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Abstract. The objective of this study was to assess the impact of different strategies for delivering supplemental zinc
on fecal myeloperoxidase (MPO), neopterin (NEO), and calprotectin (CAL) among young Laotian children. In a double-
blindcontrolled trial, childrenaged6–23monthswere randomized to receive either daily preventive zinc (PZ) tablets (7mg/
day), daily micronutrient powder (MNP; containing 10 mg zinc and 14 other micronutrients), therapeutic zinc (TZ) sup-
plements for diarrhea treatment (20 mg/day for 10 days), or daily placebo powder and followed for ∼36 weeks. Stool
samples were collected at baseline and endline. Fecal MPO, NEO, and CAL concentrations were determined in a
randomly selected subsample of 720 children using commercially available ELISA kits. At baseline, the mean age was
14.1 ± 4.9months and prevalence of stuntingwas 39%. The endline prevalence of stuntingwas 43%; therewas nooverall
treatment effect on physical growth in the parent trial. At endline, the mean (95% CI) MPO in the PZ group was 1,590
[1,396; 1,811] ng/mL and did not differ from that in theMNP (1,633 [1,434; 1,859] ng/mL), TZ (1,749 [1,535; 1,992] ng/mL),
and control (1,612 [1,415; 1,836] ng/mL) groups (P = 0.749). Similarly, there was no overall treatment effect on NEO and
CAL concentrations (P = 0.226 and 0.229, respectively). In this population, the provision of PZ or TZ supplements orMNP
hadno impact ongrowthor environmental enteric dysfunction (EED) asassessedby fecalMPO,NEO,andCAL.Additional
research is needed to better understand the etiology and proposed mechanisms of EED pathogenesis.

INTRODUCTION

Linear growth faltering (stunting) is a major public health
concern affecting millions of children younger than 5 years in
low- and middle-income countries (LMICs).1 Stunting is diffi-
cult to reverse beyond the first 1,000 days after conception
and has lifelong consequences on health and development.2

Its pathogenesis is poorly understood and is postulated to be
multifactorial, likely involving inadequate intrauterine and
postnatal nutrition, recurrent infections, and poor environ-
mental conditions.3–5 In the past years, nutrition-specific and
infection control interventions aimed at reducing stunting
have yielded moderate to no benefits on growth faltering.6,7

Environmental enteric dysfunction (EED), originally termed
tropical enteropathy,8 is an acquired subclinical inflammation
of the small bowel mucosa characterized by villous atrophy,
altered barrier integrity, and enteric immune cell proliferation,
leading to reduced nutrient absorption and increased in-
testinal permeability.9–13 The specific cause of EED remains
unknown, but it has been postulated that EED develops as the
result of chronic exposure to enteropathogens caused by
regular fecal–oral contamination.14–17 Environmental enteric
dysfunction is reported to be endemic among infants and
children living in LMICs. Thus, it may play a potential role in
linear growth faltering,18,19 and its severity has been found to
be inversely associated with linear growth.20–23

Intestinal biopsy via endoscopy is considered the gold
standard for the assessment of EED.24 However, this pro-
cedure is invasive, expensive, requires a high level of exper-
tise, and onlymeasures pathological changes. Over the years,
EED has been assessed using a wide range of noninvasive

biomarkers measured in urine, blood, or stool. These bio-
markers have been investigated and tested for their hypoth-
esized functions of intestinal absorption and mucosal
permeability, enterocyte mass and function, intestinal and
systemic inflammation, microbial translocation, and immune
activation.4,10,25 Fecalmarkers have emerged as a newmeans
of characterizing EED and classifying its severity and include
myeloperoxidase (MPO), neopterin (NEO), and calprotectin
(CAL). Myeloperoxidase is a specific enzyme of neutrophil
activity in the intestinal mucosa26; NEO is produced by mac-
rophages or dendritic cells on stimulation by interferon
gamma released during pro-inflammatory responses by
Th1 lymphocytes27; and CAL is a calcium- and zinc-binding
protein that inhibitsmetalloproteinase and is themajor protein
found in monocytes and macrophages.28 To the best of our
knowledge, these fecal biomarkers of EED have not been
compared with endoscopic findings in young children be-
cause intestinal biopsy is technically and ethically not feasible
in young children. These biomarkers do not correspond to an
increased intestinal permeability but instead are indicative of
intestinal inflammation, and NEO is also a biomarker of mi-
crobial translocation and immune activation.9,19 It is important
to note that there are no specific cutoffs for these biomarkers.
Zinc is involved in numerous metabolic processes as a

catalyst, a regulatory ion, or structural element of proteins,29

and deficiency in young children has been associated with
both linear growth failure1 and EED.30 In infants and young
children in LMICs, preventive zinc (PZ) supplementation has
been shown to increase linear and ponderal growth and re-
duce the incidence of diarrhea.31,32 In addition, the WHO has
recommended therapeutic zinc (TZ) supplementation along
with oral rehydration therapy during episodes of diarrhea, and
this strategy has been shown to reduce the duration and se-
verity of the disease.33,34 These beneficial impacts of PZ and
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TZ supplementation on growth and diarrhea are postulated to
be partially mediated through an increase in villous height and
intestinal absorptive capacity.35

It is well established that children who are deficient in one
micronutrient are often at risk for other deficiencies. Thus,
supplementation with multiple micronutrients such as micro-
nutrient powders (MNPs) is a preferred approach to improve
young children’s nutrition and health. Worldwide, a consid-
erable number of MNP intervention studies have been con-
ducted in different settings, and their efficacy in the prevention
of iron deficiency and anemia has been demonstrated.36,37

However, the beneficial impact observed with PZ supple-
mentation on growth and diarrhea has not beendemonstrated
with MNPs. Moreover, a recent meta-analysis of MNPs found
an increase in diarrhea incidence in children receiving MNPs
compared with controls,37 which was assumed to be due to
potentially adverse effects of iron. Only a few randomized
controlled trials have assessed the impact of zinc or MNP
supplementation on indicators of EED, and results from these
studies were inconsistent. In these studies, EED has been
measured either by the lactulose-to-mannitol (L:M) ratio, a
dual sugar absorption test,35,38,39 CAL,40,41 or confocal laser
endomicroscopy and mechanistic target of rapamycin com-
plex 1 nutrient responsiveness.42

In light of the previously described lack of a beneficial impact
of standard MNP formulations on zinc-related functional out-
comes and concerns of potential adverse effects of MNPs, we
usedanewMNPformulationcontainingahigher amountof zinc
(10 mg) and a lower amount of iron (6 mg).43 We hypothesized
that zinc supplementation,providedaloneoraspartof thehigh-
zinc low-iron–containing MNP, will improve EED as measured
by fecal MPO, NEO, and CAL. Thus, our primary objective was
to assess the impact of different strategies for delivering sup-
plemental zinc on MPO, NEO, and CAL. As secondary objec-
tives, we first assessed whether baseline MPO, CAL, and NEO
modified the intervention impact on growth outcomes; second,
we explored associations between baseline MPO, CAL, and
NEO and subsequent linear growth; and third, we examined
baseline and endline associations between these EED bio-
markers and concurrent growth indicators.

MATERIALS AND METHODS

Study design and population. The Lao Zinc Study was a
community-based randomized, double-blind, placebo-
controlled trial, implemented from September 2015 until
April 2017 in rural communities in Khammouane Province,
central Lao People’s Democratic Republic (Lao PDR). The
study protocol and the consent procedure were approved by
the National Ethics Committee for Health Research, Ministry
of Health, Lao PDR, and the Institutional Review Board of the
University of California, Davis (UC Davis). This trial is regis-
tered at https://clinicaltrials.gov (NCT02428647).
The primary objective of the Lao Zinc Study was to de-

termine the impact of two forms of daily preventive supple-
mentation (zinc tablets and MNP) versus TZ supplementation
for diarrhea on young children’s physical growth and other
health outcomes. Details of the studyprotocol havepreviously
beenpublished elsewhere.43 Briefly, childrenwere considered
eligible to participate if they were aged 6–23 months, their
families accepted weekly home visits, planned residency
within the catchment area for the duration of the study, and

one of the child’s primary caregivers (mother, father, or legal
guardian) provided a written informed consent (documented
by either a signature or a fingerprint in thepresenceof a neutral
witness). Children were ineligible to participate if one of the
following criteria was present: severe anemia (Hb < 70 g/L),
weight-for-length z-score (WLZ) < −3SD with respect to WHO
2006 growth standards,44 presence of bipedal edema, severe
illness warranting hospital referral, congenital abnormalities
potentially interfering with growth, chronic medical condition
(e.g., malignancy) requiring frequentmedical attention, known
HIV infection of the index child or the child’s mother, current
consumption of zinc supplements, or current participation in
another clinical trial.
Randomization and intervention products. For the parent

trial, a total of 3,433 children were enrolled and randomized
into one of four intervention groups using a block randomi-
zation scheme, with block lengths of 4 or 8, generated by aUC
Davis statistician. If multiple eligible siblings resided in the
same household, only the youngest was enrolled. In the case
of twins, both twins were enrolled and assigned to the same
group, but only onewas selected randomly for inclusion in the
data analyses.
Eligible children were individually randomized either to 1) the

PZ group, receiving 7 mg of a daily preventive dispersible zinc
supplement plus a placebo therapeutic tablet for diarrhea; or 2)
the MNP group, receiving a daily preventive MNP containing
10 mg zinc and 14 other micronutrients plus a placebo thera-
peutic tablet for diarrhea; or 3) the TZ group, receiving a daily
preventive placebo tablet plus 20 mg of TZ for diarrhea for
10 days; or 4) the control group, receiving a daily placebo
powder plus a therapeutic placebo tablet for diarrhea. As
mentioned earlier, the tested MNP formulation contained a
higher amountof zinc (10mgzincaszincgluconate) anda lower
amount of iron (6 mg iron as ferrous fumarate) than standard
MNP formulations.43 In addition, the MNP contained 0.56 mg
copper as copper sulfate anhydrous, 17 μg selenium as sele-
nium selenite, 90 μg iodine as potassium iodate, 400 μg RE
vitamin A, 5 μg vitamin D (cholecalciferol), 5 mg vitamin E (dl-
α-tocopherol acetate), 30 mg ascorbic acid, 0.5 mg thiamine,
0.5 mg riboflavin, 6 mg niacin, 0.5 mg vitamin B-6, 0.9 μg vi-
tamin B-12, and 150 μg folic acid. All children received oral
rehydration salts (ORS) to be taken during diarrhea episodes.
Oral rehydration salts were part of the diarrhea treatment kit,
which was given during enrollment, with instructions to store it
in the home and use it for the treatment of a diarrhea episode in
the study child. As previously described, caregiver-reported
adherence to the preventive supplements was high and resul-
ted in adaily supplemental zinc intakeof∼6.5mg for thePZand
∼9.0 mg for the MNP group over the duration of the study.45

Children in the TZ group consumed an average of seven of 10
prescribed tablets per diarrhea episode, which resulted in an
equivalent of ∼0.8 mg zinc/day over the course of the study.46

The PZ, TZ, and placebo tablets were produced by Nutriset
SAS (Malaunay, France). The powder supplements (MNP and
placebo) were produced by DSM Fortitech Asia Pacific Sdn
Bhd (Banting, Malaysia). Caregivers were instructed to dis-
solve the tablet supplements (one doseper day for PZ and one
tablet daily for 10 days as part of diarrheamanagement for TZ)
with clean water or breast milk and spoon feed the child 30
minutes before or after a meal. For the powder supplements,
theywere advised tomix the entire content of the sachetwith a
semisolid or mashed food.
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Data collection. At enrollment, children’s weight, length,
and mid-upper arm circumference (MUAC) were measured in
duplicate by trained anthropometric teams, using standard-
ized procedures.47 Unclothed or lightly dressed children were
weighed to the nearest 20 g (SECA 383 balance, Hamburg,
Germany). Children’s recumbent length (SECA 416 length
board, Hamburg, Germany) and MUAC (left arm; Tri-Colored
Single-Slotted Insertion Tape, Weigh and Measure, Olney,
MD) were measured to the nearest 0.1 cm. If the duplicate
measurementsdifferedby>0.1 kg forweight or by>0.5 cm for
recumbent length andMUAC, themeasurementwas repeated
a third time, and theaverageof the twomeasurementswith the
lowest absolute difference was calculated. Anthropometric
measurements were repeated at midpoint (after ∼18 weeks)
and at endline (∼36 weeks). Maternal weight (SECA 874,
Hamburg, Germany) and height (SECA 213, Hamburg, Ger-
many) were measured once. A total of four standardization
sessions were implemented over the course of the study to
compare the performance of anthropometry teams among
themselves and with their supervisors48; results of these
standardizations have been reported elsewhere.49,50 Hemo-
globin concentration was determined in a capillary blood
sample (HemoCue® Hb301, HemoCue AB, Angelholm, Swe-
den), and anemia status was assessed at baseline and
endline.
Information on maternal and household demographic and

socioeconomic status (e.g., education, occupation, ethnicity,
household size andcomposition, housingmaterial, household
assets, and land ownership), food security, and hygiene and
sanitation practices of eligible children was obtained at
baseline. Information on infant and young child feeding
practices (breastfeeding, formula feeding, and 24-hour and 7-
day food frequency questionnaire) was collected at baseline
and every 4 weeks during the intervention period.
Children enrolled in the trial remained under observation

and received their assigned supplements daily for a period of
∼36weeks. Each householdwas visitedweekly by amorbidity
surveillance worker who recorded reported morbidity symp-
toms for each day of the previous week and delivered the
respective preventive supplements. Recorded morbidity
symptoms included fever, diarrhea (number and consistency
of stools), respiratory symptoms (cough and nasal discharge),
and any other symptoms of concern. Axillary temperaturewas
measured once every 4 weeks and whenever fever was re-
ported within 24 hours of the home visit.
Stool sample collection and EED biomarker analyses.

Because of the timing and allocation of additional research
funding for thepresent sub-studyandgiven initial difficulties in
obtaining stool samples from young children, stool collection
was started mid-study and was attempted in approximately
2000 children (n = 2,041, Figure 1). Stool sample collection
was attempted on two consecutive days at both baseline
(before the initiation of the supplementation) and endline.
Samples were collected on consecutive days at each time
point to minimize failure to detect low-intensity helminth in-
fection. Disposable diapers were distributed to caregivers
with the instruction to place a diaper on the child immediately
before sleep in the evenings before the days of stool collec-
tion. Caregivers were instructed to return to the study site the
followingdaywith all diapers containing any stool. At baseline,
the 2-day collection requirement necessitated that caregivers
be given diapers during the community sensitization session,

1 day before the study enrollment. Thus, oral consent specific
for the stool collection was obtained during the community
sensitization session, and stool samples were only stored and
analyzed for eligible children with written parental informed
consent. Among children presenting with diarrhea at enroll-
ment (n = 34), stool collection was not repeated on a second
day because preventive and therapeutic supplementation
were initiated immediately following diagnosis. These children
only provided one stool sample and were included in the
random selection for the present study, if they also provided
stool samples at endline. Stool collectionwasattempted for all
children on two consecutive days at endline.
A mobile field laboratory was set up for immediate stool

sample processing. The approximate time of defecation was
recorded based on caregiver report, and in cases where more
than one diaper was provided, stool samples from the most
recent defecation were aliquoted into a container by trained
laboratory technicians. Samples from that container were
further aliquoted into 1.5mL ambermicrocentrifuge tubes and
immediately stored at −18�C in a portable freezer (CF-025,
Dometic, Solna, Sweden). All samples were subsequently
stored at −20�C for up to 7 days, after which some aliquots
were transferred to a −80�C freezer,43 as specified by ELISA
protocols.
Stool samples were shipped on dry ice to the University of

California, Davis, USA, where the MPO aliquots were stored
at −80�C and the NEO and CAL aliquots at −20�C. In cases
where stool samples were collected at both days of stool
collection, the one with the shorter duration since defecation
was selected. Samples were then analyzed using commer-
cially available ELISA kits following the manufacturer’s in-
structions. A stool application system (ALPCO, Salem, NH)
was used to dilute the stool samples in the respective buffer of
each marker. Fecal MPO was determined after a dilution of 1:
500 (ALPCO). Fecal NEO concentrations weremeasured after
an initial dilution of 1:1,300 (GenWay Biotech, San Diego, CA),
and CAL was assayed after an initial dilution of 1:2,500
(ALPCO). Absorption or optical density was determined with
an ELISA reader (Synergy H1, BioTek Instruments, Winooski,
VT) at the wavelength 450 nm against 620 nm as a reference.
Extracts fromsamples out of range of the standard curvewere
diluted a second time in their respective dilution buffer, and
assays were rerun at lower concentrations.
Sample size for the EED analyses. A sample size of 179

children (rounded up to 180) per study intervention group was
estimated to be able to detect a difference in the mean of any
given biomarker of EED between any two intervention groups
with an effect size of 0.35, a power of 80%, and a type I error of
5%.51 An attrition rate of 20% was considered to account for
drop out and possible failure to successfully collect stool
samples at both time points (total sample size = 900). Thus,
from children who provided stool samples at both baseline
and endline, 720 (n = 180 per intervention group) were ran-
domly selected for the EED analyses. Sample size estimation
was done with the use of SAS software (version 9.4; SAS In-
stitute, Inc., Cary, NC).
Definitions. Z-scores for length-for-age (LAZ), weight-for-

age (WAZ), and weight-for-length (WLZ) were calculated
according to the WHO 2006 child growth standards.44

Stunting, underweight, and wasting were defined as LAZ,
WAZ, andWLZ < −2SD, respectively. LowMUACwas defined
as MUAC £ 12.5 cm.
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A child was considered breastfed if breastfeeding was
reported at least once in the past month. Information
on infant and young children feeding practices (breast-
feeding, dietary diversity, and food frequency) was used
to estimate the adequate dietary diversity, minimum
meal frequency, and consumption of iron-rich foods as

specified by the WHO.52,53 Food security was defined
using the household food insecurity access scale.54

Principal component analysis was applied to available
indicators of household socioeconomic status, educa-
tion, income, ownership of lands, and hygiene and sani-
tation practices to derive a SES index.55

FIGURE 1. Lao Zinc Study flow diagram for stool sample collection.
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Statistical analyses. A statistical analysis plan describing
the statistical procedures was developed and published before
the analyses.56 Analyses were done based on complete-case
intention-to-treat, and the intervention group was considered
the primary exposure variable. All analyses were undertaken
using Stata 14 (StataCorp 2015, College Station, TX).
ANCOVA regressionmodelswere used to assess treatment

effects in minimally adjusted models controlling for baseline
measurement of the outcome, age of the child at enrollment,
and district of residence at enrollment. A secondary fully ad-
justed analysis was performed controlling for additional pre-
specified variables at baseline determined to be associated
with outcome (P < 0.1) in bivariate models. Baseline and
endline concentrations of MPO, NEO, and CAL were log
transformed for analysis. Effect modification was tested using
prespecified baseline covariates by including an interaction
term in the models.
The treatment effect on growth outcomes has previously

been reported,50 but EED data were unavailable at that time.
With the available data, we investigated the potential effect
modification of EED (as continuous effect modifiers) at base-
line on growth outcomes at midpoint and endline. Environ-
mental enteric dysfunction marker concentrations were then
categorized in tertiles, and an interaction term was in-
corporated in the statistical models and further examined if
marginally significant (P < 0.1).
The association between baselineMPO,NEO, andCAL and

subsequent change in LAZ (baseline to midpoint and baseline
to endline) was examined with linear regression controlling for
LAZ at baseline, age at enrollment, health district, and in-
tervention group.
Baseline and endline associations between the EED bio-

markers and concurrent growth indicators were explored us-
ing linear regression models adjusted for age of the child at
enrollment, gender, district of enrollment, and intervention
group (only for the endline associations).

RESULTS

Baseline characteristics of participants. Of the 3,830
children screened for eligibility, 3,433were enrolled and 3,407
were individually randomized in the parent trial (Figure 1).
Among them, 2,041 children were invited to provide a stool
sample, and stool sampleswere collected from 1,204 children
at baseline. Of these, 863 provided stool samples at both
baseline and endline, and 720 children with stool samples at
both time points (n = 180 per intervention group) were then
randomly selected for the EED analyses.
At baseline, the mean age was 14.1 ± 4.9 months (Table 1).

Approximately 77%of children were breastfed in the previous
4 weeks, and 5% and 47% met the WHO definition of ade-
quate dietary diversity and minimal meal frequency, re-
spectively; 38%of the households reported tobe food secure.
The prevalence of stunting, underweight, and wasting was
39%, 26%, and 8%, respectively, and 57% of children were
anemic at baseline. The median [IQR] concentrations of fecal
MPO, NEO, andCAL at baseline were 2,710 [1,249–7,305] ng/
mL, 629 [176–1,829] nmol/g, and 133 [47–279] μg/mL,
respectively.
The children included in this analysis were statistically

similar to children participating in the main trial, but who were
not part of the EED analyses, in terms of age at enrollment,

gender, baseline anthropometric indicators, anemia preva-
lence and maternal age, and body mass index (all P > 0.05).
However, they were more likely to be breastfed (77% versus
72%, P = 0.018), had lower adequate dietary diversity (5%
versus 17%, P < 0.001), and had mothers with no education
(73% versus 69%, P = 0.014), but were less likely from se-
verely food insecure households (10% versus 14%, P <
0.001). However, in models adjusted for age, gender, and
district of residence, breastfeeding, dietary diversity, maternal
education, and food security at baseline were not associated
with any of the three selected biomarkers of EED.
Impact of the intervention on selected biomarkers of

EED.At endline, theminimally adjusted geometricmean (95%
CI) concentration of MPO did not differ across the four in-
tervention groups (1,590 [1,396; 1,811] for PZ; 1,633 [1,434;
1,859] for MNP; 1,749 [1,535; 1,992] for TZ; and 1,612 [1,415;
1,836] ng/mL for the control group; P = 0.749) (Table 2).
Similarly, there was no overall impact of the different inter-
ventions of delivering supplemental zinc on both endline
concentrations of NEO (201 [164; 245] for PZ; 226 [185; 276]
for MNP; 186 [153; 228] for TZ; and 246 [201; 300] nmol/g for
the control group; P = 0.226) and CAL (35 [28; 45] for PZ; 39
[31; 48] forMNP; 38 [30; 48 for TZ; and49 [39; 61]μg/mL for the
control group; P = 0.229) in models adjusted for baseline
measurement of fecal biomarker, age of the child at enroll-
ment, and district of residence at enrollment. Similar results
were found in fully adjusted models (controlling for covariates
in minimally adjusted modes and predefined covariates as-
sociated with the outcome). Effect modification of this in-
tervention effect by prespecified covariates was generally
insignificant or inconsistent (data not shown).
Effect modification by baseline biomarkers of EED on

growth outcomes. As previously reported elsewhere, there
was no overall treatment effect on physical growth in the
parent trial.50 To explore whether this lack of impact may
partially be due to EED, we tested for effect modification by
baselineMPO,NEO, andCAL concentrations on the impact of
the study interventions on physical growth after ∼18 weeks
(midpoint) and ∼36 weeks (endline) (Table 3).
Myeloperoxidase modified the effect of the intervention on

wasting atmidpoint (P= 0.058) and onwasting and lowMUAC
at endline (P = 0.005, 0.056). These growth outcomes had low
prevalence, and stratified models did not converge. Evalua-
tion of unmodeled outcome prevalences by the treatment
group and MPO tertile revealed no effect pattern and was not
consistent across time point. After controlling for multiple
hypothesis testing, these interactions were not statistically
significant.
Baseline NEO and CAL concentrations modified the effect

of the interventiononendline stunting (P for interaction=0.026
and 0.017, respectively) such that among children in the
lowest tertile of NEO concentrations at baseline, there was a
trend toward a higher prevalence of stunting at endline in the
MNP (∼51%) and TZ (∼50%) versus PZ (∼36%) and control
(∼37%) groups; among children in the middle tertile of NEO
concentrations at baseline, the prevalence of endline stunting
was similar (∼39–41%) in the different groups; among children
in the highest tertile of NEO concentrations at baseline, there
was a trend toward a higher prevalence of stunting at endline
in the PZ (∼52%) versusMNP (∼45%), TZ (∼44%), and control
(∼48%) groups (Supplemental Figure 1). A similar pattern was
observed across tertiles of baseline CAL concentrations
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(Supplemental Figure 2). Moreover, baseline concentration of
CAL modified the impact of the interventions on WLZ (P for
interaction = 0.074) such that among children in the lowest
tertile of CAL concentrations at baseline, there was a trend
toward a lower WLZ at endline in the PZ (∼−0.82SD) versus
control (∼−0.71SD), TZ (∼−0.65SD), and MNP (∼−0.58SD)
groups; among children in the middle tertile of CAL concen-
trations at baseline, WLZ was similar across groups (∼−0.63;
−0.69); among children in the highest tertile of CAL concen-
trations at baseline, there was a trend toward a higher WLZ at
endline in the control (∼−0.60) versus MNP (∼−0.70), PZ
(∼−0.69), and TZ (∼−0.69) groups (Supplemental Figure 3).
However, after multiple hypothesis testing, all the effect
modifications were no longer significant.
Associations between biomarkers of EED at baseline

and subsequent linear growth. Baseline MPO was associ-
ated with subsequent acquisition of linear growth failure at
16–20 weeks but not 32–40 weeks after enrollment (change in
LAZ −0.029 [−0.054, −0.003]; P = 0.027), whereas NEO was
marginally associated with subsequent acquisition of linear
growth failure 32–40 weeks after enrollment (−0.019 [−0.041,
0.003]; P = 0.086) (Table 4). Calprotectin concentration at

baseline was not associated with subsequent linear growth at
either time point.
Baseline and endline associations between biomarkers

of EED and concurrent growth indicators. There were no
association between baseline MPO and NEO and baseline in-
dicators of growth status. There was a significantly positive as-
sociation between CAL and MUAC at baseline (regression
coefficient [95%CI] = 0.15 [0.02, 0.27];P=0.021) (Supplemental
Table 1); furthermore, wasted children at baseline had higher
concentrations of CAL (0.42 [0.02, 0.83]; P = 0.042), whereas
stunted children had lower concentrations of CAL, but the as-
sociation was marginal (−0.20 [−0.44, 0.04]; P = 0.098).
At endline, there were no observed associations between

endline NEO and indicators of growth at endline. However, there
was a marginal negative association between MPO and WLZ
(−0.07 [−0.16, 0.01]; P = 0.093) and between CAL and weight
(−0.11 [−0.24, 0.00]; P = 0.060) (Supplemental Table 2). Endline
CAL was negatively associated with WAZ (−0.14 [−0.28, −0.00];
P=0.044) andWLZ (−0.15 [−0.29,−0.00];P=0.044) but positively
associated with underweight (0.32 [0.04, 0.60]; P = 0.024).

DISCUSSION

Summary of main findings. Zinc deficiency has been
linked with both EED and linear growth failure, and EED se-
verity has been inversely associated with linear growth. In the
present study, we hypothesized that zinc supplementation
would improve EED and assessed the impact of different
strategies for delivering supplemental zinc on selected fecal
markers of EED among young Laotian children. Our results
show that daily zinc supplementation provided alone as a
single nutrient (7 mg zinc) or as part of aMNP (10mg zinc) and
TZ supplementation given for the treatment of diarrhea (20mg
zinc per day for 10 days) had no impact on concentrations of
fecal MPO, NEO, and CAL among 6–23 months aged Laotian
children. In addition, MPO, NEO, and CAL concentrations at
baseline did not consistently modify the effect of the in-
tervention on midpoint and endline growth indicators. More-
over, after multiple hypothesis testing, all effect modifications
were no longer significant. Concentrations of EED markers at
baseline were minimally associated with subsequent linear
growth failure; only the relationship between MPO and linear
growth measured 16–20 weeks after enrollment was signifi-
cant. In contrast, only CAL concentrations at baseline and
endline appeared to be associated with concurrent growth
indicators at baseline and endline, respectively.
Comparison with other zinc or MNP intervention trials

on EED. In the present study, we were unable to demonstrate
any benefits of zinc supplementation on intestinal in-
flammation as assessed by fecal MPO, NEO, and CAL. Simi-
larly, we did not find an impact of PZ and TZ supplementation
or MNP on plasma concentrations of citrulline and the

TABLE 2
Effects of daily PZ, MNP, or TZ for diarrhea on MPO, NEO, and CAL concentrations among young Laotian children

PZ MNP TZ Control P-value

Endline MPO (ng/mL) 1,590.2 (1,396.2; 1,811.2) 1,633.0 (1,434.3; 1,859.3) 1,748.9 (1,535.4; 1,991.9) 1,611.9 (1,415.4; 1,835.8) 0.749
Endline NEO (nmol/g) 200.7 (164.4; 245.0) 226.0 (185.2; 275.9) 186.4 (152.7; 227.6) 245.7 (201.2; 300.1) 0.226
Endline CAL (μg/mL) 35.4 (28.2; 44.5) 38.5 (30.7; 48.4) 37.9 (30.2; 47.7) 48.8 (38.9; 61.3) 0.229
CAL = calprotectin; MNP=micronutrient powder; MPO =myeloperoxidase; NEO = neopterin; PZ = preventive zinc; TZ = therapeutic zinc. Estimates aremeans (95%CI). ANCOVA regressionmodels

adjusted for baseline value of outcomeof interest, ageat enrollment, anddistrict of residence at enrollmentwereused toexamine the difference inmeanMPO,NEO, andCALat endline. Results shownas
geometric mean (95%CI). MPO, NEO, and CAL were log transformed and then the estimates were back-transformed using Microsoft Excel’s (version 8.1) exponential function.

TABLE 3
Effect modification by baseline MPO, NEO, and CAL concentrations
on the impact of study intervention onmidpoint and endline growth
outcomes among young Laotian children

MPO NEO CAL

Midpoint
Length 0.451 0.290 0.966
Weight 0.953 0.519 0.772
MUAC 0.775 0.171 0.948
Low MUAC (£ 12.5 cm) 0.867 0.734 0.200
LAZ 0.480 0.231 0.972
Stunting 0.841 0.929 0.358
WAZ 0.824 0.575 0.755
Underweight 0.644 0.300 0.984
WLZ 0.708 0.163 0.507
Wasting 0.058 0.602 0.696

Endline
Length 0.640 0.819 0.768
Weight 0.601 0.841 0.423
MUAC 0.245 0.425 0.415
Low MUAC (£ 12.5 cm) 0.056 0.438 0.483
LAZ 0.630 0.754 0.710
Stunting 0.252 0.026 0.017
WAZ 0.605 0.835 0.543
Underweight 0.182 0.743 0.769
WLZ 0.894 0.602 0.074
Wasting 0.005 0.316 0.385
CAL = calprotectin; LAZ = length-for-age z-score; MPO = myeloperoxidase; NEO =

neopterin; WLZ = weight-for-length z-score; MUAC = mid-upper arm circumference.
Estimates are P-value for interaction. ANCOVA regression models adjusted for baseline
value of outcome of interest, age at enrollment, and district of residence at enrollment were
used to examine the effect modification. Bold indicates values are statistically significant or
marginally significant P-values.
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kynurenine: tryptophan (KT) ratio.57 Direct comparison of our
findings with previous zinc or MNP intervention trials is made
difficult by the use of different biomarkers of EED and different
doses and combinations of supplementary micronutrients
across the different studies. Two trials assessed the impact of
MNPs with and without iron on fecal CAL among children in
Kenya40,41; the first one found that fecal CALwas significantly
higher in infants receiving iron-containing MNP (12.5 mg of
iron as ferrous fumarate) than infants receiving MNP without
iron, but no difference was reported with a MNP containing
2.5 mg of iron as NaFeEDTA compared with infants receiving
the same MNP without iron.40 In the second trial, there was a
nonsignificant decrease in fecal CAL in the MNP without iron
group early (5 days) but not later (10–40 days) after supple-
mentation compared with infants receiving iron-containing
MNP (2.5 mg of iron as ferrous fumarate and 2.5 mg of iron as
NaFeEDTA).41 Other trials assessed the L:M ratio, a marker of
intestinal barrier permeability and absorptive capacity, and
evidence from these studies is mixed.35,38,39,58–60 In a pop-
ulation of Bangladeshi children aged 3–6 months with acute
and persistent diarrhea, 2-week zinc supplementation signif-
icantly reduced lactulose excretion, whereas the change in L:
M ratio was similar in both zinc-supplemented and control
groups,58 a finding replicated in a zinc supplementation trial in
young rural Gambian children.59 In contrast, in 1–12 years old
Bangladeshi children with a history of shigellosis, intestinal
permeability as assessed by the L:M ratio improved signifi-
cantly in vitamin B and zinc-supplemented children compared
with that in children supplementedonlywith vitaminBsyrup.60

However, among 12–35 months aged Malawian children, al-
though there was an attenuation of the progression of EED
with zinc or albendazole supplementation35 and a transient
improvement of EED with MNP supplementation,38 a com-
bined intervention of zinc, MNP, and albendazole did not
ameliorate EED.39

Reasons of absence of impact. The overall lack of impact
of zinc andMNPsupplementation on these biomarkers of EED
may be due to one of the following reasons: 1) the intervention
had no impact on EED; 2) the duration of the intervention was
not long enough, or adherence to supplementation protocol
was too low; 3) the study participants were not sufficiently at
risk of EED; and/or 4) the selectedbiomarkers are not sensitive
makers of EED in this population. Eachof these reasonswill be
addressed in detail in the following.
First, to the best of our knowledge, the present study is the

first randomized controlled trial to assess the impact of PZ or
TZ supplementation on intestinal inflammation as assessed
by fecal MPO, NEO, and CAL, making any comparison with
the existing literature difficult. We previously reported that
although the provision of PZ increased zinc status and MNP
increased both zinc and iron status,50 the interventions pro-
vided failed to improve linear growth,50 chronic stress as

assessed by hair cortisol concentrations,61 and overall mor-
bidity outcomes,46 although TZ supplementation did signifi-
cantly reduce both the incidence and duration of diarrhea
episodes in older children. However, this beneficial impact on
diarrhea outcomes did not result in lower concentrations of
MPO, NEO, and CAL in the TZ group nor did age modify the
effect of the intervention on intestinal inflammation. In addi-
tion, there was no overall impact on other biomarkers of EED,
namely, plasma citrulline and the KT ratio,57 suggesting that
the intervention may have not affected intestinal damage and
repair and systemic inflammation. Moreover, the modifying
effects of EED on growth outcomes identified in the present
study were no longer significant after multiple hypothesis
testing, suggesting that these biomarkers of EEDmay not play
a role in the pathway to linear growth failure in the present
study population. Additional evidence is needed to corrobo-
rate this finding.
Second, the duration of the intervention could also explain

the lack of impact observed in our study. Children participat-
ing in the present study were followed for∼9months, which is
consistentwith earlier studies that found abeneficial impact of
zinc supplementation on functional zinc outcomes.31,36,62

However, this duration may have been inadequate to affect a
complex outcome such as EED, especially intestinal in-
flammation, although the duration in previous zinc or MNP
supplementation trials that reported an improvement of in-
testinal permeability ranged from as short as 2 weeks to up to
15 months.35,38,39,58–60 More evidence from supplementation
trials is needed to understand whether zinc or MNP supple-
mentation has a beneficial impact on intestinal inflammation
as assessed by fecal MPO, NEO, and CAL. Poor adherence is
unlikely the reason for our findings as reported adherencewas
high at > 90% and more importantly plasma zinc concentra-
tions increased in both PZ and MNP groups, suggesting that
the supplements were consumed and absorbed.50

A third reason for the lack of impact of our intervention may
be that the study participants were not sufficiently at risk of
EED to be able to respond to supplementation. There is cur-
rently no consensus about theMPO, NEO, and CAL cutoffs to
be used to define EED. However, some studies have used the
following standard values from either adults or children living in
nontropical regions: MPO < 2,000 ng/mL, NEO < 70 nmol/L,51

and CAL < 100 μg/mL.63 The median baseline MPO, NEO,
and CAL concentrations in our study were 2,710 ng/mL, 630
nmol/g, and 133 μg/mL, respectively, which correspond to
59%, 89%, and 59% of children having high values of MPO,
NEO, and CAL using these previously used cutoffs. If these
cutoffs are correct, this would suggest that most study par-
ticipants had intestinal inflammation characteristic of EED,
although these prevalences were lower than those of a recent
study which reported high MPO and NEO in 71% and 97% of
Bangladeshi children younger than 2 years64 and another

TABLE 4
Associations between baseline MPO, NEO, and CAL concentrations and changes in LAZ over time among young Lao children*

Baseline variable Change in LAZ 16–20 weeks after baseline† P-value Change in LAZ 32–40 weeks after baseline† P-value

MPO, ng/mL −0.029 (−0.054, −0.003) 0.027 −0.008 (−0.033, 0.017) 0.526
NEO, nmol/g −0.018 (−0.040, 0.005) 0.118 −0.019 (−0.041, 0.003) 0.086
CAL, μg/mL −0.001 (−0.021, 0.020) 0.946 −0.003 (−0.024, 0.017) 0.728
*CAL=calprotectin;MPO=myeloperoxidase;NEO=neopterin.MPO,CAL, andNEOconcentrationsare log transformed.Bold indicates valuesare statistically significant ormarginally significant

P-values.
†Estimates are regression coefficients and 95% CI and models were adjusted for baseline value of outcome of interest, treatment group, age at enrollment, and district.
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study in Kenya in which 97% of children younger than 5 years
had a high value of CAL.65 It is worth mentioning that zinc
deficiency (75%) and stunting (39%)were very common in this
study population.
Fourth, the selected biomarkers may not be sensitive indica-

tors of EED in this population. No previous study has examined
the impact of zinc supplementation on fecal MPO,NEO, or CAL.
Previous zinc supplementation trials were inconsistent with
some studies finding that supplementary zinc improved in-
testinal permeability as assessed by the L:M ratio,35,60 whereas
others found no impact.58,59,66 Similarly, two previous studies
investigated the impact of MNP on intestinal inflammation as
assessed by CAL and found conflicting results,40,41 while MNP
slightly improved the L:M ratio among Malawian children.38 It is
possible that zinc or MNP affects specific aspects of the EED
domain of intestinal permeability and absorption, but this does
not translate into impacts on biomarkers of intestinal in-
flammation as measured by MPO, NEO, and CAL.
Association between EED and subsequent or concur-

rent growth indicators. According to the review by Harper
et al.,10 there was strong evidence supporting the pathway
between intestinal inflammation and linear growth in a variety
of prospective and cross-sectional studies. In the present
study, the finding that MPO concentrations at baseline were
predictive of subsequent linear growth failure is consistent
with some22,67,68 but not all previous studies.69,70 The in-
consistency in these results may be due to the fact that in
some of the aforementioned studies, EED biomarkers were
combined to derive an EED disease activity score,51 or be-
cause growth indicators were assessed after different time
periods. For example, we found an association betweenMPO
and change in LAZ after 4.5 months but not after 9 months. In
contrast, Kosek et al.22 found that children in the 75th per-
centile for MPO and NEO concentrations were predicted to
have a decline in LAZ in the subsequent 6 months, whereas
Arndt et al.70 reported that high fecal MPO levels in Bangla-
deshi children were associated with decreases in 3-month
linear growth in the second year of life, and NEO levels were
not associated with subsequent linear growth during any ob-
served period in this analysis. Although fecal MPO, NEO, and
CAL have shown promising results as biomarkers of EED,
none of these biomarkers of intestinal inflammation was as-
sociated with concurrent LAZ or stunting in the present study.
Only one previous cross-sectional study examined the asso-
ciation betweenCALand stunting and foundno association.15

In summary, the usefulness of fecal MPO, NEO, and CAL as
potential screening tools for linear growth failure should be
examined in other settings.
Strengths and weaknesses. A notable strength of this

study includes its implementation in a setting with a high
prevalence of zinc deficiency and stunting, and where EED
is presumably endemic, and thus study participants should
have had the potential to respond to the provided interven-
tions. Another strength is its randomized placebo-controlled
double-blinddesign, the frequencyof follow-up visits, thehigh
participation rate, and the rigorous data collection. This study
is weakened by the fact that we were only able to assess
intestinal inflammation. Unfortunately, because of logistical
challenges, plasma citrulline, kynurenine, tryptophan, and the
KT ratio were assessed in a different subsample of children,57

and we can thus not contribute to the comparison of different
EED markers.

CONCLUSION

Our data suggest that in this population of young Laotian
children, the provision of supplementary zinc with or without
other micronutrients had no overall impact on EED as
assessed by fecal MPO, NEO, and CAL. In addition, these
markers of intestinal inflammation appeared to have aminimal
role in the pathways of growth faltering in this population.
Additional research is needed to better understand the etiol-
ogy and proposed mechanisms of EED pathogenesis.
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