
Comparison of Prediction Model for Cardiovascular
Autonomic Dysfunction Using Artificial Neural Network
and Logistic Regression Analysis
Zi-Hui Tang1., Juanmei Liu2., Fangfang Zeng1, Zhongtao Li1, Xiaoling Yu1, Linuo Zhou1*

1Department of Endocrinology and Metabolism, Fudan University Huashan Hospital, Shanghai, China, 2Department of Computer Science, Youzhou Vocational and

Technology Collage, Yongzhou, Hunan, China

Abstract

Background: This study aimed to develop the artificial neural network (ANN) and multivariable logistic regression (LR)
analyses for prediction modeling of cardiovascular autonomic (CA) dysfunction in the general population, and compare the
prediction models using the two approaches.

Methods and Materials: We analyzed a previous dataset based on a Chinese population sample consisting of 2,092
individuals aged 30–80 years. The prediction models were derived from an exploratory set using ANN and LR analysis, and
were tested in the validation set. Performances of these prediction models were then compared.

Results: Univariate analysis indicated that 14 risk factors showed statistically significant association with the prevalence of
CA dysfunction (P,0.05). The mean area under the receiver-operating curve was 0.758 (95% CI 0.724–0.793) for LR and
0.762 (95% CI 0.732–0.793) for ANN analysis, but noninferiority result was found (P,0.001). The similar results were found in
comparisons of sensitivity, specificity, and predictive values in the prediction models between the LR and ANN analyses.

Conclusion: The prediction models for CA dysfunction were developed using ANN and LR. ANN and LR are two effective
tools for developing prediction models based on our dataset.
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Introduction

The prevalence of cardiovascular autonomic (CA) dysfunction is

rapidly increasing worldwide, particularly in developing countries.

The disease is not only a major factor in the cardiovascular

complications of diabetes mellitus (DM) [1], but it also affects

many other major segments of the general population, such as the

elderly and patients with hypertension (PH), metabolic syndrome

(MetS), and connective tissue disorders [2–4]. CA dysfunction has

become a major health concern in China following rapid changes

in lifestyle. The prevalence of CA dysfunction in diabetic patients

was found to be 30–60% [1]. Individuals with previously

undiagnosed CA dysfunction have an unfavorable cardiovascular

risk profile, especially the risk of sudden death, indicating a higher

risk for cardiovascular disease [5]. CA function testing using HRV

is sensitive, noninvasive, and reproducible; therefore, it is easily

applicable for screening a large number of individuals in the

general population [6].

In clinical medicine, a prediction model refers to the type of

medical research study using which researchers try to identify the

best combination of medical signs, symptoms, and other findings

that may be used to predict the probability of a specific disease or

outcome [7]. These models may aid the clinician in the decision-

making process regarding clinical admission, early prevention,

early clinical diagnosis, and application of clinical therapies. Most

previous prediction models were developed using univariate or

multivariate logistic regression (LR) analysis [8,9]. An artificial

neural network (ANN) refers to a mathematical model inspired by

biological neural networks [10]. ANNs consist of an interconnect-

ed group of artificial neurons, and they process information using

a connectionist approach to computation. ANNs employ nonlin-

ear mathematical models to mimic the human brain’s own

problem-solving process, by using previously solved examples to

build a system of ‘‘neurons’’ that makes new decisions, classifica-

tions, and forecasts [11]. ANN is a complex and flexible nonlinear

system with exclusive properties consisting of robust performance

in dealing with noisy or incomplete input patterns, high fault

tolerance, and the ability to make generalizations on the basis of

the input data. ANN is often applied to model complex

relationships between inputs and outputs or to find patterns in

data. In clinical medicine, ANN models have been applied in the

diagnosis of diseases such as myocardial infarction [12]. ANN
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models have also been successfully used to predict trauma

mortality and in clinical decision-making in the management of

traumatic brain injury patients [13,14]. A previous study

compared the LR and ANN models used in the prediction of

living setting after hip fracture [15].

Thus far, no studies in literature have used ANN for modeling

CA dysfunction prevalence in the general population instead of

diabetic patients. The aim of this study was to develop prediction

models for CA dysfunction using ANN and LR. In addition, we

compare prediction models built by the two approaches. The

ANN model is at least as accurate as the LR model for the

prediction of outcomes from our dataset.

Materials and Methods

Study Population
We analyzed a previously constructed database of a CA

dysfunction survey carried out in a random sample of middle-

aged Chinese individuals. Participants were recruited from three

communities in Shanghai, China, primarily from the Baoshan

District area. Participants with undiagnosed CA dysfunction, aged

30–80 years, were included in this study. A total of 3,012 subjects

were invited to a screening visit between 2011 and 2012. Subjects

with potential confounding factors that may influence cardiac

autonomic function were excluded from the study. The exclusion

criteria were as follows: (a) history or findings of arrhythmia (i.e.,

heart block, atrial fibrillation, ventricular tachycardia), hyperthy-

roidism or hypothyroidism, and dilated or hypertrophic cardio-

myopathy; (b) pregnancy or lactation; and/or (c) a major systemic

illness such as systemic lupus erythematosus. A total of 2,092

(69.46%) participants with complete baseline data were obtained.

Written consent forms were obtained from all the patients before

the start of the study. The study protocol was approved by the

Ethics Committee of Huashan Hospital, Shanghai, China. The

subjects were interviewed to document their medical histories and

medication, history of smoking habits, laboratory assessment of

cardiovascular disease risk factors, and standardized examination

for HRV. All study subjects underwent a complete CAF

evaluation after fasting for eight hours. The evaluation included:

(a) history and physical examination, (b) heart rate and blood

pressure, (c) fasting serum glucose and insulin, and (d) fasting

plasma lipids. The body mass index was calculated as the weight in

kilograms divided by the square of the height in meters.

Systolic and diastolic blood pressure (BP) values were the means

of two measurements obtained by the physician on the left arm of

the seated participant. Fasting plasma glucose (FPG) was

quantified by the glucose oxidase procedure, and HbA1c was

measured by ion-exchange high-performance liquid chromatog-

raphy (HPLC; Bio-Rad, Hercules, CA, USA). The homeostasis

model assessment insulin resistance estimate (HOMA-IR) was

calculated as serum glucose (mmol/L) multiplied by plasma insulin

(mU/mL) divided by 22.5, and the serum total cholesterol (TC),

high-density lipoprotein (HDL) cholesterol, triglyceride (TG)

levels, creatinine (Cr), and uric acid (UA) levels were measured

enzymatically with a chemical analyzer (Hitachi 7600-020, Tokyo,

Japan). Low-density lipoprotein (LDL)-cholesterol levels were

calculated using the Friedewald formula, and the creatinine

clearance rate (Ccr) was calculated using the Cockcroft-Gault

formula. The day-to-day and inter-assay coefficients of variation at

the central laboratory in our hospital for all analyses were between

1% and 3%. Short-term HRV test was applied to evaluate CA

function. HRV was measured non-invasively by power spectral

analysis. Subjects were studied while awake and in the supine

position after 20 minutes of rest. Testing times were from 8:00 AM

to 11:00 AM, and 1:30 PM to 4:30 PM. A type-I FDP-1 HRV

BRS non-invasive detection system was used (version 2.0;

Department of Biomedical Engineering, Fudan University,

Shanghai, China). Electrocardiography and respiratory signals

and beat-to-beat blood pressure were continually and simulta-

neously recorded for 15 minutes by using an electrosphygmograph

transducer (HMX-3C) placed on the radial artery of the dominant

arm and an instrument respiration sensor. Short-term HRV

analysis was performed for all the subjects using a computer-aided

examination and evaluation system for spectral analysis to

investigate changes in autonomic regulation.

Definition
PH was defined as blood pressure $140/90 mmHg or history

of anti-hypertensive medication. BMI was classified on the basis of

Chinese criteria: normal, ,24.0 kg/m2; overweight, $24.0 kg/

m2,28.0 kg/m2; obese, BMI #28.0 kg/m2. Fasting plasma

glucose (FPG) levels $5.6 mmol/L were considered high. Central

obesity was defined using ethnicity-specific values: waist circum-

ference (WC) $90 cm in men or $80 cm in women [16]. Serum

triglyceride (TG) levels $1.7 mmol/L were considered high.

Serum high-density lipoprotein-cholesterol (HDL-C) levels

,0.9 mmol/L in men or ,1.0 mmol/L in women were

considered low. Diabetes was diagnosed by the oral glucose

tolerance test (OGTT) and determined by either HbAlc $6.5% or

the use of insulin or hypoglycemic medications. Individuals

meeting three or more of the updated National Cholesterol

Education Program/Adult Treatment Panel III criteria (WHO

Western Pacific Region obesity criteria) were diagnosed as having

MetS [16]. CAN was diagnosed on the basis of at least two

abnormal cardiovascular autonomic reflex test results [1].

Statistical Analysis
The Kolmogorov-Smirnov test was used to determine whether

continuous variables followed a normal distribution. Variables that

were not normally distributed were log-transformed to approxi-

mate normal distribution for analysis. The results are expressed as

means 6 standard deviation or medians, unless otherwise stated.

The subject characteristics according to MetS severity scores were

assessed using one-way analysis of variance (ANOVA) for

continuous variables and the x2 test for categorical variables.

Potential CA dysfunction risk factors, which are known clinically

and in literature to be associated with CA dysfunction, were

selected for the evaluation. These factors included age (sorted into

three age groups: #50, 51–60, and .60 years), gender, BMI,

abdominal obesity (WC $90 or $80 cm in men and women

respectively), current smokers (yes/no), resting heart rate (HR;

categorized into four groups: #70, 71–80, 81–90, and .90 beats/

min), diabetes, hypertension, blood glucose profile, lipid profile,

and renal profile. Univariate analyses were performed to estimate

the significant predictors of CA dysfunction.

Multivariate Logistic Regression Models
A computerized random number generator was used to select

three-fourths of the patients to make up the exploratory set to

develop prediction models. The remaining one-fourth of the

patients comprised the validation set. These steps were repeated 5

times in order to generate five pairs of exploratory and validation

sets which were saved for further processing by LR and ANN.

Multiple LR analysis was used to compute the b coefficients for

known risk factors for CA dysfunction. To develop a good-fit

model, all significant variables derived from univariate analysis

were entered into the model. Variables significant at 5% were

included in the multiple LR using stepwise backward elimination,

ANN and LR Analysis for CA Dysfunction
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with CA dysfunction as the dependent variable. The independent

continuous variables of age and resting HR were categorized. A P

value of #0.05 was considered significant. A prediction model was

developed using the probability value calculated from summary

score assigned to final variables based on its regression coefficient.

The probability value was calculated for each participant. The

performance of the prediction model developed in this study was

evaluated in the validation set.

Artificial Neural Network Models
The ANN applied in this study was a standard feed-forward,

back-propagation (BP) neural network with three layers consisting

of an input layer, a hidden layer, and an output layer. The input

layer contained 14 input neurons, the hidden layer contained 18

neurons, and the output layer contained 1 output neuron

(Figure 1). The number of hidden layer neurons was determined

through trial and error, since no accepted theory currently exists

for predetermining the optimal number of hidden layer neurons

[17]. The number of hidden layer neurons was selected to lead to a

predictive network with the best sensitivity and specificity. The

training datasets were the same as the exploratory sets used in the

LR model. During the training, the learning rate (applies a greater

or lesser portion of the respective adjustment to the old weight)

and momentum for network training (basically allows a change to

the weights to persist for a number of adjustment cycles) were set

to 0.20 and 0.9, respectively. To obtain the connection weights,

the network first underwent a training process using the BP of

error method, which employs the generalized delta learning rule.

This is an iterative process by which input derivation sets are used

to the ANN, and outputs are calculated. The output is then

compared to the desired output, and the connection weights are

adjusted based on the error in output. A validation dataset was

developed to avoid an over-fitting ANN model. In general, one-

fourth of the patients were randomly selected from the exploratory

set. The training was run until a minimum average square error

(MSE) of ,0.001 or an increasing MSE was found in the

validation dataset. The performance of the prediction model was

evaluated in testing datasets. The testing datasets were the same as

the validation sets used in the LR model.

Model Comparison
Discrimination and calibration were both measured. Discrim-

ination refers to the ability of a model to distinguish between

individuals with and without CA dysfunction. The discriminatory

power of the models was analyzed using a receiver-operating

characteristic (ROC) curve and area under the curve (AUC). ROC

curves were constructed by plotting true positives versus the false

positive fraction. Sensitivity (the probability of a positive test given

the individual has the disease), specificity (the probability of a

negative test given the individual does not have the disease),

positive predictive value (the probability of having the disease

given a positive test), and the negative predictive value (the

probability of not having the disease given a negative test) were

calculated for each cutoff score. The cutoff score that gave the

maximum sum of sensitivity and specificity was considered

optimum [18]. Calibration refers to how accurately the models

predicted over the entire range. The calibration of models was

computed using the Hosmer-Lemeshow (HL) test, which is a single

summary measure of the calibration and is based on comparing

the observed and estimated prevalence of disease grouped by

estimated prevalence [19]. The HL statistic follows a x2

distribution, with degrees of freedom equal to two less than the

number of groups. The overall accuracy (ratio of summary of the

number of true positive and true negative results to the total

sample size) of the prediction model was calculated by comparing

the predicted values with the actual events.

All parameters of discrimination were evaluated in the five

validation sets. Prediction models from LR and ANN based on

AUC were compared. The mean the AUC, sensitivity, specificity,

and predictive values were calculated and compared with non-

inferiority tests. Odds ratios (OR) with 95% confidence intervals

(CI) were calculated for the relative risk of predictors with

outcome. Results were analyzed using the Statistical Package for

Social Sciences for Windows version 16.0 (SPSS; Chicago, IL,

USA). The BP ANN models were developed using Matlab 7.0. A P

value of ,0.05 was considered significant.

Results

The baseline clinical characteristics of the 2092 subjects were

listed in Table 1. The entire sample included 705 men and 1387

women (mean age, 60.4268.68 years; Table 1), of which 387

(18.51%) were found to have CA dysfunction. The mean BMI and

WC were 24.21 kg/m2 and 85.07 cm, respectively. The HRV

components decreased with age (data not shown). The HR of

individuals with CA dysfunction was very significantly higher than

that of individuals without CA dysfunction (P,0.001). Except for

LF/HF, most HRV parameters were lower in individuals with CA

dysfunction than in those without CA dysfunction (P,0.01 for all).

The majority of subjects were not affected heart failure (99.07%),

and the prevalence of PH, DM, and MetS in the entire sample was

46.65, 21.33, and 39.82%, respectively. The baseline character-

istics were similar between the exploratory and validation sets

(p,0.05 for all).

Figure 1. Artificial neural network model showing input
variables (nodes), hidden nodes, and connection weights with
output node for data on CA dysfunction. The ANN model
including 14 input nodes, 18 hidden nodes and 1 output node. Data
from a total of 2077 patients had been used to ANN analysis. BMI- Body
mass index, WC-waist circumference, SBP- systolic blood pressure, DBP-
diastolic blood pressure, FPG- fasting plasma glucose, PBG- plasma
blood glucose, IR-insulin resistance, TG- triglyceride, UA- uric acid, HR-
heart rate, PH- Hypertension, DM- Diabetes, PHD- Hypertension
duration, DMD- Diabetes duration.
doi:10.1371/journal.pone.0070571.g001
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Univariate Logistic Regression Analysis
To estimate the potential risk factors of CA dysfunction,

univariate LR analysis was performed in the entire sample,

including the demographic parameters, blood glucose, and insulin

function parameters; lipid profiles; and medical history factors.

The result indicated that 14 potential risk factors–age, HR, BMI,

WC, SBP, DBP, FPG, PBG, IR, TG, DM and its duration, and

PH and its duration–were significantly associated with CA

dysfunction (P,0.05 for all parameters; Table 2).

Multiple Logistic Regression Model
In the multivariate regression model, all these significant

variables developed from the univariate analysis and variables

with clinical significance were used after stepwise backward

elimination of the non-significant variables to obtain the final

multivariate regression models, which included seven risk factors

of age (odds ratio [OR] ranging from 1.41 to 1.58, P,0.001 for

all; Table 3), HR (OR ranging from 2.30 to 2.51, P,0.001 for all),

PH (OR 1.39, P = 0.026 for model 1), PH duration (OR ranging

from 1.21 to 1.26, P,0.05 for respective models), FINS (OR

ranging from 0.28 to 0.36, P,0.05 for respective models), IR (OR

Table 1. Baseline characteristics of subject.

Variables
Individuals without CA
dysfunction

Individuals with CA
dysfunction Entire sample P value*

N 1705 387 2092

Age 59.8568.64 62.9468.43 60.4268.68 ,0.001

Gender male,% 562 (32.96%) 143 (36.95%) 705 (33.7%) 0.134

Height cm 161.4667.78 161.4567.83 161.4667.79 0.987

Weight kg 62.9610.47 64.85611.09 63.26610.61 0.001

BMI kg/m2 24.0763.26 24.8463.69 24.2163.36 ,0.001

WC cm 84.4869.54 87.6869.93 85.0769.70 ,0.001

SBP mmHg 126.41618.14 132.95620.02 127.62618.68 ,0.001

DBP mmHg 79.5069.61 81.2869.93 79.8369.69 0.001

Laboratory assays

FPG mmol/L 5.461.57 6.1262.53 5.5361.81 ,0.001

PBG mmol/L 7.3663.22 9.0364.53 7.6763.56 ,0.001

FINS IU/L 6.7468.01 9.17621.66 7.19611.82 ,0.001

IR 1.6462.12 2.5466.21 1.8163.3 ,0.001

TC mmol/L 5.3160.98 5.3961.05 5.3261 0.142

TG mmol/L 1.6760.92 1.961.17 1.7160.98 ,0.001

HDL mmol/L 1.3660.33 1.3460.32 1.3660.32 0.203

LDL mmol/L 3.1860.76 3.2360.8 3.1960.77 0.229

SCr mmol/L 77.65626.89 78.51621.93 77.81626.04 0.561

Ccr 82.17630.42 81.31632.65 82.01630.84 0.624

UA mmol/L 280.13683.25 285.97686.04 281.21683.79 0.216

HRV measurement

HR beats/min 70.7769.08 79.7611.26 72.42610.13 ,0.001

TP ms2 1000.636693.2 315.876410.75 873.956702.47 ,0.001

LF ms2 224.346215.08 43.97657.29 190.986207.88 ,0.001

LF nu 22.54610.6 15.9769.19 21.33610.66 ,0.001

HF ms2 215.116229.61 41.82659.63 183.056219.43 ,0.001

HF nu 21.49612.94 17.06613.98 20.67613.25 ,0.001

LF/HF 1.5561.48 2.3763.32 1.761.98 ,0.001

Medical history

Smoking yes,% 244 (14.31%) 62 (16.02%) 306 (14.63%) 0.390

PH yes,% 735 (43.11%) 241 (62.27%) 976 (46.65%) ,0.001

DM yes,% 307 (18.02%) 139 (35.92%) 446 (21.33%) ,0.001

MetS yes,% 629 (36.89%) 204 (52.71%) 833 (39.82%) ,0.001

Note: * present difference of baseline characteristics between individuals with and without CA dysfunction. BMI- Body mass index, WC-waist circumference, SBP- systolic
blood pressure, DBP- diastolic blood pressure, FPG- fasting plasma glucose, PBG- plasma blood glucose, FINS- fasting blood insulin, IR-insulin resistance, TC- serum total
cholesterol, TG- triglyceride, UA- uric acid, HDL- high-density lipoprotein cholesterol, LDL- low density lipoprotein cholesterol, SCr- serum creatinine, Ccr- creatinine
clearance rate, HR-heart rate, TP-total power of variance, LF-low frequency, HF-high frequency, MetS- metabolic syndrome, PH- Hypertension, DM- Diabetes. FPG and
DM duration had 5 missing data, respectively. TG and PBG had 2 missing data, respectively. PH duration has 1 missing data.
doi:10.1371/journal.pone.0070571.t001
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ranging from 3.03 to 3.90, P,0.001 for all), or WC (OR ranging

from 2.30 to 4.42, P,0.001 for all). Plausible interactions were

tested but none of these were significant (data not shown). CA

dysfunction was more or less likely with increasing age, HR, PH,

IR and WC. Converse tendency of outcome with increasing FINS

was found. Five final LR models were developed. All the final

models included four common risk factors, namely, age, HR,

FINS, and IR. The PH duration was included in five models

except for model 1, while the WC was involved in all models

except for model 2.

The area under ROC curve ranged from 0.729–0.790 (Table 4).

At the respective optimal cutoff points, when applied to the

validation sets, the sensitivity and specificity of the LR models were

68.2–84.9% and 60.2–75.3%, respectively. The positive predictive

value ranged from 29.2–38.1% and the negative predictive value

ranged from 90.7–94.8%.

Artificial Neural Network Model
A total of 15 individuals with 14 risk factors developed from

univariate analysis had missing data, so that 2077 individuals were

available to form the dataset for development of the artificial

neural network prediction model. The same exploratory and

validation sets used for the multiple LR analysis were applied for

the artificial neural network model, and a total of five ANN models

were developed. Every trained ANN included 14 input nodes, 18

layer nodes, and 1 output node (Figure 1). For training ANN, 101–

112 echoes were performed and the MSE ranged from 0.12–0.13.

The area under ROC curve ranged from 0.738–0.791 (Table 4).

At the respective optimal cutoff points, when applied to the

validation sets, the sensitivity and specificity of the ANN models

were 67.7–82.1% and 64.7–70.4%, respectively. The positive and

negative predictive values ranged from 30.1–37.3% and 89.8–

94.0%, respectively.

Comparison between the Two Models
The diagnostic accuracies of the LR and ANN models are

compared in Table 4. Prediction models from LR and ANN based

on AUC was similar (P.0.05 for all, data not shown). The mean

AUC was 0.758 and 0.762 for the LR and ANN models, and the

parameter from ANN model was no inferior to LR one (P,0.001;

Table 5). The LR models had a mean sensitivity and specificity of

75.0% and 66.2%, respectively. The mean sensitivity and

specificity of the ANN models were 75.1% and 66.7%, respec-

tively. These parameters from ANN model were not inferiority to

LR ones (P,0.05 for all, Table 5). Similar results were found

between the mean PPV and NPV. The 95% CI widths were

narrow in parameters of performance of the ANN model than in

Table 2. Univariate analysis for CA dysfunction.

Variables N B P value OR (95% CI)

Age 2092 0.428 ,0.001 1.53 (1.35–1.75)

HR 2092 0.859 ,0.001 2.36 (2.09–2.67)

BMI 2092 0.273 0.001 1.31 (1.13–1.53)

WC 2092 0.510 ,0.001 1.67 (1.3–2.14)

SBP 2092 0.018 ,0.001 1.02 (1.01–1.02)

DBP 2092 0.019 0.001 1.02 (1.01–1.03)

FPG 2087 0.450 ,0.001 1.57 (1.39–1.78)

PBG 2090 0.475 ,0.001 1.61 (1.41–1.83)

IR 2087 0.279 ,0.001 1.32 (1.20–1.46)

TG 2090 0.336 0.003 1.40 (1.12–1.75)

DM 2092 0.936 ,0.001 2.55 (2.00–3.25)

DM duration 2087 0.412 ,0.001 1.51 (1.30–1.76)

PH 2092 0.779 ,0.001 2.18 (1.74–2.73)

PH duration 2091 0.356 ,0.001 1.43 (1.28–1.59)

Note: HR-heart rate, BMI-body mass index, WC-waist circumference, SBP-systolic
blood pressure, DBP-diastolic blood pressure, FPG- fasting plasma glucose, PBG-
plasma blood glucose, IR-insulin resistance, TG- triglyceride, PH- Hypertension,
DM- Diabetes.
doi:10.1371/journal.pone.0070571.t002

Table 3. Final models using Multivariate logistic linear
analysis for CA dysfunction.

Models Variables b P value OR (95% CI)

Model1 Age 0.35 ,0.001 1.41 (1.20–1.67)

HR 0.90 ,0.001 2.47 (2.14–2.85)

PH 0.33 0.0260 1.39 (1.04–1.86)

lnWC 1.40 0.0410 4.06 (1.06–15.51)

lnFINS –1.08 ,0.001 0.34 (0.20–0.58)

lnIR 1.14 ,0.001 3.12 (1.90–5.14)

Constant –7.88 0.0100

Model2 Age 0.41 ,0.001 1.50 (1.27–1.77)

HR 0.90 ,0.001 2.47 (2.14–2.85)

PHD 0.23 0.0010 1.26 (1.10–1.44)

lnWC 1.41 0.0370 4.11 (1.09–15.49)

lnFINS –1.02 ,0.001 0.36 (0.21–0.63)

lnIR 1.11 ,0.001 3.03 (1.83–5.00)

Constant –8.04 0.0080

Model3 Age 0.46 ,0.001 1.58 (1.34–1.87)

HR 0.92 ,0.001 2.51 (2.17–2.91)

PHD 0.23 0.0010 1.26 (1.11–1.45)

lnFINS –1.19 ,0.001 0.30 (0.18–0.51)

lnIR 1.30 ,0.001 3.68 (2.29–5.92)

Constant –1.63 ,0.001

Model4 Age 0.35 ,0.001 1.42 (1.21–1.67)

HR 0.83 ,0.001 2.30 (1.99–2.66)

PHD 0.19 0.0050 1.21 (1.06–1.39)

lnWC 1.49 0.0260 4.42 (1.2–16.25)

lnFINS –1.18 ,0.001 0.31 (0.18–0.53)

lnIR 1.29 ,0.001 3.62 (2.21–5.93)

Constant –7.99 0.0070

Model5 Age 0.43 ,0.001 1.53 (1.3–1.81)

HR 0.85 ,0.001 2.33 (2.02–2.7)

PHD 0.21 0.0020 1.24 (1.08–1.42)

lnWC 0.83 ,0.001 2.30 (1.99–2.66)

lnFINS –1.27 ,0.001 0.28 (0.16–0.49)

lnIR 1.36 ,0.001 3.90 (2.37–6.41)

Constant –1.33 0.0030

Note: HR-heart rate, PH- hypertension, PHD- hypertension duration, WC-waist
circumference, FINS-fasting blood insulin, IR-insulin resistance. DM duration had
5 missing data, respectively. PH duration has 1 missing data.
doi:10.1371/journal.pone.0070571.t003
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the LR model. The HL statistics of the prediction model using LR

and ANN analysis were ,15.0, indicating that these prediction

models showed good fit. The mean values of accuracy were 0.670

and 0.681 for prediction models developed using the LR and ANN

approaches, respectively, and non-inferiority result was found

(P,0.001, Table 5).

Discussion

We conducted a study to develop and compare prediction

models developed using LR and ANN analyses based on a dataset

obtained from a large-scale population-based cross-sectional study.

The database consisted of 2,092 participants from the Chinese

population. The average age of the total sample was .60 years.

The prevalence of CA dysfunction in the general population was

18.51%. The participants were a good representative sample

across the country, and the prediction model developed in this

study might work well even outside the studied areas in China.

The prediction model was developed in the exploratory set and

was tested in the validation set, and the performance of the

developed model was compared between the sets.

Currently, LR and ANN are the most widely used models in

biomedicine [8,14,19]. LR can generate excellent models and can

serve as a commonly accepted statistical tool. Its popularity may be

attributed to the interpretability of model parameters and its ease

of use. The LR model uses linear combinations of variables, so it is

not adept at modeling grossly nonlinear complex interactions, as

demonstrated in previous studies on biological and complex

epidemiological systems [11]. ANNs are flexible nonlinear systems,

and therefore they may be better suited than LR-based models to

predict outcomes when the relationships between the variables are

complex, multidimensional, and nonlinear, such as those encoun-

tered in complex biological systems [10].

The advantages and disadvantages of both the models can be

classified according to the following criteria [20]. First, develop-

ment of an ANN model would require less domain knowledge

than that required to develop an LR model. ANNs are ideally

suited to modeling complex or unclear relationships since no prior

Table 4. Prediction models using multiple logistic regression and artificial neural network.

Model AUC (95% CI) Cutoff point Sensitivity Specificity Yuden Index PPV NPV
HL
statistics Accuracy

Multiple Logistic Regression

Model1 0.732 (0.670–0.793) 0.224 0.682 0.677 0.359 0.317 0.907 6.723 0.692

Model2 0.760 (0.698–0.822) 0.215 0.694 0.753 0.447 0.381 0.918 6.550 0.687

Model3 0.729 (0.670–0.787) 0.146 0.736 0.609 0.345 0.292 0.913 10.25 0.616

Model4 0.781 (0.722–0.841) 0.139 0.849 0.602 0.451 0.319 0.948 12.834 0.698

Model5 0.790 (0.737–0.844) 0.152 0.788 0.668 0.456 0.343 0.935 9.867 0.657

Artificial Neural Network

Model1 0.738 (0.667–0.788) 0.234 0.694 0.694 0.388 0.332 0.912 14.64 0.695

Model2 0.763 (0.704–0.821) 0.229 0.789 0.663 0.452 0.339 0.935 8.143 0.685

Model3 0.737 (0.657–0.777) 0.216 0.677 0.647 0.324 0.301 0.898 8.421 0.651

Model4 0.783 (0.726–0.840) 0.227 0.777 0.704 0.481 0.373 0.932 7.424 0.714

Model5 0.789 (0.715–0.827) 0.175 0.821 0.618 0.439 0.321 0.940 7.196 0.661

Note: AUC-Area under the receiver-operating curve, PPV= positive predictive value; NPV= negative predictive value. Data from a total of 2092 patients had been used
to MLR analysis. Data from a total of 2077 patients had been used to ANN analysis.
doi:10.1371/journal.pone.0070571.t004

Table 5. Comparisons between models from Multiple logistic regression and Artificial neural network analysis.

Parameters Multiple logistic regression model Artificial neural network model P value

Mean 6 SD 95% CI Mean 6 SD 95% CI

AUC 0.75860.028 0.724–0.793 0.76260.025 0.732–0.793 ,0.001

Cut point 0.17560.041 0.139–0.211 0.21660.024 0.187–0.246 0.007

Sensitivity 0.75060.069 0.664–0.836 0.75160.065 0.667–0.828 0.014

Specificity 0.66260.061 0.586–0.738 0.66560.035 0.622–0.709 0.006

Yuden Index 0.41260.055 0.344–0.480 0.41360.063 0.334–0.491 0.045

PPV 0.33060.034 0.289–0.372 0.33060.026 0.298–0.361 0.016

NPV 0.92460.017 0.903–0.945 0.92460.018 0.902–0.945 ,0.001

HL statistics 9.24562.641 5.966–12.524 9.16563.103 5.313–13.017 0.246

Accuracy 0.67060.0340 0.628–0.712 0.68160.026 0.650–0.713 ,0.001

Note: Comparison analysis to parameters of LR and ANN models used noninferiority tests; the null hypothesis was parameters of ANN model were inferior to parameters
of LR model (as reference). AUC-Area under the receiver-operating curve, PPV= positive predictive value; NPV= negative predictive value.
doi:10.1371/journal.pone.0070571.t005
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knowledge of the underlying data is required, while the LR model

can incorporate complex relationships only if they are explicitly

identified. ANNs therefore can model any implicit interactions

among input variables commonly encountered in medical data,

while LR models are limited as they usually consider only up to

two-way interactions. LR models are, in general, less prone to

overfitting than ANNs, due to the presence of simpler relationships

between the outcome and predictor variables in the former.

Development of an LR model requires less computation time than

an ANN model. LR models have a distinct advantage over ANNs

in existing models developed by other researchers. It is easier to

generate confidence intervals in LR models to perform area

estimates of risk. LR models have better clinical or real-life

inferences than ANNs. ANN parameters do not carry any real-life

interpretation; therefore, these models are commonly called black

boxes. Varying performance results for LR models versus ANNs

have been reported.

Each model has its advantages, and the selection of a model

should be based on these advantages and the intended purpose of

the study. ANNs would be particularly useful when there are

implicit interactions and complex relationships in the data,

whereas LR models would be a better choice when statistical

inferences have to be drawn from the output. In clinical practice,

neither model can replace the other, but the two may be used

complementarily to aid in decision making. Both models have the

potential to help physicians with respect to understanding CA

dysfunction risk factors and diagnosis.

The important finding of this study was that the prediction

models developed using LR and ANN analyses have high value in

predicting CA dysfunction in the general population. The mean

AUCs were 0.758 and 0.762 for LR and ANN analysis,

respectively. The mean sensitivity of both the models was

.75%. Furthermore, the mean specificity of the two models was

.65%. These models were good-fit models based on the large-

scale dataset. These findings support that both class models have

high predictive value and can be applied to clinical decision

making. In this study, prediction models developed using LR and

ANN approaches yielded similar performance results. The mean

AUCs for LR and ANN analysis showed no significant difference

(P = 0.812). The mean sensitivity, specificity, and positive and

negative predictive values also showed no significant difference

between the two types of models (P.0.05 for all). The parameters

of calibration were also similar. These findings support the fact

that the predictive ability of the ANN model was comparable to

that of the LR model.

These findings should be reproducible in other populations.

This and similar models may emerge to be of considerable

practical value in patient triage. Suitable ANN software should be

designed for clinical practice. LR analysis remains to be the clear

choice when the primary goal of model development is to examine

possible causal relationships among variables. However, building

an ANN or another hybrid technique that incorporates the best

features of both the LR and ANN models might result in the

development of the ideal prediction model for CA dysfunction.

This study has several limitations. First, the dataset was based

on a cross-sectional study and could have been biased by selection.

Thus, the temporal sequence between risk factors and outcome

was questionable. Second, participants were recruited from

Shanghai and external validation was not performed. Therefore,

further investigation is required to determine the generalizability

of our prediction model. Third, the association between HbAlc

was not analyzed in the present study, because data on HbAlc

levels were unavailable. Finally, it is important to mention that our

study was performed on the Chinese population, and our findings

may not be relevant to people of other ethnicities.

In conclusion, this study developed and compared models for

the prediction of CA dysfunction in a general Chinese population

by using a cross-sectional dataset that was applied to LR and ANN

analyses. The predictive ability of the ANN model was comparable

to that of the LR model in our dataset. It is necessary to validate

the performance of prediction models in an external validation set.

A larger and more complete database may be used to further

clarify the differences between the ANN and LR models in terms

of prediction of the clinical outcome following CA dysfunction.
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