDD4,
pAkt, and Notch1, which leads to the inhibition of cell growth and apoptosis and reduction
in invasion and migration of glioma cells. Furthermore, deletion of NEDD4 sensitized
glioma cells to curcumin [125]. Moreover, it was demonstrated that SMURF1 promotes the
glioma cell migration and invasion and the expression of vimentin and MDM2, and the
suppression of SMURF1 by siRNA transfection can reduce cell invasion and increase the
p53, cleaved caspase-3, cleaved PARP, and E-cadherin [162]. Another study showed that
miR-513a-5p repressed NEDD4L expression and participated in IGF-1 mediated activation
of Wnt/β-catenin signaling, and consequently reduced TMZ cytotoxicity [186]. In human
gliomas, the expression of NEDD4L is reduced, and patients with glioma who have low
NEDD4L expression have a worse prognosis [159].

4.8. Liver Cancer

Liver cancer is an aggressive tumor that often develops from cirrhosis and chronic
liver diseases [231,232]. Hepatocellular carcinoma (HCC), a primary liver cancer, is the
third greatest cause of cancer-related death globally [233–235]. HCC, the most common
type of liver cancer, is formed from hepatocytes and accounts for more than 80 percentage
of all occurrences of liver cancer [236–238]. In HCC, the inhibition of cell proliferation,
migration, and invasion, as well as cell cycle arrest in the S phase, was achieved by
targeting NEDD4. Moreover, NEDD4 silencing resulted in an increase in PTEN expression,
which resulted in decreased cell proliferation, migration, invasion, p-STAT3, p-Akt, and
p-ERK1/2 [110]. In addition, it was observed that knockdown of NEDD4 decreased
cell proliferation, viability, invasion, migration, and p-Akt levels and induced apoptosis
and LATS1 expression in HCC [106]. In another study, it was reported that depletion or
inhibition of NEDD4 could be used as a strategy to minimize metastasis and postpone tumor
recurrence, hence improving survival rates. Moreover, NEDD4 knockdown in liver cancer
cells increased PTEN and E-cadherin and decreased vimentin and p-Akt [111]. However,
a study showed that NEDD4L suppressed cell growth by phosphorylating ERK1/2 and
inducing apoptosis, suggesting that it might play a tumor-suppressive role in HCC by
triggering MAPK/ERK-mediated apoptosis. Further, an in vivo study demonstrated that
overexpression of NEDD4L prevented the growth of xenograft tumors in mice [163]. In
another study, NEDD4 overexpression in HepG2 cells showed decreased guanylyl cyclase
domain containing 1 (GUCD1) levels. Additionally, NEDD4 seems to influence GUCD1
degradation via the ubiquitin–proteasome system [187]. Therefore, further studies are
required to confine the precise role of NEDD4 and to develop agonists/antagonists for the
potential inhibition of HCC.

4.9. Lung Cancer

Lung cancer is the world’s top cause of death due to cancer in both men and women. It
is a common cancer that is extremely aggressive and spreads quickly [14,239–244]. NSCLC
accounts for 85 percentage of all lung cancers, with lung adenocarcinoma (ADC) accounting
for 60 percentage of NSCLC, making ADC the most common histologic type [121,245–247].
It was reported that NEDD4 is linked with the progression of lung cancer and is overex-
pressed in a considerable proportion of NSCLC patients concerning chemosensitivity and
prognosis. Thus, it promotes cell proliferation, migration, and invasion through PTEN
degradation and increases the malignant characteristics of lung epithelial cells. Through
stimulation of the lysosomal cathepsin B secretion pathway, NEDD4 can also mediate
EGFR cell migration signaling in lung cancer cell lines [97,121,122]. A study in HCC827/ER
cells demonstrated that NEDD4 might increase the acquired resistance of NSCLC cells
to erlotinib by reducing the expression of PTEN. Moreover, knockdown of NEDD4 de-
creased tumor growth and tumor weight in nude mice (HCC827/ER cells) xenografts [146].
Another in vitro study showed that NEDD4L can act as a tumor suppressor, and it is
downregulated in NSCLCs. Moreover, it was noticed that the knockdown of NEDD4L
increased cell proliferation, invasion, and migration. Additionally, an in vivo study showed
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that knockdown of NEDD4L resulted in increased tumor growth and metastasis in nude
mice (HCC827 LUC) [164]. Furthermore, another study demonstrated miR-93’s oncogenic
role in lung cancer by downregulating the expression of NEDD4L. Reduced NEDD4L
prevented SMAD2/SMAD3 from degrading, enhanced the TGF-β signal transduction, and
promoted TGF-β-induced EMT [139]. Another study demonstrated that transmembrane
prostate androgen-induced protein (TMEPAI) interacts with NEDD4 and binds to the
TGFβ-type I receptor (TβRI), thereby facilitating its degradation. This study also showed
that NEDD4 is necessary for the transport of TMEPAI to the lysosome [188]. NEDD4 is a
particular E3 ligase for GCN2, which is activated in A549 cancer cells to increase tumor
aggressiveness and survival for ubiquitination and degradation. The β-arrestin promotes
the formation of the GCN2-β-arrestin-NEDD4L complex by binding NEDD4L to GCN2,
enabling ubiquitin-mediated GCN2 degradation and thereby preventing cancer [189].

4.10. Melanoma

Human melanomas are the most aggressive form of malignant skin tumors, arising
from neuro-ectodermal melanocytes. They can be astonishingly resistant to standard cancer
therapy [191,248]. In line with this, a study showed that indole-3-carbinol (I3C) disruption
of NEDD4 ubiquitination activity caused the wild-type PTEN tumor suppressor to stabilize
and induced an antiproliferative response in melanoma [191,249]. An in vitro study proved
that many melanoma cells show immunoreactivity for NEDD4L, and during the neoplastic
transformation of melanocytes, the expression of NEDD4L might rise. Further, it was found
that in xenograft models, exogenous NEDD4L expression significantly aided the growth
of G-361 melanoma cells in vivo, and it was suggested that NEDD4L expression might be
elevated in many melanomas to aid tumor growth [165]. Another study demonstrated that
NEDD4 ubiquitinates immune checkpoint GITR and can promote melanoma cell prolifera-
tion by suppressing anti-tumor immune responses mediated by T cells [192]. A melanocytic
transmembrane protein called Melan-A/MART-1 interacts with NEDD4 and ITCH and
thus becomes ubiquitylated in melanoma cells. Both NEDD4 and ITCH contribute to
the degeneration of the melanocyte. In pigmented cells, mutant Melan-A, which lacks
ubiquitin acceptor residues, accumulates in melanosomes and has a prolonged half-life.
Therefore, ubiquitylation regulates Melan-A/MART-1 lysosomal sorting and destruction
from melanosomes [190]. In another study, a functional polypeptide JP1 was demonstrated
to activate p-MEK1/2 and induced SP1 ubiquitination through the NEDD4L-SP1-Integrin
αvβ3 pathway, which inhibited melanoma cell proliferation and metastases [193]. In A375
melanoma cell lines, erastin, a ferroptosis activator, stimulates the expression of NEDD4
and FOXM1 that leads to the ubiquitination and degradation of voltage-dependent anion
channels, VDAC2/3, which further leads to the suppression of erastin-induced ferroptosis
in melanoma. Additionally, an in vivo study showed that NEDD4 knockdown decreased
tumor size and GSH levels, and increased MDA levels in nude mice (A375) xenografts [145].
Another study reported that NEDD4 promotes K48- and K63-dependent polyubiquitination
and promotes lysosomal-dependent degradation of IGPR-1, because treatment of cells with
lysosomal inhibitors such as bafilomycine enhanced IGPR-1 in human skin melanoma cell
lines [194].

4.11. Nasopharyngeal Carcinoma (NPC)

NEDD4 has been associated with the progression and development of nasopharyngeal
carcinoma (NPC) [137,250]. In NPC cells, NEDD4 has tumorigenic capabilities because
it promotes the EMT characteristics of cis-diamminedichloroplatinum (DDP, cisplatin)
resistant cells. Overexpression of NEDD4 has been linked to EMT in DDP-resistant cells.
Moreover, depletion of NEDD4 resulted in a partial reversion of EMT to MET phenotypes in
resistant cells. These studies suggest that NEDD4 participates in EMT and chemoresistance
in NPC cancer cells [137].
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4.12. Neuroblastoma (NB)

Neuroblastoma is the most frequently occurring extracranial solid tumor in children,
and it is defined by the neoplastic development of neural crest cells in the developing
sympathetic nervous system. The original tumor can occur anywhere along the sympathetic
chain, although the adrenal gland is the most common site [251–253]. A recent study
identified NEDD4 as a novel host component required for Japanese encephalitis virus (JEV)
infection of human neural cells, and it was discovered that NEDD4 enhances JEV replication
by reducing autophagy. Therefore, the downregulation of NEDD4 can drastically lower JEV
infectivity, allowing neuronal cells to survive [195]. A study on neuroblastoma revealed that
exosomal hsa-miR199a-3p overexpression in NB can increase proliferation and migration
in vitro by inhibiting NEDD4 expression, resulting in a poor prognosis [196]. NEDD4
directly binds to Myc oncoproteins and targets them for ubiquitination and degradation.
Additionally, small-molecule SIRT2 inhibitors activated the NEDD4 gene, decreased the
expression of N-Myc and c-Myc proteins, and inhibited the proliferation of neuroblastoma
cancer cells [103].

4.13. Ovarian Cancer

Dysregulation of E3 ubiquitin ligases appears to be a major component in the devel-
opment and maintenance of ovarian cancer chemoresistance [254,255]. In ovarian cancer
tissues, NEDD4L protein expression is found to be lower than non-cancer tissues. This
suggests that the downregulation of NEDD4L protein expression might contribute to
the emergence of ovarian cancer [166]. For example, DNA damage-binding protein 2
(DDBP2) modulates the responsiveness of ovarian cancer cells to TGF-β-induced growth
suppression through NEDD4L [197]. Another in vitro study in OVCAR3 cells showed
that erastin or RSL3 dose-dependently induced NEDD4L expression. Moreover, NEDD4L
knockdown sensitized ovarian cancer cells to erastin- or RSL3-induced cell death and tumor
suppression [198].

4.14. Pancreatic Cancer (PCa)

Pancreatic adenocarcinoma is an aggressive cancer of the pancreas that has a poor prog-
nosis. PCa is the 14th most common cancer in the world and the 7th greatest cause of cancer
death, with around 227,000 deaths each year expected around the world [256–261]. A growing
number of studies have reported that NEDD4 has been linked to the development of PCa [262].
A surfeit of studies have proven that curcumin can exhibit its anti-tumor activity in cancer
cells [263]. In PCa, curcumin downregulates the NEDD4 protein and further upregulates
PTEN and p73, and led to the suppression of cancer. Importantly, it was noted that sup-
pressing NEDD4 expression resulted in decreased cell proliferation, migration, and tumor
growth [120]. Regarding LTF, an iron-binding transport protein, degradation by NEDD4L
prevents intracellular iron accumulation and subsequent oxidative-damage-mediated fer-
roptosis cell death in PANC-1 cancer cells. In addition, this study showed that erastin or
RSL3 dose-dependently enhanced NEDD4L expression, and NEDD4L knockdown effectively
induced cell death and erastin or RSL3 stimulated MDA production [198]. Another study
suggested that by directly interacting with the NEDD4 gene core promoter and deacetylating
histone H4 lysine 16, SIRT2 inhibited the expression of the NEDD4 gene. Myc oncoproteins
are directly targeted by NEDD4 for ubiquitination and degradation, and it was found that
SIRT2 inhibitors activate the NEDD4 gene, which results in the decreased expression of Myc
proteins, and decreased the PCa cell proliferation [103]. In conclusion, NEDD4 is a possible
target for the therapy of PCa.

4.15. Prostate Cancer

Prostate cancer is the second most observed cancer type in men and causes a series of
health issues [202,264–268]. In the prostate gland, androgens and the androgen receptors
(AR) play crucial roles for proper growth, differentiation, and physiological function. It
has also been proven that AR dysregulation contributes to the advancement of prostate
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cancer [269–272]. In a clinical study, it was reported that the loss of NEDD4L expression
was frequently observed in prostate cancer patients with more aggressive tumors. It was
also shown that downregulation of NEDD4L significantly correlates with increased Gleason
score, indicating the possibility of its role in prostate cancer progression [167]. A clinical
study revealed that the expression of proteasomal pathway genes including PSMC4, PSMB5,
and NEDD4L showed a significant upregulation. Interestingly, another member of this
family, SMURF2, appears to be downregulated in organ-confined prostate tumors compared
to non-organ-confined prostate tumors. Thus, dysregulation in the expression of these
genes suggests a potential role in the development and spread of prostate cancer [168]. In
another study, WWP2 was identified as an oncogene in prostate cancer. WWP2 influences
PTEN’s degradation through a ubiquitylation-dependent pathway, regulating cellular
apoptosis and increasing the development of cancer in a nude mice (DU145) xenograft, and
the knockdown of WWP2 was shown to decrease tumor growth [173,199]. A negative link
was discovered between HER3 and NEDD4 levels in the DU145 prostate cancer cell lines.
More importantly, NEDD4 knockdown enhanced HER3 expression, making cancer cells
sensitive to an anti-HER3 antibody which limited cell proliferation [172]. In conclusion,
NEDD4 could be a possible target for the therapy of prostate cancer.

4.16. Other Cancers

Apart from these studies, the role of NEDD4 has also been studied in other can-
cers, such as multiple myeloma (MM), uveal melanoma, bone cancer, gall bladder cancer,
etc. [156,169,273,274]. For example, NEDD4 has also been involved in the development
of gallbladder carcinoma, which is an aggressive cancer with a high rate of invasiveness
that continues to have a poor prognosis, with a less than 10 percentage overall survival
rate [156]. A study highlighted NEDD4 as an invasion-associated molecule in gallbladder
carcinoma and demonstrated that at the transcriptional level NEDD4L regulates MMP-1
(Matrix metalloproteinase-1) and MMP-13 expression, which is overexpressed at an early
stage of tumor invasion in various malignant tumors [156]. Further, a study in U2OS cells
reported that NEDD4L promotes the ubiquitylation of 8-Oxoguanine DNA glycosylase
(OGG1), a major cellular enzyme involved in the base excision repair pathway, which plays
a vital role in suppressing mutagenesis and controls genome stability [169].

5. Oncogenic Role of NEDD4 in Cancer

A surfeit of studies has found that NEDD4 exhibits a potential oncogenic role and
is frequently overexpressed in various types of cancers. For example, in an in vivo study,
it was reported that overexpression of NEDD4 enhanced the growth and metastasis of
xenograft tumors, where it was abundantly expressed in colon cancer tissues and cells [109].
Similarly, the expression of NEDD4 is higher in malignant endometrium compared to
benign. The levels of FOXM1, an oncogenic transcription factor, are positively correlated
with NEDD4 expression in endometrial cancers. In addition, NEDD4 overexpression in
endometrial cancer cells enhanced IGF-1R cell surface localization, Akt activation, and cell
proliferation [155]. In GCA, NEDD4 is overexpressed, and this is linked to tumor invasion
and metastasis, as well as survival rate in rats [126]. Moreover, overexpression of NEDD4
enhanced cell proliferation, reduced cell apoptosis, and promoted cell invasion and migra-
tion in bladder cancer cells. In addition, it lowered PTEN levels while increasing Notch-1
expression [105]. NEDD4 is a factor that mediates PTEN ubiquitination and inactivation,
and in human NSCLC, overexpression of this protein causes a rise in the ubiquitylated form
of PTEN, lowering PTEN levels and enhancing Akt activation [146]. Moreover, another
study demonstrated that NEDD4 overexpression was associated with poor clinical out-
comes in patients with HCC and that NEDD4 depletion inhibited proliferation, migration,
and invasion of Huh7 cells through the upregulation of PTEN [111]. Interestingly, it was
found that anti-tumor immunity mediated by T cells against melanoma cells is inhibited
when NEDD4 is overexpressed. Moreover, the expression of NEDD4 was shown to be
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higher in metastatic melanoma tissues and is linked with bad prognosis [192]. Thus, these
data suggest that targeting NEDD4 for cancer treatment could be a promising method.

6. Tumor-Suppressive Role of NEDD4

NEDD4 also exerts tumor suppressor properties in various malignancies. For example,
NEDD4L prevents autophagy activity under metabolic stress by destabilizing ULK1, an
autophagy protein, and ASCT2, a glutamine transporter, hence reducing mitochondrial
functioning and tumor suppression [75]. Similarly, shRNA inactivation of NEDD4 increases
HER3 levels in prostate cancer cells, increasing HER3 signaling and cancer cell growth [172].
Another study revealed that NEDD4 lowered the Myc protein synthesis and decreased
proliferation of neuroblastoma and pancreatic cancer cells by directly binding to Myc
oncoproteins and targeting them for ubiquitination and degradation [103]. Additionally,
NEDD4 deregulated the PIP5Kα-dependent PIP2 pool that promotes proliferation in BC
cells via PI3K/Akt activation [113].

7. NEDD4 Knockout Mice

Several investigations in knockout mouse models have shown the biological activities
of NEDD4. For example, an in vivo study showed decreased IGF-1 and insulin signal-
ing, delayed embryonic development, reduced growth and body weight, and neonatal
mortality in NEDD4 null mice. In addition, homozygous NEDD4 knockout in mice re-
duced mitogenic activity in embryonic fibroblasts and increased the amount of the adaptor
protein Grb10, and mislocalized the IGF-1 receptor that is usually found on the plasma
membrane. Thus, NEDD4 appears to favorably modulate IGF-1 and insulin signaling
in vivo, in part through regulating Grb10 activity [275]. Consistent with this report, another
study on NEDD4 null mutant mice delineated that NEDD4 deficiency results in perinatal
mortality and aberrant neuromuscular structure and function. This showed that NEDD4
is essential for survival throughout mammalian embryonic development [276]. Another
study showed that NEDD4 knockout in mice leads to embryonic mortality at mid-gestation,
with severe heart malformations and vascular abnormalities. Further, elevated levels of
thrombospondin-1 (Tsp-1), an angiogenesis inhibitor, were seen in knockout mouse embry-
onic fibroblasts and embryos. Interestingly, administration of aspirin (a Tsp-1 inhibitor) to
pregnant heterozygote mothers resulted in lower Tsp-1 levels and a significant reduction
in embryonic lethality. These findings show that NEDD4 is a Tsp-1 suppressor and that
elevated Tsp-1 levels in NEDD4 knockout mice might have contributed to the developmen-
tal abnormality seen in the embryos [277]. Another study reported that NEDD4 knockout
causes dendrites to become shorter and less complex, resulting in a decreased number of
functional synapses and, consequently, synaptic transmission [278]. In another study, the
conditional deletion of NEDD4L in lung epithelial cells led to chronic lung disease, which
has many of the characteristics of IPF, such as bronchiolization and progressive fibrosis,
Muc5b overexpression in honeycombing, peripheral airways, and distinctive alterations in
the lung proteome [96]. Therefore, these results indicate that complete deletion of NEDD4
is lethal.

Although NEDD4 depletion does not promote tumor development on its own, it
does cause tumor growth enhancement in Apc+/min-derived colorectal tumors, implying
that NEDD4 typically reduces intestinal Wnt signaling and colonic tumorigenesis. These
findings imply that NEDD4 inhibits colonic Wnt signaling and tumor growth, at least in
part, by inhibiting the transcription factors LEF1 and YY1 [279]. The precise role of NEDD4
in tumorigenesis must be further validated.

8. NEDD4 as a Therapeutic Target

In several studies, NEDD4 has been proven to promote tumor growth, and thus
targeting this protein for cancer treatment is a promising method. For example, in glioma
cells, curcumin, a diarylheptanoid ingredient found in Curcuma longa plants, decreased
proliferation, invasion, and migration by suppressing NEDD4 [125]. In addition, treatment
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of indole-3-carbino (I3C), a naturally occurring compound found in cruciferous vegetables,
along with knockdown of NEDD4, inhibited degradation of wild-type PTEN, causing
antiproliferation in melanoma cells [191]. Moreover, diosgenin, a saponin produced from
the Trigonellafoenum graecum plant, inhibited NEDD4 expression in prostate cancer cells,
resulting in anticancer action [268]. Further, Decitabine, a DNA methylation inhibitor,
increased migration and invasion of gastric cancer cells by increasing the expression of
NEDD4 [184]. As a result, targeting NEDD4 could be an essential therapeutic approach for
the management of human cancers.

9. Conclusions

By combining studies, it is clear that NEDD4/NEDD4-like E3 ligases are crucial to
the multistep process that causes different forms of cancer. In most cancer types, NEDD4
inhibits tumorigenesis by increasing the degradation of NEDD4 substrates which have a
crucial oncogenic role in various malignancies; however, its significance in a few cancer
types is still debated. Therefore, due to its role in tumorigenesis, NEDD4 can be a potential
target in drug discovery against various types of cancer. Because of NEDD4’s many
substrates and dual functions, treatment approaches that disrupt NEDD4’s interactions with
these substrates with no/fewer side effects might be more suitable than those that directly
target NEDD4 activity. However, further studies are required to completely understand the
relevance of NEDD4 in tumorigenesis.
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i5; PIP5Kα—phosphatidylinositol-4-phosphate 5-kinase α; PKCδ—protein kinase C δ; PMEPA1—
Prostate Transmembrane Protein, Androgen-Induced 1; PRRG4—proline-rich γ-carboxyglutamic
acid protein 4; PTEN—phosphate and tensin homologue; PTMs—post-translational modifications;
RFS—recurrence-free survival; RING—really interesting new gene; RIP—receptor-interacting pro-
tein; Robo1—Roundabout Guidance Receptor 1; SIRT2—Sirtuin 2; SMURF1/2—SMAD ubiqui-
tination regulatory factors 1 and 2; STAT3—Signal Transducer and Activator of Transcription 3;
TGF-β—transforming growth factor-β; TMEPAI—transmembrane prostate androgen-induced pro-
tein; TMZ—temozolomide; TNIP1—TNFAIP3 Interacting Protein 1; ULK1—Unc-51 like autophagy
activating kinase 1; VDAC2/3—voltage-dependent anion-selective channel protein 2/3; VEGFR2—
vascular endothelial growth factor receptor-2; VPS34—vacuolar protein sorting 34; WBP2—WW
Domain-Binding Protein 2; WBP2NL—WBP2 N-terminal-like; WWP1/2—WW Domain-Containing
E3 Ubiquitin–Protein Ligase 1/2.
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