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Abstract: Disruptions of beta-catenin and the canonical Wnt pathway are well documented in cancer. However, little is 
known of the non-canonical branch of the Wnt pathway. In this study, we investigate the transcript level patterns of genes 
in the Wnt pathway in squamous cell lung cancer using reverse-transcriptase (RT)-PCR. It was found that over half of the 
samples examined exhibited dysregulated gene expression of multiple components of the non-canonical branch of the WNT 
pathway. In the cases where beta catenin (CTNNB1) was not over-expressed, we identifi ed strong relationships of expression 
between wingless-type MMTV integration site family member 5A (WNT5A)/frizzled homolog 2 (FZD2), frizzled homolog 3 
(FZD3)/dishevelled 2 (DVL2), and low density lipoprotein receptor-related protein 5 (LRP5)/secreted frizzled-related protein 
4 (SFRP4). This is one of the fi rst studies to demonstrate expression of genes in the non-canonical pathway in normal lung 
tissue and its disruption in lung squamous cell carcinoma. These fi ndings suggest that the non-canonical pathway may have 
a more prominent role in lung cancer than previously reported.
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Background
The Wnt pathway is integral to developmental biology. The canonical pathway determines β-catenin 
stability and infl uences the transcription of TCF/LEF target genes (Clevers, 2006). In the absence of 
Wnt ligands binding to frizzled receptors, the canonical Wnt pathway is turned off leading to the even-
tual degradation of β-catenin (Fig. 1A). Conversely, the binding of Wnt ligands promotes the formation 
of a tertiary complex between Wnt, Frizzled and LRP5/6, allowing β-catenin to shuttle into the nucleus 
and bind to TCF/LEF proteins, thus activating target gene transcription (Fig. 1B). The non-canonical 
pathway is β-catenin-independent and controls cell movements during morphogenesis. It is further 
subdivided into the Wnt/calcium pathway and the planar-cell-polarity (PCP) pathway (Fig. 1C) (Katoh, 
2005; Veeman, Axelrod and Moon, 2003).

The canonical Wnt pathway plays a critical role during the development of the lung (Eberhart and 
Argani, 2001; Mazieres et al. 2005). In the adult lung, the canonical Wnt pathway contributes to bron-
chial epithelial regeneration (Steel et al.). However, little is known about the non-canonical pathway 
in the adult lung. Furthermore, disruption of the canonical pathway branch is well documented in can-
cer (Clevers, 2006; Ilyas, 2005), but the involvement of the non-canonical branch of the Wnt pathway 
in cancer is virtually unknown. Disruptions have been reported for many canonical pathway components; 
for example, mutations in axin and APC are common in colorectal and hepatocellular cancers (Aust 
et al. 2002; Taniguchi et al. 2002). The consequence of disrupting the Wnt pathway is the constitutive 
activation of target genes, such as MYC, CCND1, VEGF, each contributing to the hallmarks of cancer 
(Hanahan and Weinberg, 2000).

Lung cancer is a highly aggressive disease and is the leading cause of cancer deaths worldwide 
(Minna, Roth and Gazdar, 2002). Identifi cation of genes and pathways disrupted in lung cancer will 
improve our understanding of this disease. Recent studies have implicated the disruption of upstream 
Wnt components in lung cancer. For example, wingless-related MMTV integration site 1 (WNT1) and 
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wingless-related MMTV integration site 2 (WNT2) 
are overexpressed in non-small cell lung cancer 
(NSCLC) (He, B et al. 2004; You et al. 2004); loss 
of wingless-related MMTV integration site family, 
member 7A (WNT7A) contributes to the progres-
sion of lung cancer through its inability to induce 
E-cadherin (Ohira et al. 2003); and DVL3 is 
reported to be overexpressed in NSCLC (Uematsu 
et al. 2003). However, disruption of downstream 
Wnt pathway components are not often reported 
in lung cancer (Shigemitsu et al. 2001; Ueda et al. 
2001). Coordinated measurements of Wnt compo-
nents expression will be necessary to defi ne their 
involvement in lung cancer. In this study, we inves-
tigated the transcript level patterns of pathway 
components in normal lung tissue and lung squa-
mous cell carcinoma (SCC) to determine if the 
expression of the non-canonical pathway is dis-
rupted in lung cancer.

Methods

RNA isolation and cDNA synthesis
A total of 20 frozen squamous lung tumor with 
matched lung normal samples were obtained from 
St. Paul’s Hospital. Sections (10 µm) fi xed in 70% 
ethanol were manually microdissected based on 
histopathologic evalution of hematoxylin and eosin 
stained sample sections by a lung pathologist. Dis-
sected cells were homogenized in a guanidine 
thiocyanate lysis buffer and RNA was isolated 
using the RNeasy Mini Kit (Qiagen, Mississauga, 

ON, Canada). Matched normal lung tissue samples 
were homogenized in the presence of liquid nitro-
gen and RNA was extracted using Trizol reagent 
(Invitrogen, Burlington, ON, Canada). Purifi ed 
total RNA (40 ng samples) was converted to cDNA 
using the Superscript II RNAse H reverse-
transcriptase system (Invitrogen). Primer sequences 
and melting temperatures are described in Addi-
tional fi le 1. In addition, 10 frozen paired SCC 
samples were obtained for quantitative RT-PCR 
from Vancouver General Hospital. All samples for 
this study were collected with approval by the 
Review of Ethics Board of the Ministry of British 
Columbia.

Gene expression analysis
Expression levels were determined by gene-
specifi c PCR (Additional fi le 1) and the β-actin 
gene was used for normalization. cDNA samples 
obtained from tissues known to express the Wnt 
pathway were used as positive controls (Clontech 
human multiple tissue cDNA Panels 1 and 2, BD 
Biosciences Clontech, Mississauga, ON, Canada). 
Forty nanograms of RNA were converted to cDNA 
as described above and 1/20 of the cDNA from 
each sample was used. PCR cycle conditions were 
as follow: one cycle of 95 °C, 1 min; 30−35 cycles 
of 95 °C, 30 s; 55 °C, 30 s (for β-actin); 72 °C, 30 
s; and a fi nal 10 min extension at 72 °C. PCR 
products were resolved by polyacrylamide gel 
electrophoresis, imaged by SYBR green staining 
(Roche, Laval, PQ, Canada) on a Molecular 
Dynamics Storm Phosphoimager model 860, and 
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quantifi ed using ImageQuant software (Molecular 
Dynamics, Piscataway, NJ, U.S.A.). To verify the 
absence of genomic DNA contamination in the 
cDNA, a ACTB primer was designed to yield a 597 
bp fragment for genomic DNA amplifi cation product 
and a 400 bp fragment for cDNA amplifi cation.

For quantitative PCR, TaqMan primers (primer 
IDs in parentheses) for FZD3 (Hs00184043_m1), 
DVL2  (Hs00182901_m1),  and CTNNB1 
(Hs00170025_m1) were purchased from Applied 
Biosystems (Applied Biosystems, CA, U.S.A.). PCR 
was performed as recommended by Applied Bio-
systems. All reactions were 25 µL in volume and 
performed in triplicate. To account for variations 
in template quantities, cycle threshold (Ct) values 
were normalized using the Ct values of ACTB. The 
effi ciencies of all TaqMan primers were estimated 
using the raw data generated at each well as previ-
ously described (Liu and Saint, 2002; Weksberg 
et al. 2005).

Statistical analysis of gene
expression levels
Gene expression levels of Wnt pathway compo-
nents were determined by calculating the signal 
intensity ratio between each gene of interest and 
ACTB was calculated for all lung samples. For the 
negative control, cDNA template was omitted in 
the reaction.

For the expression level comparison between 
tumor and normal tissue, the intensity ratio of each 
gene in tumor was divided by the corresponding 
intensity ratio in the matched normal tissue sam-
ples. Correlation coeffi cient analysis was per-
formed using the Matlab Statistics Toolbox (The 
Mathworks, Natick, MA).

Results and Discussion
Wnt pathway components representing the canon-
ical and the non-canonical sub-paths were selected 
for expression analysis using RT-PCR in an effort 
to investigate the state of the pathways in normal 
lungs and their disruption in lung tumors. The 
genes representing the canonical pathway in this 
study include WNT1, wingless-related MMTV 
integration site family, member 3A (WNT3A), 
frizzled homolog 1 (FZD1), low density lipoprotein 
receptor-related protein 5 (LRP5), density lipopro-
tein receptor-related protein 6 (LRP6), and 
CTNNB1. The non-canonical components were 

represented by wingless-related MMTV integration 
site family, member 5A (WNT5A), wingless-related 
MMTV integration site family, member 11 (WNT11), 
frizzled homolog 2 (FZD2), frizzled homolog 3 
(FZD3), and frizzled homolog 6 (FZD6) (Katoh, 
2005; Pongracz and Stockley, 2006; Torres et al. 
1996). In addition, representative members of the 
Dvl family and the sFRP family were also included 
in our analysis (Melkonyan et al. 1997; Schumann 
et al. 2000; Uematsu et al. 2003). It should be noted 
that the regulation of the wnt pathway is complex. 
Some of Wnt ligands may have the activation of 
both the non-canonical and canonical branches and 
as such, their effects are strongly dependent on the 
receptor.

Expression profi les of the Wnt components in 
20 normal lung samples are shown (Fig. 2). Anal-
ysis of the canonical Wnt pathway genes suggests 
their transcription in normal lung. Notably, the 
non-canonical Wnt components, WNT5A, WNT11, 
FZD2, FZD3, and FZD6, are also present in the 
normal lung. This is one of the fi rst reports of non-
canonical pathway expression in adult human 
non-malignant lung tissue (Pongracz and Stockley, 
2006; Winn et al. 2005). In addition, dishevelled 
2, dsh homolog (DVL2) and members of the sFRP 
family are also expressed in the normal lung 
(Fig. 2). Although the role of DVL2 is not entirely 
clear in humans, it has been shown to activate the 
PCP signaling pathway in a series of experiments 
involving HEK293T cell and Xenopus models 
(Habas, Kato and He, 2001). As for the sFRP fam-
ily, not all members serve the same functions. For 
example, sFRP2 enables the breast cancer cell line 
MCF-7 to resist TNF-induced apoptosis while 
sFRP1 sensitizes the cells to TNF-induced apop-
tosis (Melkonyan et al. 1997). The gene expression 
data on normal lung tissue provide a baseline for 
comparison against those of NSCLC.

To investigate which Wnt pathway components 
are disrupted in lung tumors, a pairwise compari-
son between tumour and matched normal lung 
samples was performed on the Wnt pathway genes 
(Fig. 3). A comparison of the components in the 
canonical and non-canonical pathway shows that 
the non-canonical pathway may be involved in a 
subset of tumor cases. For example, patient 4 
(Fig. 4A) shows high level up-regulation of all non-
canonical components while there is minimal 
disruption of the transcription levels of canonical 
components. In contrast, patient 12 (Fig. 4B) shows 
high level down-regulation of canonical components 
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Figure 2. Expression profi les of 19 genes in 20 normal lung samples. Raw data was shifted by adding a constant to get rid of negative 
values. A trimmed mean was calculated (excluding the lower and upper 2% values) and a scaling factor was calculated as 500 divided by 
the trimmed mean. Each raw value was then multiplied by the scaling factor to create a new distribution centered at 500. The value displayed 
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T21-T30). Results are generated by real-time RT-PCR using TaqMan gene specifi c primers from Applied Biosystems.

with minimal disruptions of the non-canonical 
components. In fact, the twenty samples have vary-
ing patterns of expression changes in the Wnt 
pathway components (Additional fi le 2). We only 
observed overexpression of CTNNB1 in three out 
of 20 samples, and this observation held true in an 
independent set of ten cases by quantitative PCR 

(Fig. 5). This is not surprising as CTNNB1 activity 
is determined by protein stability and nuclear 
localization (Blache et al. 2004; He, TC et al. 1998; 
Korinek et al. 1997; Mann et al. 1999; Morin et al. 
1997). However, it is remarkable that 11 out of 20 
samples showed overexpression of multiple non-
canonical components. These fi ndings strongly 
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suggest the involvement of the non-canonical 
pathway in lung SCC.

Based on the expression patterns of CTNNB1, 
it appears not all tumors solely involve the canon-
ical pathway. We next investigated which particu-
lar non-canonical components are involved in the 
samples without CTNNB1 overexpression. As 
some of the components affect both the canonical 
and non-canonical pathway, we selected only genes 
belonging to one or the other, namely those listed 
in Table 1. The expression of each gene was cat-
egorized as +1 for up-regulation, -1 for down-
regulation, and 0 for unchanged, with a 2-fold 
expression difference deemed change. The genes 
were paired and a percentage was calculated for 
each pair of genes based on the number of times 
they showed the same category of expression. In 
other words, the percentage is an indication of how 
similar the expression changes are for a given set 
of genes. The table of gene comparisons with the 
corresponding percentages is shown in Table 1. 

Gene pairs that were less than 50% concordant in 
expression change were eliminated from further 
analysis. For the remaining gene pairs, a Spearman 
correlation was calculated. Eleven gene pairs 
showed statistically signifi cant correlation with 
three gene pairs showing greater than 65% con-
cordance: LRP5 and secreted frizzled-related 
protein 4 (SFRP4), WNT5A and FZD2, and FZD3 
and DVL2. We also investigated the frequency of 
discordant expression changes but, there were no 
gene pairs that were signifi cantly related (data not 
shown).

The fi rst pair of genes showing high concor-
dance is WNT5A and FZD2 (65%) with a correla-
tion coefficient of 0.7 ( p � 0.01). FZD2 and 
WNT5A are coordinately increased in 5 samples 
and decreased in 4 samples. The relationship 
between WNT5A and FZD2 is novel in human lung 
but their association has been documented in other 
animal models. For example, previous studies in 
zebrafi sh models suggest that Fzd2 induces intra-
cellular release of Ca2+ via Wnt5a activation. The 
release of Ca2+ involves the activation of the phos-
phatidylinositol pathway in a G-protein-dependent 
manner (Kuhl et al. 2000; Sheldahl et al. 1999; 
Slusarski, Corces and Moon, 1997) which in turn 
activates CamKII and PKC. The implications of 
PKCs have been reported in various types of can-
cer. For example, human small cell lung cancer 
(SCLC) cells have shown to exhibit rapid growth 
due to over-expression of PKCε and similarly, 
breast cancer cells displayed an enhanced rate of 
proliferation due to PKCα transfection (Hofmann, 
2004).

The next pair, the non-canonical components, 
FZD3 and DVL2 are similar in 77% of the 17 tumor 
samples with a corresponding correlation coeffi -
cient of 0.6 ( p � 0.01). We discovered that the 
expression levels of both FZD3 and DVL2 are up-
regulated in 7 out of 17 tumor samples and 
unchanged in 6 tumor samples where the expres-
sion of CTNNB1 is down or unchanged. FZD3 and 
DVL2 have independently been reported to be 
involved in the non-canonical pathway. The pat-
terns of expression of FZD3 and DVL2 do not seem 
to affect the expression levels of CTNNB1. 
Although the Dvl family has been shown to be able 
to activate the canonical and non-canonical path-
way, DVL2 alone does not display a high frequency 
of coordinate expression change with CTNNB1 in 
this study. Likewise, FZD3 alone does not seem to 
affect the expression of CTNNB1 as well, which 

Table 1. Pairwise expression correlation of genes in WNT 
pathway.

Gene Pairs (%) R pval
Wnt1 Wnt11 53 0.22 0.39
Β-catenin sFRP5 53 0.04 0.87
Β-catenin Wnt3a 59 0.14 0.59
Β-catenin Lrp6 53 0.41 0.11
sFRP5 Wnt3a 53 −0.02 0.95
sFRP5 Lrp6 53 0.35 0.17
sFRP5 sFRP4 53 0.31 0.22
Wnt3a sFRP1 59 0.06 0.81
Wnt3a sFRP4 59 0.45 0.07
Fzd1 Lrp5 53 0.48 0.05
Fzd1 sFRP4 53 0.45 0.07
Fzd3 sFRP2 53 0.3 0.24
Fzd3 Dvl2 77* 0.6 0.01
Lrp5 sFRP4 71* 0.49 0.04
sFRP1 sFRP4 59 0.49 0.04
sFRP1 Wnt5a 59 0.67 0
sFRP2 Wnt5a 59 0.69 0
sFRP2 Dvl2 53 0.05 0.86
sFRP2 Fzd6 53 0.31 0.22
sFRP2 Fzd2 53 0.46 0.07
sFRP3 Wnt11 59 0.28 0.28
sFRP4 Wnt5a 59 0.78 0
Wnt5a Fzd6 53 0.55 0.02
Wnt5a Fzd2 65* 0.7 0
Wnt5a Wnt11 53 0.48 0.05
Fzd6 Fzd2 53 0.48 0.05
Fzd2 Wnt11 53 0.43 0.08
*denote gene pairs that are over 65% similar in the 17 samples
Abbrevations: R:Spearman correlation coeffi cient; pval:p-value of 
spearman correlation coeffi cient.
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agrees with the majority of studies done on this 
gene. Quantitative RT-PCR was performed on 
FZD3 and DVL2 on an independent set of 10 lung 
SCC samples and the results confi rmed that FZD3 
is up-regulated in 7 out of 10 samples as shown in 
Figure 5. However, DVL2 is only up-regulated in 
3 out of 10 samples. When we applied the same 
concordance analysis onto these 10 samples, 9 
samples showed reduced or unchanged expression 
of CTNNB1. Nearly half of these samples show 
that FZD3 and DVL2 have the same pattern of 
expression. FZD3 and DVL2 are increased in 67% 
and 33% of the samples, respectively. These results 
are consistent to what was observed in the fi rst 
panel of lung tumors of 58% and 41%, respectively. 
Limited knowledge exists of the involvement of 
FZD3 and DVL2 in cancer. FZD3 is reported to be 
down-regulated in ovarian cancer (Tapper et al. 
2001) but up-regulated in chronic lymphocytic 
leukemia (Lu et al. 2004). Although DVL2 has 
never been directly linked to cancer, its associa-
tions with Rho GTPases have been reported. Rho 
family of proteins are involved in a number of 
essential cellular processes such as cell growth, 
lipid metabolism, cytoskeleton architecture, mem-
brane traffi cking, transcriptional regulation, and 
apoptosis (Aznar and Lacal, 2001), with many of 
those processes disrupted in cancer.

Lastly, the LRP5 (of the canonical pathway) and 
SFRP4 pair is concordant in 71% of the samples 
with a corresponding correlation coeffi cient of 0.49 
(p = 0.04). Interestingly, relationships between 
LRPs and sFRPs have not been previously reported. 
A total of 6 out of the 17 samples show coordinate 
down-regulation of LRP5 and SFRP4 in lung 
tumors. LRP5 is a single transmembrane co-
receptor that forms an active complex with the Fzd 
protein and an incoming Wnt ligand, to activate 
the canonical Wnt signaling pathway. As for 
SFRP4, although this protein exhibits the same 
domain architecture as other sFRP family mem-
bers, its expression behaviour is different from its 
other family members. In contrast to the other sFRP 
members, SFRP4 has been shown to be up-regulated 
where there is positive expression of CTNNB1 
(Feng Han et al. 2006) in a study involving human 
colorectal carcinoma. In vitro studies have also 
shown that overexpression of SFRP4 does not lead 
to reduced expression of CTNNB1 (Suzuki et al. 
2004). Although the mechanisms behind the activa-
tion of the canonical pathway by sFRP4 in these 
studies still needs more investigation, past and 

present evidence suggests that the sFRP genes may 
have more complex roles in addition to their pre-
defi ned roles as Wnt antagonists.

Conclusions
Based on the results in this study, the non-canonical 
pathway is active in normal lung. Activation of the 
non-canonical pathway in development has been 
associated with the control of specifi c morphoge-
netic movements during and following vertebrate 
gastrulation. This is one of the fi rst reports to show 
activity of the non-canonical pathway in the human 
adult lung at the gene expression level. Previous 
studies of lung tumors have mainly focused on the 
canonical components. However, tumor gene 
expression analysis in this study shows that in fact, 
the non-canonical pathway may provide an alterna-
tive explanation to the proliferation of lung cancer 
cells. Further investigation at the protein level and 
phosphorylation state of CTNNB1 will provide a 
more comprehensive understanding of the bio-
logical impact of changes in the non-canonical 
components. We suggest that the non-canonical 
pathway may have a more prominent role in lung 
cancer than previously reported and future studies 
of the WNT pathway should encompass both the 
canonical and the non-canonical branches.
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Table S1. Table of forward and reverse primers for 
genes in WNT pathway.
Figure S1. Expression profi les of the WNT path-
way for 20 squamous cell carcinoma samples.
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Supplement Material

Table S1. Primer sequences and conditions for RT-PCR analysis.

Gene name Primer sequence MgCl2 (mM) Cycles Tm (°C)
DVL2 5’-aatcccagcgagttctttgt-3’ 1 35 58.3

5’-caatctcctgtatggcagca-3’

FZD1 5’-tacacgaggctcaccaacag-3’ 1 35 52.3

5’-gagcctgcgaaagagagttg-3’

FZD2 5’-catcgaggccaactctcagt-3’ 1.5 35 52

5’-gtgccgatgaacaggtacac-3’

FZD3 5’-tgagtgttcgaagctcatgg-3’ 1.5 30 60.9

5’-ttaactctcggggacaccaa-3’

FZD6 5’-caggcaggcagtgtatctga-3’ 2 30 58

5’-accacctccctgctcttttc-3’

LRP5 5’-cccgtcacaggtacatgtact-3’ 1 30 55

5’-gaacgagccgtccaggtt-3’

LRP6 5’-ttccaggaatgtctcgaggt-3’ 1 35 51

5’-ggttcaaaattgcagggaag-3’

SFRP1 5’-gagctccagtttgcatttgg-3’ 1 35 58

5’-tagggtgctctcctcaaaca-3’

SFRP2 5’-gacctgaagaaatcggtgct-3’ 1 35 60

5’-atgcgcttgaactctctctg-3’

SFRP3 5’-tgttaccagagcctctttgc-3’ 2 35 64

5’-gagaatgcccaaaaggcata-3’

SFRP4 5’-gtttccaaagcggagacttc-3’ 2 35 62.1

5’-atggcttgtgatggcttaca-3’

SFRP5 5’-actggagggtgttttcacga-3’ 2 35 63.4

5’-ctcccctgcctactttctga-3’

WNT1 5’-acagagccacgagtttggat-3’ 1 35 55

5’-gaggcaaacgcatctttgag-3’

WNT3A 5’-agagctgctggtctcatttg-3’ 2 35 58

5’-aggaaagcggaccatttctc-3’

(Continued)



179

WNT pathway disruption in lung cancer 

Clinical Medicine: Oncology 2008:2 

Table S1. (Continued)

Gene name Primer sequence MgCl2 (mM) Cycles Tm (°C)
WNT5A 5’-tggaccatgtgtggtgtctc-3’ 2 35 60.9

5’-gtgcagcactgtccagattt-3’

WNT11 5’-gaagccaccaggaacagaag-3’ 2 31 64

5’-gccctgaaaggtcaagtctg-3’

CADH 5’-agccatgggcccttggag-3’ 1 40 50

5’-ccagaggctctgtgcaccttc-3’

VIM 5’-tggcacgtcttgaccttgaa-3’ 1 35 55

5’-ggtcatcgtgatgctgagaa-3’

CTNNB1 5’-gagcctgccatctgtgctct-3’ 1 35 60

5’-acgcaaaggtgcatgatttg-3’

Figure S1. Pairwise expression profi le analysis (tumor versus matched normal) of non-canonical and canonical Wnt pathway components 
in 20 SCC samples. Each tumor and normal pair is represented as an individual case, numbered from Case 1 to Case 20. For each gene, 
color gradient shading represents magnitude of over and underexpression.
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