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Abstract

Background: This study evaluated the effect of empagliflozin on postprandial glucose (PPG) and 24-hour glucose
variability in Japanese patients with type 2 diabetes mellitus (T2DM).

Methods: Patients (N = 60; baseline mean [SD] HbA1c 7.91 [0.80]%; body mass index 24.3 [3.2] kg/m2) were
randomized to receive empagliflozin 10 mg (n = 20), empagliflozin 25 mg (n = 19) or placebo (n = 21) once daily as
monotherapy for 28 days. A meal tolerance test and continuous glucose monitoring (CGM) for 24 hours were
performed at baseline and on days 1 and 28. The primary endpoint was change from baseline in area under the
glucose concentration-time curve 3 hours after breakfast (AUC1–4h for PPG) at day 28.

Results: Adjusted mean (95%) differences versus placebo in changes from baseline in AUC1-4h for PPG at day 1
were −97.1 (−126.5, −67.8) mg · h/dl with empagliflozin 10 mg and −91.6 (−120.4, −62.8) mg · h/dl with
empagliflozin 25 mg (both p < 0.001 versus placebo) and at day 28 were −85.5 (−126.0, −45.0) mg · h/dl with
empagliflozin 10 mg and −104.9 (−144.8, −65.0) mg · h/dl with empagliflozin 25 mg (both p < 0.001 versus placebo).
Adjusted mean (95% CI) differences versus placebo in change from baseline in 24-hour mean glucose (CGM) at day
1 were −20.8 (−27.0, −14.7) mg/dl with empagliflozin 10 mg and −23.9 (−30.0, −17.9) mg/dl with empagliflozin
25 mg (both p < 0.001 versus placebo) and at day 28 were −24.5 (−35.4, −13.6) mg/dl with empagliflozin 10 mg
and −31.7 (−42.5,-20.9) mg/dl with empagliflozin 25 mg (both p < 0.001 versus placebo). Changes from baseline in
mean amplitude of glucose excursions (MAGE; CGM) were not significantly different with either empagliflozin dose
versus placebo at either timepoint. Curves of mean glucose (CGM) did not change between baseline and day 1 or
28 with placebo, but shifted downward with empagliflozin. Percentage of time with glucose ≥70 to <180 mg/dl
increased from 52.0% at baseline to 77.0% at day 28 with empagliflozin 10 mg and from 55.0% to 81.1% with
empagliflozin 25 mg, without increasing time spent with hypoglycemia.

Conclusion: Empagliflozin for 28 days reduced PPG from the first day and improved daily blood glucose control in
Japanese patients with T2DM.

Trial registration: Clinicaltrials.gov NCT01947855
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Background
The prevalence of diabetes in Japan is increasing [1]. Cardio-
vascular and all-cause mortality are increased in Japanese
patients with diabetes [2].
Postprandial hyperglycemia is common in patients

with type 2 diabetes (T2DM) [3,4]. Control of postpran-
dial glucose (PPG) helps patients to achieve HbA1c
goals [5,6], and some guidelines for the management of
T2DM provide specific targets for PPG [7-9]. Postpran-
dial hyperglycemia is an independent risk factor for car-
diovascular disease [10,11], possibly due to the oxidative
stress, endothelial dysfunction and overexpression of
adhesion molecules triggered by acute hyperglycemia
and glucose fluctuations [12,13]. Daily glucose fluctua-
tions may also increase the risk of microvascular and
macrovascular complications associated with T2DM
[14,15] while severe hypoglycemia is associated with in-
creased mortality [16,17].
Inhibition of the sodium glucose cotransporter 2 (SGLT2),

located in the proximal tubule, reduces renal glucose re-
absorption, leading to increased urinary glucose excretion
and reduced hyperglycemia in patients with T2DM [18,19].
Empagliflozin is a selective and potent SGLT2 inhibitor [20].
In international Phase III trials in patients with T2DM,
24 weeks’ treatment with empagliflozin given as monother-
apy or as add-on therapy for 24 weeks was well tolerated
and significantly reduced glycated hemoglobin (HbA1c),
fasting plasma glucose (FPG), body weight and systolic
blood pressure (SBP) versus placebo [21-24]. In Japanese pa-
tients with T2DM, empagliflozin monotherapy for 52 weeks
led to sustained reductions in HbA1c, FPG, body weight
and SBP [25,26]. The effect of empagliflozin on 24-hour gly-
cemic variability in patients with T2DM has not been
assessed.
This study was conducted to evaluate the effect of empa-

gliflozin 10 mg and 25 mg once daily as monotherapy for
28 days on PPG and 24-hour glycemic variability in Japanese
patients with T2DM.

Methods
This was a randomized, double-blind, placebo-controlled,
parallel-group study conducted at two sites in Japan. The
clinical trial protocol was approved by the Institutional
Review Boards of the participating centers, and complied
with the Declaration of Helsinki in accordance with the
International Conference on Harmonisation Harmonised
Tripartite Guideline for Good Clinical Practice. All pa-
tients provided written informed consent. The trial was
registered with ClinicalTrials.gov (NCT01947855).

Patients
Japanese patients with T2DM aged ≥20 and ≤74 years, with
a body mass index (BMI) ≤40 kg/m2, who were on a diet
and exercise regimen and were drug-naïve (no anti-diabetes
agents for ≥12 weeks prior to consent) or treated with 1
oral anti-diabetes agent (except a sulfonylurea at > half
maximum approved daily dose, or a thiazolidinedione) at
an unchanged dose for ≥12 weeks prior to consent, were
eligible for inclusion. At screening, drug-naïve patients
were required to have HbA1c ≥7% and ≤10% and patients
treated with 1 oral anti-diabetes agent were required to
have HbA1c ≥7% and ≤9.5%. All patients were required to
have HbA1c ≥7% to ≤10% at the start of the placebo run-
in period.
Exclusion criteria included uncontrolled hyperglycemia

(glucose level >240 mg/dl) after an overnight fast con-
firmed by a second measurement; acute coronary syn-
drome, stroke or transient ischemic attack ≤20 weeks
prior to randomization; indication of liver disease (alanine
aminotransferase, alkaline aminotransferase or alkaline
phosphatase levels >3 times the upper limit of normal dur-
ing screening, washout or run-in); impaired renal function
(estimated glomerular filtration rate [eGFR] <60 ml/min/
1.73 m2 according to Japanese estimation equation [27])
during screening, washout or run-in; gastrointestinal surger-
ies that induce chronic malabsorption; treatment with insu-
lin, glucagon-like peptide-1 (GLP-1) analogues, sulfonylurea
at > half the daily maximum approved dose or thiazolidine-
dione within 12 weeks prior to consent; treatment with anti-
obesity drugs within 12 weeks prior to consent; use of any
treatment at screening leading to unstable body weight;
treatment with systemic steroids at time of consent; change
in dosage of thyroid hormones within 6 weeks prior to con-
sent; alcohol or drug abuse within 12 weeks of consent; in-
vestigational drug intake in another trial within 30 days of
consent.

Randomization and interventions
All patients underwent a 2-week, open-label, placebo run-
in period. Patients pre-treated with an oral anti-diabetes
agent underwent a 2-week washout period prior to the pla-
cebo run-in. Following the run-in period, eligible patients
were randomized (in a 1:1:1 ratio) to receive empagliflozin
10 mg, empagliflozin 25 mg, or placebo for 28 days. Pa-
tients were monitored at the trial site from days −2 to 2
and days 27 to 29. Blinded 24-hour continuous glucose
monitoring (CGM) and a meal tolerance test (MTT) were
performed at day −1, day 1 (of treatment) and day 28
(Figure 1). Patients were assigned to test meals providing
1440, 1600, or 1840 kcal/day, based on patient’s standard
weight (Additional file 1: Table S1). Test meals contained
50–60% carbohydrate, 15–21% protein, and 21–35% fat
(Additional file 1: Table S1). Plasma glucose profiles were
determined at the timepoints shown in Figure 1.

Endpoints
The primary endpoint was the change from baseline
(day −1) in the area under the glucose concentration-
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Figure 1 MTT and plasma glucose sampling schedule at baseline, day 1 and day 28. *Shortly before MTT; †CGM was started shortly before trial
drug administration and continued until 24 hours after trial drug administration. MTT: meal tolerance test. CGM, continuous glucose monitoring.
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time curve 3 hours after breakfast (AUC1–4h for PPG) at
day 28. Other efficacy endpoints were change from base-
line in AUC1–4h for PPG at day 1, change from baseline in
AUC of glucose 3 hours after dinner (AUC10-13h for PPG) at
day 1 and day 28, change from baseline in 2-hour PPG after
each meal (breakfast, lunch, dinner) at day 1 and day 28,
change from baseline in FPG at day 2 and 29 and change
from baseline in AUC1-4h and AUC10-13h for postprandial in-
sulin at day 1 and day 28. Endpoints measured from CGM
at day 1 and day 28 were changes from baseline in 24-hour
mean glucose, mean amplitude of glucose excursions
(MAGE) [28] and the percentage of time with glucose
≥180 mg/dl, ≥70 to <180 mg/dl and <70 mg/dl per day.
MAGE was calculated as the arithmetic mean difference be-
tween consecutive blood glucose peaks (between meals) and
nadirs (between the peaks) when differences were >1 stand-
ard deviation of the mean glucose value in the same 24-
hour period. Change from baseline in HbA1c was measured
at day 29. Change from baseline in urinary excretion of
8-iso-prostaglandin F2α (8-iso-PGF2α; a marker of oxi-
dative stress) in the fasting state and in the 24 hours
after study drug administration was measured at day 28.
Safety endpoints included changes in vital signs, weight,
and clinical laboratory parameters, and adverse events
(AEs; preferred terms coded according to the Medical
Dictionary for Drug Regulatory Activities [MedDRA]
version 16.1). AEs included all events with an onset after
the first dose and up to 7 days after the last dose of
study medication. Confirmed hypoglycemic AEs were
defined as AEs with plasma glucose ≤70 mg/dL and/or
requiring assistance. Events consistent with urinary
tract infection (UTI), genital infection, and volume
depletion were identified using prospectively defined
search categories using 77, 89 and 8 preferred terms,
respectively.

Statistical analysis
Efficacy analyses were performed on the full analysis set
(FAS) which included patients treated with ≥1 dose of
study drug who had a baseline value for AUC1-4h for
PPG. Safety was assessed in the treated set (patients
treated with ≥1 dose of study drug).
The primary endpoint was analyzed using an analysis

of covariance (ANCOVA) model, with treatment, base-
line eGFR and number of previous anti-diabetes medi-
cations as fixed effects and baseline HbA1c and baseline
AUC1-4h for PPG as linear covariates. Missing data were
not imputed. In the hierarchical testing procedure, the
superiority of empagliflozin 25 mg versus placebo was
to be tested first, followed by empagliflozin 10 mg ver-
sus placebo if the first test was significant. Other effi-
cacy endpoints were analyzed using the ANCOVA
model described for the primary endpoint, with the
baseline value for the endpoint in question as an add-
itional linear covariate.
Safety analyses were descriptive, except for changes in

lipid parameters, free fatty acids and blood ketone bod-
ies, which were analyzed using ANCOVA.
Postprandial insulin data and triglyceride data were

log-transformed prior to analysis.
A sample size of 20 patients per treatment group was

required to provide power of 95% for the pair-wise compari-
son and an overall power of ≥90% to detect a 150 h ·mg/dl
treatment difference in AUC1-4h for PPG for each
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empagliflozin dose compared to placebo, assuming a
standard deviation of 120 h · mg/dl and a dropout rate
of 2 patients per group.

Results
Patients
Of 78 patients screened, 60 patients were randomized and
treated and comprised the FAS. One patient in the pla-
cebo group discontinued prematurely. Baseline character-
istics were balanced across treatment groups (Table 1).

Efficacy
Compared with placebo, empagliflozin 10 mg and 25 mg
led to significant reductions from baseline in AUC1-4h for
PPG at day 1 and at day 28 (Figure 2A) and in AUC10-13h

for PPG at day 1 and at day 28 (Figure 2B). Reductions in
AUC1-4h and AUC10–13h for PPG at day 28 compared with
placebo were greater with empagliflozin 25 mg than empa-
gliflozin 10 mg (No statistical tests were performed on the
differences between the empagliflozin 10 mg and 25 mg
groups). Empagliflozin 10 mg and 25 mg reduced AUC1–4h

and AUC10–13h for post-prandial insulin at day 1 and day
28, but changes in AUC1–4h with empagliflozin 10 mg at
day 28 were not significantly different to placebo (Table 2).
Changes from baseline in 2-hour PPG were significantly

greater with empagliflozin 10 mg and 25 mg compared
Table 1 Patient demographics and baseline characteristics (fu

N

Male

Age (years)

Time since diagnosis of type 2 diabetes

≤5 years

>5 to 10 years

>10 years

Number of anti-diabetes medications

0

1

Body weight (kg)

Body mass index (kg/m2)

HbA1c (%)

Fasting plasma glucose (mg/dl)*

AUC1-4 h for postprandial glucose (mg · h/dl)

24-hour mean glucose (mg/dl)

Mean amplitude of glucose excursions, MAGE (mg/dl)

Estimated glomerular filtration rate (ml/min/1.73 m2) (Japanese estimation eq

Systolic blood pressure (mmHg)*

Diastolic blood pressure (mmHg)*

Data are n (%) or mean (standard deviation). *Baseline for these parameters is day
with placebo after breakfast at day 1 and day 28
(Figure 2C). Changes from baseline in 2-hour PPG after
lunch were significantly greater with empagliflozin 10 mg
compared with placebo at day 1, but did not reach signifi-
cance versus placebo with empagliflozin 10 mg at day 28
or with empagliflozin 25 mg at day 1 or day 28 (Figure 2C).
Changes from baseline in 2-hour PPG after dinner were
significantly different with empagliflozin 10 mg and empa-
gliflozin 25 mg compared with placebo at day 28 but not
at day 1 (Figure 2C).
Empagliflozin 10 mg and 25 mg led to significant re-

ductions from baseline in FPG compared with placebo
at day 2 and at day 29 (Figure 3). Reductions from base-
line in FPG at day 29 compared with placebo were
greater with empagliflozin 25 mg than empagliflozin
10 mg.
Empagliflozin 10 mg and 25 mg led to significant reduc-

tions from baseline in 24-hour mean glucose compared
with placebo at day 1 and at day 28 (Figure 4). Reductions
from baseline in 24-hour mean glucose compared with pla-
cebo at day 28 were greater with empagliflozin 25 mg than
empagliflozin 10 mg. Mean glucose levels over 24 hours by
CGM at baseline, day 1 and day 28 are shown in Figure 5.
A reduction from baseline (downward shift) in mean glu-
cose levels at all timepoints over 24 hours was evident from
day 1 with empagliflozin, and reductions from baseline
ll analysis set)

Placebo Empagliflozin
10 mg

Empagliflozin
25 mg

21 20 19

17 (81.0) 14 (70.0) 16 (84.2)

60.7 (10.8) 64.8 (5.9) 62.6 (7.8)

9 (42.9) 4 (20.0) 5 (26.3)

9 (42.9) 8 (40.0) 7 (36.8)

3 (14.3) 8 (40.0) 7 (36.8)

18 (85.7) 16 (80.0) 17 (89.5)

3 (14.3) 4 (20.0) 2 (10.5)

67.7 (10.0) 63.5 (10.6) 65.9 (12.1)

24.9 (2.8) 24.1 (3.7) 24.0 (3.2)

8.00 (0.82) 7.99 (0.83) 7.73 (0.75)

154.5 (19.8) 151.0 (21.6) 151.9 (23.3)

682.8 (91.2) 680.4 (92.2) 658.1 (116.2)

184.1 (30.5) 181.3 (25.9) 178.4 (33.4)

91.4 (26.4) 94.1 (18.5) 89.1 (29.7)

uation [27]) 82.6 (12.8) 76.5 (11.1) 80.7 (9.3)

119.8 (11.5) 119.1 (15.9) 124.0 (11.6)

71.8 (7.7) 70.7 (10.7) 74.7 (8.0)

1.
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Figure 2 Changes from baseline in (A) AUC1-4 h for PPG, (B) AUC10-13 h for PPG and (C) 2-hour PPG after each meal, based on analyses
of covariance in the full analysis set. CI, confidence interval; PPG, postprandial glucose; SE, standard error.

Nishimura et al. Cardiovascular Diabetology  (2015) 14:11 Page 5 of 13



Table 2 Changes in postprandial insulin after breakfast and dinner at day 1 and day 28

Placebo (n = 20) Empagliflozin 10 mg (n = 20) Empagliflozin 25 mg (n = 19)

AUC1–4h for postprandial insulin, μIU · h/ml

Baseline 66.4 (63.5)* 58.9 (55.6) 65.3 (46.2)

Relative change from baseline at day 1 1.2 (1.1, 1.3) 1.0 (0.9, 1.1) 1.0 (0.9, 1.0)

Difference vs placebo (95% CI) 0.8 (0.7, 0.9) 0.8 (0.7, 0.9)

p-value <0.001 <0.001

Relative change from baseline at day 28 1.0 (0.9, 1.1) 0.9 (0.8, 0.9) 0.8 (0.7, 0.9)

Difference vs placebo (95% CI) 0.9 (0.8, 1.0) 0.8 (0.7, 0.9)

p-value 0.074 0.002

AUC10–13h for postprandial insulin, μIU · h/ml

Baseline 73.8 (56.6)† 60.7 (60.5) 70.0 (53.7)

Relative change from baseline at day 1 1.1 (1.0, 1.2) 0.9 (0.8, 1.0) 0.9 (0.8, 0.9)

Difference vs placebo (95% CI) 0.8 (0.8, 0.9) 0.8 (0.7, 0.9)

p-value 0.002 <0.001

Relative change from baseline at day 28 1.0 (0.9, 1.0) 0.8 (0.8, 0.9) 0.8 (0.7, 0.9)

Difference vs placebo (95% CI) 0.9 (0.8, 1.0) 0.8 (0.7, 0.9)

p-value 0.011 0.001

Log-transformed data. Baseline data are gMean (% gCV), change from baseline data are adjusted gMean ratio (95% CI) based on analysis of covariance (ANCOVA)
in the full analysis set. *63.8 (65.5) for day 1 analysis (n = 21). †72.8 (55.5) for day 1 analysis (n = 21).
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Figure 3 Change from baseline in FPG at day 2 and day 29 based on analyses of covariance in the full analysis set. CI, confidence
interval; FPG, fasting plasma glucose; SE, standard error.
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continuous glucose monitoring; CI, confidence interval; SE, standard error.
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seemed to be slightly greater with empagliflozin 25 mg than
empagliflozin 10 mg (Figure 5). At day 1, adjusted mean
(SE) changes from baseline in MAGE were 15.1 (3.5), 11.0
(3.7) and 8.9 (3.7) mg/dl with placebo, empagliflozin 10 mg
and empagliflozin 25 mg, respectively. At day 28, adjusted
mean (SE) changes from baseline in MAGE were −4.7
(4.5), −3.7 (4.6) and −2.2 (4.7) mg/dl with placebo, empa-
gliflozin 10 mg and empagliflozin 25 mg, respectively. Dif-
ferences were not statistically significant with either
empagliflozin dose compared with placebo at either time-
point. Compared with placebo, empagliflozin 10 mg and
25 mg reduced the percentage of time with glucose
≥180 mg/dl (p < 0.01), and increased the percentage of
time with normoglycemia (glucose ≥70 to <180 mg/dl)
(p < 0.01) without significantly increasing the percentage
of time with hypoglycemia (glucose <70 mg/dl) (Figure 6;
Additional file 1: Table S2).
At day 29, adjusted mean (SE) changes from baseline

in HbA1c were −0.11 (0.06)% with placebo compared
with −0.46 (0.06)% with empagliflozin 10 mg (adjusted
mean [95% CI] difference: −0.35% [−0.52, −0.19]; p < 0.001)
and −0.63 (0.06)% with empagliflozin 25 mg (adjusted mean
[95% CI] difference: −0.52% [−0.68, −0.35]; p < 0.001).
Consistent with reductions in PPG, the excretion of 8-

iso-PGF2α, a marker of oxidative stress, was significantly
reduced from baseline with empagliflozin 10 mg and
25 mg compared with placebo at day 28 in the fasting
state (Table 3). Reductions from baseline in the excretion
of 8-iso-PGF2α in the 24 hours after study drug adminis-
tration were only significantly different with empagliflozin
25 mg compared with placebo at day 28 (Table 3).

Safety
AEs were reported in 2 patients (9.5%) on placebo, 3
patients (15.0%) on empagliflozin 10 mg and 3 patients
(15.8%) on empagliflozin 25 mg. No severe AEs, serious
AEs, or AEs leading to discontinuation occurred. No
hypoglycemic AEs were reported. One patient (on empa-
gliflozin 25 mg) experienced an AE consistent with genital
infection (bartholinitis). No AEs consistent with UTI or
volume depletion were reported. No AEs of diabetic
ketoacidosis or those related to abnormal ketone body
levels were reported.
At day 29, weight was reduced from baseline by 0.9 kg,

1.7 kg and 2.1 kg with placebo, empagliflozin 10 mg and
25 mg, respectively (Additional file 1: Table S3). Acute
changes in SBP and diastolic BP (DBP) (at day 2) with
empagliflozin compared with placebo were small, and
more pronounced reductions were observed at day 29
(Additional file 1: Table S3). In contrast, pulse rate appeared
to increase with empagliflozin compared with placebo at
day 2, but changes from baseline in pulse rate were similar
between empagliflozin and placebo at day 29 (Additional
file 1: Table S3).
Compared with placebo, there were no significant differ-

ences in changes from baseline in total cholesterol or



Day -1

Day 1

Day 28

Figure 5 Mean glucose over 24 hours by CGM. CGM, continuous glucose monitoring.
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47.9

52.1

0.0

40.4 

59.4 

0.2 

Baseline

Placebo (n=21 )

<70 mg/dl

Day 1 Day 28

43.1 

57.0 

0.0 

47.8 

52.0 

0.2 

34.2 

65.7 

0.3 

22.8 

77.0 

0.3 Empagliflozin 10 mg (n=20)

Empagliflozin 25 mg (n=19)

45.0 

55.0 

0.0 

28.9 

70.5 

0.5 

19.0 

81.1 

0.0 

Figure 6 Percentage of time with glucose level ≥180 mg/dl, ≥70 to <180 mg/dl, and <70 mg/dl, based on analyses of covariance in
the full analysis set. Baseline data are means, day 1 and day 28 data are adjusted means. **p<0.01; ***p<0.001 for difference vs placebo in
change from baseline; †n=20 at day 28.
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LDL-cholesterol with empagliflozin 10 mg or 25 mg
(Table 4). Compared with placebo, HDL-cholesterol was
significantly increased with empagliflozin 10 mg and
25 mg, and triglycerides were significantly reduced with
empagliflozin 10 mg and 25 mg, at day 29. There were sig-
nificant increases from baseline in free fatty acids with
empagliflozin 25 mg, but not with empagliflozin 10 mg,
compared with placebo at day 29. There were significant
increases from baseline in blood ketone bodies with empa-
gliflozin 10 mg and 25 mg compared with placebo at day
29 (Table 4).
Table 3 Changes in urinary excretion of 8-iso-PGF2α at day 2

Placebo (n = 20)

Fasting state, pg/ml

Baseline 197.8 (27.0)

Change from baseline at day 28 40.6 (22.6)

Difference vs placebo (95% CI)

p-value

In 24 hours after drug administration, pg/ml

Baseline 115.5 (11.0)

Change from baseline at day 28 −3.7 (10.3)

Difference vs placebo (95% CI)

p-value

Baseline data are mean (standard error [SE]), change from baseline data are adjuste
No clinically relevant changes in electrolytes (sodium,
potassium, calcium, magnesium, phosphate) were observed
in any group at the end of treatment (Additional file 1:
Table S4). Changes from baseline in hematocrit and eGFR
were generally small in all groups (Additional file 1:
Table S4).
Conclusions
This study was conducted to evaluate the effect of empa-
gliflozin as monotherapy for 28 days on PPG and 24-hour
8

Empagliflozin 10 mg (n = 20) Empagliflozin 25 mg (n = 19)

194.6 (29.4) 146.5 (18.5)

−48.1 (23.3) −33.5 (23.7)

−88.6 (−154.6, −22.7) −74.0 (−139.8, −8.2)

0.010 0.028

138.3 (20.6) 148.6 (21.7)

−28.4 (10.4) −46.8 (10.6)

−24.7 (−54.5, 5.2) −43.1 (−72.9, −13.3)

0.103 0.006

d mean (SE) based on analysis of covariance (ANCOVA) in the full analysis set.



Table 4 Changes in fasting serum lipids and ketone bodies at day 29

Placebo (n = 20) Empagliflozin 10 mg (n = 20) Empagliflozin 25 mg (n = 19)

Total cholesterol, mg/dl

Baseline 212.8 (7.7) 200.1 (8.4) 208.7 (9.1)

Change from baseline at day 29 −0.8 (3.6) 3.2 (3.7) 1.1 (3.7)

Difference vs placebo (95% CI) 4.0 (−6.6, 14.6) 1.9 (−8.6, 12.3)

p-value 0.455 0.722

HDL-cholesterol, mg/dl

Baseline 46.8 (2.2) 47.6 (2.8) 46.8 (2.8)

Change from baseline at day 29 0.1 (1.2) 4.7 (1.3) 7.4 (1.3)

Difference vs placebo (95% CI) 4.5 (1.0, 8.1) 7.2 (3.7, 10.8)

p-value 0.014 <0.001

LDL-cholesterol, mg/dl

Baseline 128.7 (6.3) 124.9 (8.4) 130.5 (8.5)

Change from baseline at day 29 −1.3 (3.2) 3.4 (3.3) 4.3 (3.3)

Difference vs placebo (95% CI) 4.7 (−4.6, 14.0) 5.7 (−3.5, 14.8)

p-value 0.314 0.221

Triglycerides, mg/dl*

Baseline 159.6 (51.0) 131.5 (34.9) 142.2 (48.0)

Relative change from baseline at day 29 1.0 (0.9, 1.1) 0.8 (0.7, 0.9) 0.7 (0.6, 0.8)

Difference vs placebo (95% CI) 0.8 (0.7, 1.0) 0.7 (0.6, 0.8)

p-value 0.037 <0.001

Free fatty acids, mg/dl

Baseline 10.8 (0.8) 9.6 (0.7) 9.3 (0.6)

Change from baseline at day 29 3.1 (0.8) 4.8 (0.8) 7.4 (0.8)

Difference vs placebo (95% CI) 1.7 (−0.6, 4.1) 4.3 (2.0, 6.7)

p-value 0.149 <0.001

Ketone bodies, μmol/l

Baseline 86.8 (10.2) 78.1 (12.0) 69.4 (10.8)

Change from baseline at day 29 −12.2 (44.0) 139.5 (44.7) 408.0 (45.5)

Difference vs placebo (95% CI) 151.7 (24.4, 279.0) 420.2 (293.3, 547.2)

p-value 0.021 <0.001

Unless otherwise indicated, baseline data are mean (standard error [SE]), change from baseline data are adjusted mean (SE) based on analysis of covariance
(ANCOVA) in the treated set. Fasting measurements. *Log-transformed data; baseline data are gMean (%CV) and change from baseline data are adjusted gMean
ratio (95% CI).
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glycemic variability in Japanese patients with T2DM. Sig-
nificant reductions from baseline in AUC1-4h for PPG
were observed after acute and subchronic treatment with
empagliflozin, with 80–90% of the reduction in AUC1-4h

for PPG already achieved at day 1.
At day 28, although the reductions from baseline in

AUC for PPG with empagliflozin observed after dinner
were of a lower magnitude than those observed after
breakfast, the reductions observed after dinner were sig-
nificant. These observations were consistent with reduc-
tions in 2-hour PPG. The sustained effect of empagliflozin
on PPG from morning to evening support once-daily ad-
ministration of empagliflozin.
Of note, the reduction in PPG in this study was ac-
companied by a reduction in postprandial insulin levels.
In contrast to insulin secretagogues and incretins, empa-
gliflozin’s mode of action is independent of beta-cell
function and insulin secretion [18]. By increasing urinary
glucose excretion, empagliflozin reduces plasma glucose
levels leading to a reduction in plasma insulin levels [29].
CGM can provide valuable information on the magnitude

and duration of glucose fluctuations [30]. In this study,
empagliflozin improved daily blood glucose control mea-
sured using CGM, with the curves of mean 24-hour glu-
cose lower at day 1 and day 28 than at baseline. Consistent
with changes in FPG, PPG and HbA1c, slightly greater
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reductions in 24-hour mean glucose and mean glucose
levels over 24 hours were observed with empagliflozin
25 mg compared with empagliflozin 10 mg at day 28.
Empagliflozin had a significant effect on FPG as well as
PPG, and the reductions in PPG were not substantially dif-
ferent to the reductions in FPG. Therefore, the curves of
mean 24-hour glucose with empagliflozin showed a parallel
shift downward and MAGE was not significantly reduced
by empagliflozin. Variable responses in FPG and PPG have
been observed with empagliflozin in other clinical trials in
patients with T2DM [21,22]. Further CGM data with
SGLT2 inhibitors in patients with T2DM are needed to illu-
minate the effect of this class of drugs on MAGE.
Tight glucose control is important to reduce the risk

of micro- and macrovascular complications [9], and to
avoid the adverse effects on morbidity, mortality and
quality of life associated with hypoglycemia [31]. Import-
antly, CGM measurements in this study showed that
empagliflozin increased the time patients spent with
normoglycemia without increasing the time spent at a
hypoglycemic level.
Treatment with empagliflozin is consistently associated

with weight loss in patients with T2DM [21-26]. This re-
flects loss of both trunk fat and limb fat, and reductions in
both abdominal visceral and subcutaneous adipose tissue
[32]. After 2 years’ treatment with empagliflozin 25 mg as
add-on to metformin, approximately 90% of the weight
loss observed was due to fat loss [32]. Empagliflozin-
induced urinary glucose excretion results in calorie loss
and reduced plasma glucose levels with an increased
glucagon-to-insulin ratio [29], leading to lipolysis, in-
creased free fatty acid levels and ketogenesis. The most
common causes of ketosis are physiological conditions, in
which mild to moderate elevations of circulating ketone
bodies occur in response to fasting or prolonged exercise,
with ketone body levels not uncommonly rising to the
range of 1 ± 2 mM [33,34]. In this study, the average in-
crease in ketone bodies was modest, with adjusted mean
levels of 218, 486 and 66 μmol/l for empagliflozin 10 mg,
empagliflozin 25 mg and placebo, respectively, at day 29.
The highest level of ketone bodies observed in our study
in an individual patient was 1449 μmol/l, which is com-
parable with levels of up to about 1300 μmol/l reported
for subjects without diabetes after an overnight fast [35].
Diabetic ketoacidosis is typically accompanied by levels of
ketone bodies >3000 μmol/l [33] and develops almost ex-
clusively in states of absolute insulin deficiency. In con-
trast, the lowering of insulin levels with empagliflozin is
probably secondary to the reduction in plasma glucose
levels via increased urinary glucose excretion, which is ac-
companied by an improvement in beta-cell function [29].
Therefore, the empagliflozin-induced increase in ketone
bodies most likely reflects an adaptive change, with ketone
levels in the range of physiological conditions, which is
unlikely to put patients at risk of ketoacidosis in the ab-
sence of absolute (endogenous or exogenous) insulin defi-
ciency or extreme (ketogenic) diets.
Patients with T2DM have an increased risk of develop-

ing cardiovascular events compared with the general
population [36], which is related to the prevalence of the
classical cardiovascular risk factors of hypertension and
dyslipidemia, in addition to other important factors such
as glycemic control, oxidative stress, and obesity [37]. El-
evated PPG is an independent risk factor for cardiovas-
cular disease [10,11]; however, improvements in PPG
have not been shown to translate into reduced risk of
cardiovascular disease [38]. Empagliflozin improves gly-
cemic control with a low risk of hypoglycemia, leads to
weight loss and reduces blood pressure, possibly due to
diuretic effects, weight loss, or direct vascular effects
[21-26,39,40]; further, as demonstrated in this study,
empagliflozin reduces PPG and 8-iso-PGF2α, a marker
of oxidative stress that is an independent risk marker for
cardiovascular disease [41]. A cardiovascular outcome
trial (EMPA-REG OUTCOME™; NCT01131676) is in-
vestigating the effect of empagliflozin in patients with
T2DM and high cardiovascular risk [42].
In conclusion, empagliflozin 10 mg or 25 mg as mono-

therapy for 28 days significantly reduced PPG and FPG
and improved daily blood glucose control in Japanese
patients with T2DM, without increasing time spent with
a hypoglycemic blood glucose level.

Additional file

Additional file 1: Table S1. Test meals. Table S2. Changes in
percentage of time with glucose level ≥180 mg/dl, ≥70 to <180 mg/dl,
and <70 mg/dl. Table S3. Changes in blood pressure, pulse rate and
weight. Table S4. Laboratory measurements.
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