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Keypoints
Lung cancer is no longer a single disease but a 
group of different diseases determined by a cer-
tain histologic type and a particular genetic 
makeup.
KRAS-mutated lung cancer is no longer consid-
ered an untargetable driver.
Multiple clinical trials are assessing the efficacy of 
KRAS-targeted therapy, with promising results.
Immune checkpoint inhibition is a good alterna-
tive to current therapies in the treatment of KRAS 
and MET-altered lung cancer.
Tyrosine kinase inhibitors are the most promising 
candidate therapies for treating MET-mutated 
tumors.

Introduction
With the estimation of 2.2 million incident  
cases and 1.8 million deaths, lung cancer is the 

second-most diagnosed cancer and the leading 
cause of cancer death in 2020, representing 
approximately 11% of cancers diagnosed and 
18.0% deaths.1 In the last decade, it has been rec-
ognized that lung cancer is made up of a group of 
molecularly and histologically heterogeneous 
subtypes.2 Two major histologic subgroups are 
non-small-cell lung cancer (NSCLC) and small-
cell lung cancer (SCLC), which account for 76% 
and 13%, respectively, of all lung cancer cases in 
the United States.3

Before 2002, limited treatment options, except for 
local removal and cytotoxic chemotherapy, were 
available. These factors contributed to the dismal 
outcomes of lung cancer. However, in the last two 
decades, quit-smoking campaigns and populariza-
tion of chest computational tomography (CT) 
scan screening in the United States and other 
countries changed the lung cancer prevalence 
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pattern to where the number of non-smoking and 
early-stage lung cancer patients increased.4 
Besides, advances in targeted therapies and 
immune checkpoint inhibitors expanded lung can-
cer treatment options. A recent epidemiological 
analysis based on the Surveillance, Epidemiology, 
and End Results (SEER) Program national data-
base showed that 2-year relative survival among 
patients with lung cancer improved substantially, 
from 26% among men with NSCLC diagnosed in 
2001 to 35% among those with NSCLC diag-
nosed in 2014, a change largely attributable to the 
inclusion of more than 25 new therapeutic indica-
tions.5 To confirm this finding, Liang et al. illus-
trate the lung cancer mortality of 12 representative 
countries (Canada, China, Japan, Singapore, 
Australia, the United Kingdom, Germany, 
Denmark, France, Italy, and Sweden) in different 
continents based on the global disease burden 
(GDB) database, finding a significant decrease in 
mortality, like that in the US cohort, since the 
approval of estimated glomerular filtration rate 
tyrosine kinase inhibitors (EGFR-TKIs).6

Advances in the knowledge of pathways, technol-
ogies for detecting actionable genetic lesions, and 
newly developed drugs to block genomic drivers 
have allowed the oncology community to tailor 
the treatment options.7 Several targetable major 
pathways have been identified in lung adenocarci-
nomas, such as EGFR, ALK, ROS1, Her2, MET, 
RET, BRAF, NTRK, and NRG1 fusions. Many 
drugs targeting these pathways have been devel-
oped and shown impressive clinical benefits. 
Some of them have now replaced chemotherapy 
as the first-line treatment, such as EGFR, ALK, 
ROS1, NTRK, MET, and RET inhibitors.8 
Nevertheless, while target therapy in NSCLC has 
provided disease control, the tumors inevitably 
develop drug resistance.

Nowadays, several molecular targets that were pre-
viously considered ‘unactionable’, such as KRAS, 
now have several therapies under consideration 
with promising early results.9 Activating KRAS 
mutations are present in ~20–30% of patients with 
NSCLC.10 The most prominent KRAS-mutant 
form in never-smokers is G12 V (56%), a form 
locked in a constitutively activated guanosine 
triphosphate (GTP)-bound state. In contrast, the 
dominant mutation among current/former smok-
ers is G12 C (42%).11 Until a few years ago, efforts 
to target KRAS directly have been unsuccessful.12 
However, several synthetic lethality screens have 

identified an indirect vulnerability in KRAS-
mutant lung cancers. For example, in preclinical 
models, polo-like kinase 1, RhoA/Rho kinase, 
nuclear export XPO1 inhibitions have led to selec-
tive vulnerability of KRAS-mutant lung cancer.13,14 
Previously, some preclinical models demonstrated 
that the pharmacological inhibition of upstream 
adapter protein SHP2 had rendered a response 
against the KRAS-G12 C variant. This RAS vari-
ant can cycle nucleotide to behave in a semi-con-
stitutive manner and, hence, respond to ablation of 
upstream signaling.15 This finding represented the 
first step for developing sotorasib (AMG-510) and 
adagrasib (MRTX-849).16

The hepatocyte growth factor (HGF) ligand and 
MET receptor pathway has been known to pro-
mote cancer growth and invasion since about 
three decades now.17 MET protein is a well-
known driver oncogene. Three different types of 
genetic alterations have been seen: fusion, amplifi-
cation, and mutation. MET exon 14 encodes for a 
juxtamembrane (JX) domain that is intracellular, 
containing a PKC phosphosite (S985), a caspase 
cleavage location (D1002), and an E3 ubiquitin 
ligase Casitas-B-lineage lymphoma (CBL) dock-
ing point (Y1003), which is involved in the down-
regulation of RTK activity.18 Alterations in MET 
usually disrupt splicing sites along introns in the 
regions neighboring exon 14, including an intron 
13 splice acceptor site and the donor location for 
intron 14. Also, mutations in exon 14 might pro-
voke skipping of this one for the final mRNA mol-
ecule. The more frequent registered alterations 
include base substitutions, followed by indels (3–
4% of NSCLC patients).19 These MET genetic 
alterations in NSCLC were initially discussed by 
Ma et al.20 and actively explored since then, ena-
bling the elaboration of different potential targeted 
agents that could address this driver. In this com-
prehensive review, we summarize KRAS and 
MET characteristics in NSCLC and discuss an 
array of selective inhibitors, including small mol-
ecules and antibody-based approaches. We also 
discuss resistance biology for each scenario and 
the utility of immunotherapy.

Search strategy
The information was extracted from searches of 
the medical literature made in PUBMED, 
EMBASE, and the Cochrane Register of clinical 
trials from 2010. Besides, we searched the abstract 
registers of the ASCO, ESMO, WCLC, ELCC, 
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and AACR meetings, emphasizing the last 5 
years. Nine hundred forty-six references were 
found that were refined, selecting a total of 224 
for the elaboration of this narrative review.

KRAS

KRAS biology in NSCLC
In the 1960s, an essential step toward the under-
standing of oncogenesis was made. The discovery 
of Murine Sarcoma Viruses (MSVs) during leuke-
mia research led to the first general description of 
HRAS, KRAS, and NRAS genes.21 The Kirsten 
Rat Sarcoma gene (KRAS) was initially described 
in 1969 by Kirsten et  al.22 He found that rats 
infected with a Murine Leukemia Virus would 
induce the production of an MSV with the ability 
to cause sarcoma in murine models. However, in 
these early days of research, the human KRAS 
homolog gene was not discovered yet.

The development of different laboratory tech-
niques like DNA transfection and molecular 
cloning was important for studying human 

transforming DNA fragments.21,23 Different 
researchers discovered and repeatedly confirmed 
that murine and human cancer cells (induced and 
non-induced by oncogenic retroviruses) DNA 
fragments were capable of causing oncogenic 
transformation of NIH-3 T3 cell lines.24,25 While 
studying these tumor-derived DNA fragments, 
the orthologs for viral ras oncogenes (HRAS and 
KRAS) with certain point mutations were found. 
Shimizu et al.26 reported a human homologue of 
v-Ki-ras in the human lung carcinoma cell line 
Calu-1 with a point mutation that caused an 
amino acid change at position 12 glycine for 
cysteine (G12 C). McCoy et al. also reported the 
presence of this gene in the human colon cancer 
cell line SW480. With the identification of the 
RAS gene family in humans, the era of molecular 
oncology in human cancer saw its beginning.

The KRAS gene is located in chromosome 
12p12.1, it consists of six exons with four splice 
variants, from which two (KRAS4A and KRAS4B) 
are the most commonly expressed isoforms27 (see 
Figure 1). KRAS4B comprises 188 amino acids, 
differing by only one residue to KRAS4A (189). 

Figure 1. KRAS is characterized by having multiple splicing isoforms, arising from a pool of 6 exons. The two 
most common isoforms are KRAS4A (in which the exon 4a is conserved) and KRAS4B (in which the exon 4b is 
conserved). Most of genetic alterations related to KRAS occur in the KRAS4B isoform.
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Mutant variants of KRAS4B are widely present  
in human cancers with KRAS mutations, corre-
sponding to the majority of KRAS-mutated 
 proteins found in these tumors, followed by 
KRAS4A.28 Even though these isoforms are 
 similar in length, they only share 164 amino acids, 
starting from the N-terminal region. The 
C-terminal domain in these two isoforms is trans-
lated from two different exons, which creates a 
significant difference in protein post-translational 
changes, in which KRAS4A will receive a palmi-
toylation and farnesylation (creating dual target-
ing motifs for membrane binding). At the same 
time, KRAS4B will only be given the farnesyl 
 radical.27,28 These are critical differences with great 
importance regarding targeted therapy.

According to the Human Protein Atlas, KRAS is 
expressed in almost all cell types in the human body, 
with a moderate expression in bronchi and almost 

no overt protein expression in lung parenchyma 
(RNA expression is present). KRAS is a guanosine 
triphosphate hydrolase (GTPase) with a deficient 
intrinsic activity, a subfamily member of small 
GTPases.29 Upon activation, KRAS (and all the 
Ras family members) will act as a molecular switch, 
triggering different signaling cascades related to cell 
proliferation, differentiation, cytoskeleton dynam-
ics, and vesicle trafficking, and secretion as well as 
protein translocation to membranes.30

Under hemostatic conditions, the KRAS protein 
will experience two different activity states. When 
bound to GTP, KRAS will be in its active form, 
and when bound to GDP, it will shut off. As all 
GTPases, KRAS will be dependent on the GTP-
GDP cycle, which will be catalyzed by the pres-
ence of nearby guanine nucleotide exchange 
factors (GEFs) GTPase-activating proteins 
(GAPs), both also known as regulator factors.31,32 
The activation of KRAS usually follows the stimu-
lation of certain nearby receptor tyrosine kinases 
(RTKs) in the cell membrane; a common exam-
ple would be the epidermal growth factor receptor 
(EGFR). When EGFR is stimulated by its ligands 
(namely EGF), certain conformational changes 
will induce the autophosphorylation of the intra-
cellular domains of this receptor, and recruitment 
of adaptor proteins will occur. These adaptor pro-
teins are usually multi-domain complexes, one of 
those domains is GEF. Some known adaptor pro-
teins with RAS GEFs are CNRASGEF, 
RASGEF1A, RASGRF2, RASGRP1, RASGRP4, 
and SOS1.33

When KRAS is in its GDP-bound state, a GEF 
domain will interact with it, inducing the release 
of GDP and the quick attachment of a new cyto-
solic GTP molecule, thus, switching on KRAS. 
Once activated, Ras proteins will trigger a cascade 
of intracellular signaling mechanisms via three 
main effector pathways mediated by RALGDS, 
PI3K/Akt/mTOR, and the most important one, 
the MAPK pathway in which Raf (another subset 
of retroviral-derived oncogenes) MEK and ERK 
proteins are involved. An overview of KRAS sign-
aling pathways and the current targeted therapies 
is shown in Figure 2.

Most of the mutant variants of KRAS involve 
conformational changes in the protein that makes 
it impossible for GAPs to induce the release of 
GTP from KRAS; therefore, KRAS remains 
indefinitely in its active state, behaving as a potent 

Figure 2. Under normal conditions, KRAS drives the controlled activation 
of different proliferation and growth intracellular pathways. When activated 
by a receptor tyrosine kinase, KRAS releases GDP and binds GTP. When 
bound to GTP, KRAS will trigger the PI3 K/Akt/mTOR, MAPK, and NF-kB 
pathways. When mutated, KRAS will become permanently active, inducing 
uncontrolled cell proliferation. Drugs like sotorasib, adagrasib, and 
JNJ-74699157 permanently bind to the inactivated form of KRAS-G12 C, 
keeping KRAS from being activated by GTP. BI-1701963 inhibits the GEF 
protein SOS1, one of the main guanosine exchanging factors related to Ras 
proteins.
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driver of cancer.34–37 Mutations in KRAS are the 
most common genetic abnormalities seen in 
human cancer, with a prevalence of approxi-
mately 30%.38 In the case of pancreatic adenocar-
cinoma, KRAS mutations might be present in 
more than 90% of cases. Other cancers with a 
high prevalence of these mutations are colorectal 
cancer (CRC), stomach cancer, endometrial can-
cer, and lung cancer, especially in lung adenocar-
cinoma and with less frequency in lung squamous 
cell carcinoma.39 KRAS mutations in lung cancer 
are the most frequent oncogenic driver in western 
countries, accounting for about 20–25% of lung 
adenocarcinomas and 10–15% in Asian coun-
tries.40,41 As occurs with other targetable driver 
mutations, The Cancer Genome Atlas and the 
Clinical Lung Cancer Genome Project have 
shown that KRAS alterations are present almost 
exclusively in adenocarcinomas rather than squa-
mous cell cancers.42,43 An interesting particularity 
of KRAS mutations in lung cancer is that they are 
closely related with a patient’s positive smoking 
history, while other driver mutations like EGFR, 

BRAF, ROS1, and ALK are usually seen in non-
smokers44; thus, only 5–10% of all KRAS-
mutated lung carcinomas occur in patients with 
no history of tobacco consumption.45

Approximately 95% of KRAS mutations are in 
codon 12. Variant KRAS-G12 C is the most 
 common, corresponding to 39% of cases (Figure 3), 
followed by G12 V (18–21%) and KRAS-G12D 
(17–18%). Redig et  al. analyzed a cohort of 
KRAS-mutant lung cancer patients and com-
pared the prevalence of different mutant variants 
regarding smoking status. They found that transi-
tion mutation (guanine > adenine) were more 
frequent in never-smokers than in current or past 
smokers, in which transversion mutations (G > T) 
were more prevalent.46

Heterogeneity of KRAS-mutant lung cancer
Unlike other common genetic abnormalities in 
lung cancer, KRAS-mutant lung cancer presents 
with high heterogeneity, both from biological and 

Figure 3. This illustration depicts a single nucleotide polymorphism of guanine to thymine in codon 12 of 
exon 2 of KRAS, induces a change in the translated amino acid sequence of glycine to cysteine, generating a 
constitutively active form of KRAS.
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clinical perspectives. According to Ferrer et al.,47 
three different features might be involved in this 
heterogeneity: (1) the presence of concomitant 
genetic alterations, (2) the different KRAS point 
mutations, and (3) the mutant KRAS allelic con-
tent. Approximately nine different mutant vari-
ants of KRAS have been identified in codons 12, 
13, and 61. Different studies have demonstrated 
that specific point mutations generate a protein 
with different affinities for certain effector pro-
teins, making that particular effector a key onco-
genic pathway in the bearing tumor. A variety of 
in vitro studies have shown that KRAS-G12 C or 
KRAS-G12 V had inferior levels of activated 
(phosphorylated) Akt. Simultaneously, an 
increase in RAL activation was seen compared to 
wild-type KRAS cell lines.48

On the contrary, G12D mutant cell lines demon-
strated a higher affinity toward the PI3 K-Akt-
mTOR pathway. Another experimental analysis 
showed that KRAS-G12 C was also associated 
with higher levels of ERK1/2 phosphorylation 
(member of the MAPK pathway) than KRAS-
G12D. These data were further confirmed by 
assessing the effectiveness of a MEK inhibitor in 
murine models of KRAS-G12 C tumors versus 
KRAS-G12D, showing that G12 C tumors were 
significantly more sensitive to MEK inhibition, 
with higher levels of response rate and with a 
higher progression-free survival (PFS). These 
biological differences might seem trivial; how-
ever, the dependence on certain effector pathways 
results critical for treatment choices, as there are 
no currently available targeted therapies for 
KRAS, but some molecules are approved for dif-
ferent members of its effector cascades.

The activation of different transcriptional pro-
grams related to specific mutant variants has been 
an independent predictor of response to certain 
targeted therapies and a predictor of poor overall 
survival (OS).47 Ihle et  al.49 analyzed 215 tissue 
samples from lung cancer patients enrolled in a 
targeted therapy clinical trial and found that 
patients harboring KRAS-G12 C or KRAS G12 
V variants have a worse PFS compared to patients 
with other variants or with a wild-type KRAS 
(p = 0.046). Nadal et al. studied 179 patients with 
resected lung adenocarcinoma. KRAS mutation 
harboring was related with increased disease-free 
survival (DFS) compared to KRAS wild-type 
patients (p = 0.009). They also found that patients 
with the KRAS-G12 C variant had a significantly 

lower DFS than other mutants or wild-type 
patients (p < 0.001). A worse OS was also seen in 
KRAS-G12 C patients (p = 0.003). The progno-
sis of KRAS-mutant variants has not been vali-
dated yet in other standard clinical settings like 
advanced-stage disease.11

Another important determinant of biological 
behavior is the allelic content. An anabolic metab-
olism is a common feature of KRAS-mutant cells. 
This metabolic state is usually dependent on the 
presence of Ras mutations.50 Some evidence sug-
gests that this metabolic regulation and cell adap-
tion to oxidative stress vary significantly between 
patients with KRAS-mutant NSCLC.47 This dif-
ference is in part explained by the presence of co-
occurring mutations, but it has been demonstrated 
that allelic content is also a determinant of meta-
bolic regulation and redox management. Kerr 
et  al. analyzed KRAS-mutant cell lines and 
KRAS-mutant murine lung cancer models. They 
found an increased glycolytic activity, glutathione 
biosynthesis, increased antioxidant capacity, and 
a higher metastatic potential (especially in G12D 
homozygous specimens) than those cell lines or 
tumors that were heterozygous for a KRAS-
mutant variant.51 These investigators also found 
that mice bearing homozygous KRAS mutations 
had a lower OS than its heterozygous peers 
(p = 0.0045, exact survival days per group were 
not mentioned by authors).51

KRAS and co-occurring mutations
The presence of co-occurring mutations is also a 
determinant of heterogeneity between KRAS-
mutant tumors. A wide array of research suggests 
that co-occurring genomic abnormalities have an 
impact in biological behaviors, clinical prognosis, 
and sensitivity to certain targeted therapies.52 
Skoulidis et al. performed an integrative analysis 
of the genomics, transcriptomics, and proteomics 
of samples of KRAS-mutant lung adenocarci-
noma from patients with early-stage and chem-
orefractory disease. They described three clusters 
of patients defined by co-occurring genetic altera-
tions in STK11/LKB1, which the authors called 
KL subgroup; TP53 (KP subgroup) and 
CDKN2A/B (KC subgroup).53 A metabolic 
reprogramming and adaption characterized the 
KL subgroup to oxidative stress mediated by 
HIF1-α. This subgroup of tumors also presented 
with deficient expression of programmed death 
ligand 1 (PD-L1) and a decreased concentration 
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of tumor-infiltrating lymphocytes (TILs), indi-
cating that this type of tumor does not depend on 
immune evasion to thrive.

On the contrary, the KP subgroup presented with 
a high infiltration of inflammatory cells, immu-
noediting, and higher levels of PD-L1 expression 
(a mean of 56.3% positivity) even compared with 
wild-type KRAS LUAC (32.3%). The KC sub-
group showed enrichment of gene expression sig-
natures typical of upper and lower gastrointestinal 
neoplastic conditions.53 Furthermore, Skoulidis 
et  al. also performed an interesting analysis in 
which they assessed the objective response rate 
(ORR) of patients with lung adenocarcinoma 
receiving anti-PD1 therapy in clinical trials. They 
analyzed the results according to their proposed 
genetic subgroups. They found that ORR for the 
KL, KP, and K-only (KRAS mutations with no 
co-occurring alterations) groups was 7.4%, 35.7%, 
and 28.6%, respectively (p < 0.001) for the Stand 
Up to Cancer study cohort.54 The authors also 
analyzed patients from the Checkmate-057 
nivolumab clinical trial finding the respective 
ORRs of 0, 57.1, and 18.2% (p = 0.047).54

Next-generation sequencing and RNA-seq for 
KRAS
Different sequencing and gene amplification 
techniques have been used in the diagnosis of 
tumors harboring certain driver mutations. Some 
molecular techniques commonly used to detect 
these mutations include direct sequencing, ampli-
fication refractory mutation system (ARMS), 
droplet digital PCR (ddPCR) and lately next-
generation sequencing (NGS; mainly in research 
settings). Of all the techniques, NGS presents sig-
nificant advantages such as capturing a broader 
spectrum of mutations than Sanger sequencing 
(the most common method por EGFR mutation 
analysis), avoiding analysis bias as capillary 
sequencing depends on pre-knowledge of the 
gene or locus under study, while NGS analysis is 
unselective and even new mutations and altera-
tions can be discovered.55 In 2018, Jing et al. ana-
lyzed 112 lung cancer samples using NGS. 
According to their results, 10 patients (8.93%) 
had KRAS mutations and some few patients with 
two or three concomitant mutations with other 
genes like EGFR, NRAS, and PIK3CA. From 
the KRAS-mutant samples, the most common 
variant was G12D followed by G12C and G12V.56 
Furthermore, there are some kits that are 

currently used in certain clinical settings for the 
analysis of multiple genes of importance of 
patients with lung cancer, either from tissue sam-
ples or from liquid biopsy. Nacchio et al. analyzed 
194 liquid biopsies of patients with advanced 
NSCLC that were treatment-naïve, using an 
NGS panel called SiRe. About 36 patients pre-
sented with KRAS mutations either in exon 2 or 
3 and no concomitant alterations. In this cohort 
KRAS-G12 C alteration was the most common 
(91.7%).57

RNA-Seq is an interesting molecular technique 
that uses NGS methods to deliver a signature 
transcriptomic analysis of a certain sample and 
analyze gene expression under certain circum-
stances in the scenario of a certain driver muta-
tion. With RNA-Seq, a differential gene 
expression analysis can show how different in 
terms of gene expression, are tumors of a certain 
tissue with different driver alterations,58 revealing 
new prognostic markers based on expression on 
also characterizing better the population compris-
ing the tumor (in the case of single cell analysis). 
Maroni et al. used single cell RNA-Seq (sc-RNA-
Seq) to identify a particular cluster of epithelial 
cells within KRAS-mutant NSCLC tumors that 
was significantly associated with low OS. They 
also showed that this particular cluster identified 
in human samples had a counterpart in mice and 
that both epithelial cell clusters expressed BMI-1. 
These researchers also tested the efficacy of a 
drug called PTC596 (a BMI-1 inhibitor) in treat-
ing tumors in an NSG mice xenograft model of 
KRAS-mutant lung cancer using A549 cells. 
Their results showed that tumor size decreased 
considerably in the mice that received PTC596 
versus those that received only the therapy vehicle 
(p = 9.70 × 10–5).59 RNA-Seq has also been used 
in lung cancer as a prognostic tool. Yang et  al. 
analyzed 516 lung cancer samples downloaded 
from The Cancer Genome Atlas website. They 
analyzed the differential expression of KRAS iso-
forms (KRAS4A and KRAS4B) in KRAS-mutant 
and KRAS wild-type patients and correlated the 
findings with OS. The authors found that when 
KRAS4A was increased in expression or propor-
tion, OS was considerably lower (p = 0.0149 for 
expression and 3.18 × 10–3 for proportion).60

Novel therapies for KRAS-mutant lung cancer
Even though KRAS was one of the first onco-
genes discovered, there is no approved targeted 
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therapy yet. In the last decades, different scien-
tific publications and studies have concluded 
KRAS as an undruggable target. The first 
attempts to create small molecules that would 
inhibit KRAS binding to GTP were considered 
an impossible mission because of the high affinity 
of KRAS for GTP and the concomitant high con-
centration of GTP in cells.61,62 Other different 
approaches have been investigated with good in 
vitro results but with no in vivo effectiveness.63 
We will discuss a set of novel therapies that show 
promise in the treatment of KRAS-mutant 
LUAC.

BI-1701963. As mentioned above, the key regula-
tors of the KRAS GTPase activity are GEFs and 
GAPs; therefore, targeting these proteins might 
induce an indirect blockade of KRAS its effector 
pathways. BI-1701963 is a small oral molecule 
developed by Boehringer Ingelheim as a ‘pan-
KRAS inhibitor’. This molecule selectively inhib-
its SOS1, a quite common adaptor protein with an 
Ras GEF domain. By inhibiting SOS1, KRAS 
would not exit its GDP-bound inactivated status, 
shutting down the whole pathway. It is called a 
pan-KRAS inhibitor because as it is not targeting 
the protein itself, it does not matter what mutant 
variant certain tumor might have, all variants will 
be equally blocked. In 2020, at the American 
Association for Cancer Research Annual Meeting, 
data regarding the effectiveness of BI-1701963 
was presented. The investigators shared that 
BI-1701963 combined with an MEK inhibitor 
candidate (BI-3406) could reduce GTP-loaded 
KRAS formation and inhibit the MAPK pathway 
signaling. These observations were stable across 
different mutant variants, including the most com-
mon G12C, G12V, and G12D, and G13D oncop-
roteins. The authors previously showed that 
BI-1701963 and the MEK inhibitor trametinib 
could elicit tumor regressions in vivo xenografts of 
murine models with KRAS-driven tumors. Cur-
rently, BI-1701963 is the first GEF-KRAS inhibi-
tor reaching clinical trials and can be found at 
clinicaltrials.gov by its identifier: NCT04111458.

Sotorasib. As it was reviewed, the most common 
KRAS-mutant variant is G12C. Sotorasib is a 
small molecule developed by Amgen that acts as a 
specific inhibitor of the KRAS-G12 C variant. 
Sotorasib selectively binds to the P2 pocket of the 
switch II domain of KRAS-G12 C, generating an 
irreversible inhibition (mediated by covalent 
bonding) of the inactive GDP-bound KRAS. 

Preclinical studies showed that this drug inhibited 
almost totally detectable ERK phosphorylation, 
the last agent in the MAPK pathway.64 In Sep-
tember 2020, phase-I clinical trial of sotorasib in 
patients with KRAS-G12 C-mutant cancer was 
published in the New England Journal of Medi-
cine. A total of 129 patients were studied, from 
which 59 had NSCLC, 42 had CRC, and 28 had 
other tumors. From the subgroup of NSCLC, the 
authors found that 32.2% of patients had an 
objective response (complete or partial), and 
88.1% achieved disease control (objective 
response or stable disease). Median PFS was 6.3 
months. It is essential to say that these patients 
had a median of three prior therapy lines (with a 
range of 0–11). Responses were also seen in 
colorectal, pancreatic, endometrial cancers, and 
melanoma. In May 2021, sotorasib earned accel-
erated approval by the US Food and Drug Admin-
istration (FDA).

JNJ-74699157. Like sotorasib, JNJ-74699157 is a 
KRAS-G12 C inhibitor that also achieved clinical 
testing in 2019, manufactured by Johnson & John-
son. Its phase-I clinical trial is registered at clini-
caltrials.gov with the identifier NCT04006301. To 
date, recruitment has been completed with 10 
patients enrolled. JNJ-74699157 is a small mole-
cule for oral administration that is directed against 
the P2 pocket in the switch-II region of KRAS-
G12C. No preclinical data are available regarding 
this molecule.65

Adagrasib. Initially coined as MRTX849, adag-
rasib is also an oral administrated small molecule 
directed against KRAS-G12 C developed by 
Mirati Therapeutics. It is a tetrahydro-pyridopyr-
imidine that irreversibly covalent inhibits KRAS. 
In vitro analyses confirmed that lung and pancre-
atic cell lines (H358 and PaCa-2, respectively) 
when exposed to adagrasib, present with almost a 
complete inhibition of the MAPK pathway shown 
by deficient levels of ERK phosphorylation. Pre-
clinical studies evidenced that upon adagrasib 
administration, tumor regression was achieved in 
65% of cell lines and patient-derived xenograft 
models from multiple tumor types.66 During the 
2019 AACR-NCI-EORTC joint conference, 
results regarding a phase-I/II clinical trial of 
patients with KRAS-G12 C tumors (mainly 
NSCLC and CRC) showed that 4 out of 12 
patients assessed achieved a partial response 
(PR), and eight presented with stable disease. 
Adagrasib is also being tested in combination 
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therapy with inhibitors of other effector pathway 
agents like TKIs, mTOR inhibitors, or cell cycle 
inhibitors. Currently, there are four clinical trials 
registered at clinicaltrials.gov, in which adagrasib 
is being evaluated in combination with different 
drugs like pembrolizumab, docetaxel, cetuximab, 
afatinib, and TNO155 (and SHP2 inhibitor).66,67 
Recently, Tanaka et al. defined for the first time 
the mechanistic spectrum of acquired resistance 
to adagrasib in a patient who developed poly-
clonal acquired resistance with the emergence of 
10 heterogeneous resistance alterations in serial 
cell-free DNA spanning four genes (KRAS, 
NRAS, BRAF, and MAP2K1), all of which con-
verge to reactivate RAS-MAPK signaling. Nota-
bly, a novel KRASY96D mutation affecting the 
switch-II pocket, to which adagrasib and other 
inactive-state inhibitors bind, was identified that 
interferes with crucial protein–drug interactions 
and confers resistance to these inhibitors in engi-
neered and patient-derived KRAS-G12C cancer 
models. Interestingly, a novel, functionally dis-
tinct tri-complex KRAS-G12C active-state inhib-
itor RM-018 retained the ability to bind and 
inhibit KRAS-G12C/Y96D and could overcome 
resistance.68

Targeting KRAS neoantigens
The development of mutations in different human 
cancer driver genes is usually followed by the 
appearance of neoantigens, which are essentially 
a short oligopeptide that is not naturally expressed 
in healthy cells. Therefore, the presentation of 
these neoantigens via class-I HLA molecules 
could induce immune responses against that par-
ticular epitope.69 Certain epitopes of cancer can 
be synthesized in the laboratory and can be 
administered to patients with tumors bearing 
these same epitopes, eliciting an immune response 
against the tumor. This kind of therapeutic 
approach is what we know as a cancer vaccine.70 
Arbelaez et al. developed long synthetic peptides 
(SLPs) against neoepitopes of G12C, G12V, and 
G12D KRAS-mutant variants. They also conju-
gated cationic lipoplexes to every SLP to facilitate 
the delivery of these peptides to secondary lymph 
organs, eliciting activation of CD4+ T-cells but 
of CD8+ T-cells as well. The authors found that 
when alone, SLPs can induce activation of CD4+ 
T-cells alone, with little response on the tumoral 
burden; however, when lipoplexes were added, 
tumor regression was seen in different murine 
models in a CD8+ T-cell-dependent manner. 

The authors also tested the use of SLP + lipo-
plexes + immune checkpoint inhibitors, achieving 
profound responses in the studied mice.71 Wan 
et  al. tested two different peptide vaccines for 
KRAS-G12D in CT26 mice models. They 
achieved tumor regression in 50% of the mice 
treated.

Furthermore, they tested the vaccine with a pre-
ventive approach and found that 87.5% of mice 
were tumor-free after receiving a tumor xeno-
graft.72 To date, different clinical trials for KRAS-
mutant cancers using peptide vaccines are 
running. Some of these trials are accompanied by 
immune checkpoint blockade, and others are cell-
based, as autologous dendritic cells can also be 
loaded in vitro with the studied peptides and then 
reinfused in the patient. This approach has the 
potential of bearing better results, as dendritic 
cells will rapidly activate the cognate T cell recep-
tors (TCRs) that identify the peptide attached to 
a particular HLA molecule.

KRAS and tumor immunity
As it is mentioned before, certain KRAS variants 
are characterized by a strong modulation of the 
immune system. It has been demonstrated that 
mutant KRAS can induce a constellation of 
inflammatory changes in its microenvironment, 
modifying the tumor niche by eliciting the silenc-
ing of immune responses. KRAS-mutant cells can 
induce the secretion of particular cytokine and 
chemokine profiles via the activation of the PI3K 
pathway, the MAPK pathway, and the subse-
quent activation of NF-κB. IL-6 and TGF-β 
seem to be critical in KRAS-mediated immu-
noediting. The increased levels of TGF-β in the 
microenvironment can promote T-cell regulators 
(Treg) recruitment and induce the polarization of 
macrophages to the M2 type.73 Another impor-
tant regulator of immune responses in KRAS-
mutant tumors is the expression of PD-L1 by 
malignant cells. As discussed above, the KRAS-
mutant subgroup of patients with co-occurring 
mutations in TP53 (KP subgroup) present with 
high levels of expression of PD-L1. Different clin-
ical studies have assessed the efficacy of immune 
checkpoint inhibition using anti-PD-1, anti-PD-
L1, and anti-CTLA4 antibodies in KRAS-mutant 
NSCLC. Even though not statistically significant 
differences were found in ORRs between KRAS-
mutants and KRAS-wild-type, a correlation for 
better outcomes was perceived in the subgroup of 
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KRAS-mutant with a high level of PD-L1 expres-
sion (>50%).

Currently, different approaches of cellular immu-
notherapy are under investigation for the treat-
ment of KRAS-mutant LUAC. Researchers are 
using cytotoxic T lymphocytes (CTLs), natural 
killer (NK) cells, and autologous TILs to treat 
these malignancies. A very novel approach in the 
field of cellular therapies is the use of genetically 
modified T-cells. Using genetic engineering tech-
niques like CRIPS/Cas and TALEN,74 the endog-
enous TCR can be silenced, and then, 
transduction of a new laboratory-designed TCR 
construct can be done for another expression on 
T-cells and induction of a specific response 
against cells presenting certain HLA-epitope 
complexes derived from KRAS-mutant vari-
ants.75–77 The administration of synthetic pep-
tides can also enhance this approach.

KRAS has played a crucial role in understanding 
cancer and oncogenesis since its initial discovery 
in retroviruses. Even though heavy research has 
focused on developing effective therapies, none of 
the different approaches studied were effective. 
However, the last 5 years have yielded motivating 
and inspiring data regarding the treatment of 
these complex malignancies. It is a cause of joy to 
see how scientists are putting all their efforts with-
out rest, for the sake of KRAS-mutant bearing 
cancer patients. Cellular therapies and targeted 
therapies arise as the promised land of tumoral 
treatment after almost four decades of intense 
dedication.

MET

MET biology
MET (mesenchymal–epithelial transition; also 
known as HGF receptor, AUTS9, RCCP2, and 
DFNB97), is a proto-oncogene located on chro-
mosome 7q31. It codifies for a protein of 170 kD 
which is an RTK, with a highly glycosylated 
extracellular α-subunit and a transmembrane β-
subunit, which are linked by a disulfide bond. 
MET is a molecule that is essential for the sur-
vival and function of normal cells; in particular, 
this latter protein has crucial roles in embryogen-
esis,78 organ development,79 and regeneration.80

The extracellular subunit contains a semaphorin 
domain, a cysteine-rich MET-related domain, 

and four immunoglobulin-plexin transcription 
domains. The intracellular part contains a JX 
domain, an intracellular tyrosine kinase domain 
that mediates MET-associated signaling, and a 
tail on the C-terminal.81 The JX domain contains 
a serine residue (Ser985), which when phospho-
rylated performs inhibition of the receptor kinase 
activity.82 There have been identified two ligands 
for MET, the mammalian HGF and the scatter 
factor, along with their splicing isoforms and a 
bacterial leucine-rich surface protein named 
Internalin B.83

HGF binding to MET induces homodimeriza-
tion and phosphorylation of the Y1234 and 
Y1235 tyrosine residues, located within the 
tyrosine kinase domain’s catalytic loop.84 
Subsequently, tyrosine residues 1349 and 1356, 
located in the carboxy-terminal tail, undergo 
phosphorylation. When phosphorylated, these 
two residues form a unique tandem SH2 recogni-
tion motif (Y1349VHVX3Y1356VNV).85 This 
SH2 recognition motif induces the recruitment 
of signaling effectors that include the adaptor 
proteins GRB2,86 SHC,87 CRK, and CRKL,88 
the effector molecules PI3K, PLCγ, SRC,85 
SHIP-2,85 and STAT-3.89 Furthermore, MET is 
also associated with GRB2-associated binding 
protein 1 (GAB1),90 a multi-adapter protein, 
bound to and phosphorylated by MET, creating 
binding sites for other adaptors and effectors 
downstream. GAB1 can be directly bound to 
MET, or indirectly using GRB2. Additional 
tyrosine residues are involved in MET signaling. 
Phosphorylated Y1313 binds and activates PI3 
K, promoting cellular viability and motility. 
Likewise, phosphorylated Y1365 is involved in 
the regulation of cell morphogenesis.91

The downstream response to MET activation 
relies on stereotypical signaling modulators com-
mon to many RTKs. For activation of the 
Mitogen-activated protein kinase (MAPK) cas-
cades, MET activation stimulates the activity of 
the rat sarcoma viral oncogene homolog (RAS) 
guanine nucleotide exchanger Son of Sevenless 
(SOS) via binding with SHC and GRB2,92 leading 
to the activation of RAS. This downstream infor-
mation leads to the indirect activation of v-raf 
murine sarcoma viral oncogene homolog B1 
(RAF) kinases, which can subsequently activate 
the MAPK effector kinase MEK and finally 
MAPK, which can then translocate to the nucleus 
to activate transcription factors responsible for 
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regulating a large number of genes. In the context 
of MET signaling, this results in phenotypes, such 
as cell proliferation, cell motility, and cell cycle 
progression.93 SRC homology 2 domain–contain-
ing phosphatase-2 (SHP2) can also link MET 
signaling to the MAPK cascade, as sequestration 
of SHP2 to GAB1 is responsible for extending the 
duration of MAPK phosphorylation.94

The other major arm of MET signaling is the PI3 
K/Akt signaling axis. The p85 subunit of PI3K 
can bind either directly to MET or indirectly 
through GAB1, which signals through AKT/pro-
tein kinase B. This axis is primarily responsible 
for the cell survival response to MET signaling.95 
Transformation downstream of the MET recep-
tor is mediated by the phosphorylation of Janus 
kinase 1 (JNK), which occurs via binding to 

CRK. STAT3 has also been implicated in trans-
formation, although its proposed mechanism is 
controversial. Cellular migration is also mediated 
downstream of MET by focal adhesion kinase 
(FAK), which is localized to cellular adhesion 
complexes. FAK is activated through phospho-
rylation by SRC family kinases, which have been 
shown to associate directly with MET.85 The 
MET–SRC–FAK interaction leads to cell migra-
tion and the promotion of anchorage-independ-
ent growth.96 Figure 4 depicts the intracellular 
signaling of MET.

Negative regulation of the MET receptor is cru-
cial for its tightly controlled activity and can occur 
through several mechanisms. The Y1003 site, 
located in the JX domain, is a negative regulatory 
site for MET signaling that acts by recruiting 

Figure 4. MET signaling adaptors and mediators, as well as signaling pathways are depicted. Therapeutic intervention strategies 
to block and inhibit MET receptor oncogenic signaling cascade include blocking ligand-receptor interaction, preventing receptor 
dimerization, blocking MET kinase intrinsic activity, and inhibiting specific downstream signal transducers. DAG, diacylglycerol; HGF, 
hepatocyte growth factor; IP3, inositol triphosphate; PIP3, phosphatidylinositol (3,4,5)-triphosphate. 
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c-CBL (casitas B-lineage lymphoma).97 Regulation 
of MET signaling is also accomplished via its 
binding to various protein tyrosine phosphatases 
(PTPs), including the receptor-type PTPs density 
enhanced phosphatase 1 (dEP1) (or PTPrI) and 
leukocyte common antigen-related molecule 
(LAR) (or PTPrF), and the non-receptor PTPs 
PTP1B and T-cell protein tyrosine phosphatase 
(TCPTP). These PTPs modulate MET signaling 
by dephosphorylation of either the tyrosines in the 
MET kinase domain (in the case of PTP1b and 
TCPTP) or the docking tyrosines (in the case of 
dEP1). Finally, binding of PLCγ to MET results 
in the activation of protein kinase C (PKC), which 
can then negatively regulate MET receptor phos-
phorylation and activity.98 Independently of PKC 
activation, an increase in intracellular calcium 

levels can also lead to negative MET regulation.98 
Figure 5 depicts the exon structure of MET.

Crosstalk between MET and other RTKs has 
also been studied in great depth because of its 
potential importance in developing resistance. 
MET has also been shown by multiple studies to 
interact directly with the EGFR, allowing activa-
tion of MET after stimulation of cells with the 
EGFR ligands EGF or transforming growth fac-
tor (TGF)-α.99 Stimulation of cells expressing 
both MET and EGFR with EGF resulted in 
phosphorylation of MET, and stimulation with 
ligands for both receptors resulted in synergistic 
activation of downstream modulators, indicating 
mutual activation of these two pathways.100 
Evidence also exists for MET interaction with the 

Figure 5. (a) The structure of MET and frequency of MET exon 14 alterations in lung adenocarcinoma. (b) Normal MET splicing leads 
to the biosynthesis of the normal receptor that can be targeted by E3-ubiquitin ligase cCBL and directed for lisosomal degradation. 
(c) Mutations in the splice junctions of MET exon 14 can lead to exon 14 skipping resulting in the mature MET receptor that lacks 
juxtamembrane regulatory domain. Consequently, the receptor cannot be targeted by cCBL, impairing its lysosomal degradation 
thereby leading to de accumulation of the protein and increase receptor activity.
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other EGFR family members ERBB2 and ERBB3 
(for erythroblastic leukemia viral oncogene 
homologs B2 and B3), causing transactivation of 
both receptors.101 Interaction of MET with the 
closely related RON (recepteur d’origine nantais) 
receptor has also been shown to cause transphos-
phorylation of the MET receptor in the absence 
of HGF.102 Interestingly, it was recently shown 
that transactivation of RON by MET may be a 
feature of cancer cells that are ‘addicted’ to MET 
signaling.103 Recently, transactivation between 
MET and both platelet-derived growth factor 
receptor (PDGFR) and Axl was found to play a 
role in bladder cancer.104

MET gene mutations in lung cancer
Activating mutations in RTKs play a critical role in 
oncogenesis.105 A set of different gene mutations in 
the MET sequence have been found to promote 
lung cancer evolution. Somatic intronic mutations 
in the JX domain, with further loss of CBL-E3 
ligase binding, was characterized to demonstrate 
elevated MET expression and prolonged ligand-
dependent MET activation. Normally, introns 
flanking MET exon 14 are spliced out, resulting in 
an mRNA transcript with an intact exon 14 that 
contains the CBL-E3 ligase binding site. Mutations 
may disrupt splicing sites, resulting in aberrant 
splicing and consequently, skipping of exon 14. As 
a result of absent binding to CBL-E3 ligase, there 
is decreased polyubiquitination which translates in 
delayed downregulation, and sustained MET acti-
vation.105,106 More than half of these are indel 
mutations, many of which have been described 
recently. This heterogeneity and variability in 
splicing generate a diagnostic challenge, which 
requires the correct implementation of analytical 
methods with high sensitivity and specificity. 
Approximately 4% of lung adenocarcinomas carry 
alterations in MET exon 14. The mutation rates 
were 2.6% in adenocarcinoma, 4.8% in adenos-
quamous carcinoma, and 31.8% in sarcomatoid 
carcinoma.107 Conversely, MET exon 14 mutation 
was not detected in squamous cell carcinoma, 
large-cell carcinoma, and lymphoepithelioma-like 
carcinoma. Besides, MET exon 14 mutation 
occurred mutually exclusively with known driver 
mutations but tended to coexist with MET ampli-
fication or copy number gain. Similarly, low-level 
MET amplification and polysomy might occur in 
the background of EGFR or KRAS mutation 
whereas high-level amplification (MET/CEP7 
ratio ⩾ 5) was mutually exclusive to the major 

driver genes except MET exon 14 mutation.108 In 
vitro, both small molecule TKI and MET-directed 
monoclonal antibodies have been found to be 
active in cell lines harboring MET exon 14 altera-
tions.109 In most reports, the most frequent exon 
14 alteration was splice donor mutation and PRs to 
either selective or multi-targeted kinase inhibitors. 
In most reports, the most frequent exon 14 altera-
tions were splice donor mutation and PRs to either 
selective or multi-targeted kinase inhibitors.108–113

MET gene amplification in lung cancer
In about 4% of TKI-naïve cases of NSCLC, MET 
amplification has been identified as a primary 
oncogenic event, and as a secondary in ≈20% in 
EGFR-mutated NSCLC with acquired resistance 
to TKIs (especially after the use of osimerti-
nib).114,115 In addition, the reported frequency of 
MET CNG (copy number gain) in NSCLC ranges 
from 0.7 to 21%, depending on the technique used 
and the cut-point for positivity. Increased copy 
numbers of the MET gene can be detected by flu-
orescence in situ hybridisation (FISH), reverse 
transcriptase-PCR, or NGS. MET gene amplifica-
tion is expressed as the level of gene copy number 
gain and MET: CEP7 ratio. A MET: CEP7 
ratio > 2 and the presence of five signals or more 
per cell for copy number gain, are considered posi-
tive for MET amplification.116 MET amplification 
is associated with poor prognosis in patients with 
NSCLC.114 Recently, Kim et al. conducted a sys-
tematic review to determine MET and GCN 
amplification’s prognostic value. From the integra-
tion of 7,647 patients (21 studies), a worse prog-
nosis was found for patients harboring high MET 
CNG (hazard ratio (HR) = 1.45, 95% confidence 
interval (CI) = 1.16–1.80; p = 0.001). Subgroup 
analyzes showed that high MET CNG signifi-
cantly correlated with a poor prognosis in patients 
with adenocarcinoma (HR = 1.41, 95% CI = 1.11–
1.79; p = 0.005) and in Asian populations 
(HR = 1.58, 95% CI = 1.32–1.88; p < 0.00001).117

Recently, in a small series, the ORR to crizotinib 
(a MET/ALK/ROS1 inhibitor) dramatically dif-
fered between cases with different MET/CEP7 
ratios (ratio ⩾ 1.8 to ⩽2.2 ORR 0%; ratio > 2.2 to 
<5; ORR 17%; ratio ⩾ 5; ORR = 67%).118 In 
EGFR-mutant NSCLC with acquired resistance 
to EGFR-TKIs, the ORR to the combination of 
an EGFR inhibitor and capmatinib (INC280) 
was 0% among those with a mean MET/cell of 
<5% and 40% among those with mean MET/
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cell ⩾ 5.119 MET exon 14 alterations harbor con-
current high-level MET copy number gain in 
20% of cases.120 In patients with EGFR muta-
tions, secondary MET amplification leads to 
acquired EGFR-TKI resistance due to transacti-
vation of ErbB3 signaling.121 Based on this, dif-
ferent clinical trials are exploring a combination 
of MET and EGFR-TKI in patients with mutant 
EGFR (TATTON and INSIGHT trials).

HGF and HGF receptor over-expression
Previous studies have noted that over-expression 
of MET was positively associated with vascular 
and lymphatic invasion, which led to a higher risk 
of cancer relapse and more advanced stage among 
NSCLC patients.122,123 From therapy’s experi-
ence, MET positivity was closely related to radi-
oresistance and chemo-resistance (by activating 
the focal adhesion kinase—FAK and downregulat-
ing the expression of different apoptosis factors), 
hence correlated with unfavorable outcomes.124 In 
terms of pathogenesis, HGF could facilitate tumor 
metastasis through MET/HGF pathways by 
inducing the epithelial–mesenchymal transition 
(EMT) process.125,126 Also, MET over-expression 
was related to the prognosis of patients that har-
bored various EGFR status as MET and EGFR 
shared signal molecules in downstream path-
ways.127 Thus, MET over-expression could affect 
patients’ efficacy that received EGFR-TKIs as a 
result.128,129 Interestingly, p-MET expression, 
which represents the activation level of MET, did 
not impact the survival of NSCLC.

MET gene fusion and rearrangement
MET was first identified when the oncogenic 
chromosomal rearrangement Tpr-Met was 
induced in a sarcoma cell line.130 Although MET 
fusion gene products are not frequently found, 
they have recently been documented in lung ade-
nocarcinoma. Stransky et al. demonstrated trans-
location events involving MET across different 
tumor types. Specifically, in lung adenocarci-
noma, fusion of the dimerization motif to intact 
kinase domain led to generation of a chimeric 
fusion protein, KIF5B–MET.131

NGS and RNA-seq in lung cancer with MET 
alterations
As for KRAS, NGS testing is being slowly intro-
duced in the diagnosis of MET alterations, 

especially in METex14 mutations. Samples might 
be tested from solid tissue or can also be assessed 
from liquid biopsies when not sufficient solid tissue 
is available or when it is estimated that is collection 
might be delayed for 2 weeks or more.132 In the 
case of NSCLC, whole-genome and even whole-
exome sequencing are not recommended as most 
of the data will be clinically irrelevant. Therefore, 
there is a targeted approach for testing that looks 
for actionable druggable targets this is what we 
know as target enrichment. The process of target 
enrichment is also important because sequencing 
depth needs to be high to successfully detect low-
frequency allele variants. There are namely two 
types of NGS techniques used in different tumor 
genetic detection assays. The first one is amplicon-
based methods, in which a set of primers are used 
to flank the genetic region of interest and allow 
amplification; however, this method has shown to 
be ineffective because of a large proportion of allele 
dropout that results in false-negative results.133 
These allele dropouts are the consequence of single 
nucleotide polymorphisms and short indels in the 
primer binding sequences, or it can even be a dele-
tion of a whole genomic region that might harbor 
the primer binding sites. Some clinical kits made 
for NGS of MET exon 14 mutations testing have 
not been able to be optimized.134 Poirot et  al.135 
analyzed 191 NSCLC tumor samples using two 
amplicon-based detection kits, they also did an in 
silico analysis of eight commercial NGS kits for 
mutation detection. They found that the amplicon-
based methods yielded a considerably high propor-
tion of false-negative results and that the 
commercially available kits could not be able to 
detect more than 63% of the literature-reported 
MET exon 14 mutations based on primer design. 
The hybrid capture library method bypasses the 
weaknesses of the amplicon method using frag-
mented regions of genomic DNA to which nucleo-
tide probes will bind; however, these probes, which 
would be the analogs to primers, will bind to regions 
surrounding the area of interest, avoiding allele 
dropout due to primers not binding. Furthermore, 
the hybridization probes used in this method are 
considerably longer than primers, making them 
more tolerant to the presence of mismatches in the 
binding sites.136 The MSK-IMPACT and the 
FoundationOne CDx kits, which are reliable diag-
nostic tools, utilize the hybrid capture tool and are 
also equipped with a complimentary bioinformatic 
software that reliably detect a wide group of MET 
exon 14 alterations without the use of RNA-based 
testing.132
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The use of RNA sequencing has not yet been intro-
duced as a standard practice, this is because of 
RNA-seq only detect the direct result of the MET 
exon 14 skipping, which is the fusion of exons 13 
and 15. Nevertheless, RNA-seq might be useful in 
the detection of METex14 in patient with non-
canonical mutations intronic mutations. A lot of dif-
ferent technical challenges are faced when using 
RNA-seq as a complimentary diagnostic tool. First, 
it is complicated to extract enough high-quality 
RNA from patients’ samples, especially when sam-
ples are scarce and when they are derived from for-
malin-fixed, paraffin-embedded specimens. When 
the RNA used does not have an adequate quality 
control, accurate interpretation of negative results 
cannot be done. Also, false-positive results might 
arise from low basal levels of alternative splicing, 
showing that there is fusion of exons 13 and 15 
when there is no MET exon 14 alterations.137

MET inhibitors in NSCLC
Tyrosine kinase inhibitors. MET TKIs are broadly 
classified according to the binding site and mech-
anism.138 Type-I inhibitors are adenosine triphos-
phate (ATP)-competitive and bind to tyrosine 
1230 in the activation loop. Type-Ia inhibitors 
(i.e., crizotinib) interact with the glycine residue 
G1163, resulting in more significant off-target 
actions, while type-Ib inhibitors such as capma-
tinib, tepotinib, and savolitinib present with 
stronger interactions with Y1230 and no interac-
tion with G1163.17 Type-II inhibitors, form which 
cabozantinib is a great example, bind directly to 
the adenine binding site of ATP, with an exten-
sion to the hydrophobic back pocket, with potency 
depending on the activation state of MET pro-
tein.17,139 Table 1 summarizes the most significant 
results of the studies conducted with MET 
inhibitors.

Type-II MET inhibitors. Capmatinib (TABRECTA). 
Capmatinib (INC280) is an oral, type-Ib MET 
inhibitor with high potency and high selectivity. 
Preclinical studies have demonstrated that cap-
matinib can block MET phosphorylation and 
activate key downstream signaling mediators in 
MET-dependent cell lines.140 Moreover, different 
pleiotropic effects were seen on other signaling 
pathways including EGFR and HER3. During 
the dose-escalation part of the phase-1 trial 
(NCT01324479), 38 patients received capma-
tinib, starting at a dose of 100 mg BID in a cap-
sule vehicle.141 NSCLC patients were not St
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included in this cohort. Dose-limiting toxicities 
(DLTs) for grade-3 fatigue and grade-3 bilirubin 
increase occurred at doses of 200 mg BID and 
250 mg BID, respectively. Maximum tolerated 
dose (MTD) was not reached.

No DLTs were identified at 600 mg BID capsule 
formulation. In addition, 400 mg BID tablets 
were comparable in terms of tolerance and expo-
sure. This dose was expected to achieve and sus-
tain MET inhibition; therefore, this dose became 
the recommended Phase-2 dose (RP2D). Overall, 
capmatinib showed a good tolerance profile, with 
very few adverse events (AEs) that included nau-
sea (32%), hyporexia (29%), vomiting (29%), 
and fatigue (26%). The most common grade 3 or 
4 AE were fatigue (8%), ALT increase (5%), and 
hypophagia (5%).141

There were two dose-expansion cohorts included 
in the primary trial that included advanced 
NSCLC patients.142 The first cohort was com-
prised of MET dysregulated NSCLC, in which 
patients with MET over-expression and amplifi-
cation were included. The second cohort enrolled 
EGFR wild-type NSCLC with MET over-expres-
sion identified by immunohistochemistry (IHC). 
A post hoc analysis further assessed MET status 
using gene copy number (GCN) and amplifica-
tion by fluorescence in situ hybridization (FISH) 
and MET mutations by NGS. Overall, 55 sub-
jects were included (26 for the first cohort and 29 
for the second). Overall response rate (ORR) was 
20% (95% CI: 10.4–33.0), with a particularly 
high response rate of 47% for 15 patients harbor-
ing MET GCN ⩾ 6 (n = 15). Remarkably, all 
patients with METex14 alterations achieved an 
objective response, including one patient with 
complete response (CR). The most frequently 
seen all grade capmatinib-related AEs included 
nausea (42%), peripheral edema (33%), and 
vomiting (31%), and no grade-3 or -4 capmatinib-
related AEs occurred in >10% of patients.142

GEOMETRY mono-1 (NCT02414139) is a 
phase-II single-arm, multi-center, multi-cohort 
trial evaluating the efficacy of capamatinib at a 
dose of 400 mg BID in the treatment of advanced 
NSCLC with wild-type EGFR and ALK. This 
trial is comprised of seven cohorts that are indi-
vidually and centrally prescreened for MET sta-
tus and past therapies.143 Cohorts 1b, 2, and 3 
included patients that had received prior therapy 
and have an MET amplification.

Enrollment in these cohorts was finalized early 
due to futility. Currently, preliminary results for 
METex14-altered NSCLC patients, regardless of 
GCN have been reported. These patients were 
divided in to two groups, cohort 4 for patients 
with 1–2 prior treatment lines (n = 69), and cohort 
5b, that included treatment-naïve patients 
(n = 28). Primary endpoint was ORR, and sec-
ondary endpoint was duration of response 
(DOR). For cohort 4, ORR was 41% (95% CI: 
27.6–51.6), with a median DOR (mDOR) of 9.7 
months (95% CI: 5.5–13.0). For cohort 5b, ORR 
was found to be 68% (95% CI: 47.6–84.1), and 
the mDOR was 12.6 months (95% CI: 5.5–25.3). 
A small number of subjects affected by brain 
metastases were included in both cohorts, with an 
overall intracranial response of 54%, complete 
intracranial response was achieved in several 
cases.143 The study included 334 patients in total. 
The observed safety profile was similar with ear-
lier trials of capamatinib.

Most common all-grade capmatinib-related AEs 
were peripheral edema (42%), nausea (33%), cre-
atinine increase (20%), vomiting (19%), fatigue 
(14%), hyporexia (13%), and diarrhea (11%), 
with the majority of them being grade 1–2. In 
4.5% of patients, pneumonitis was seen, with 
grade-3 pneumonitis in 1.8% of patients and one 
death (0.3%). Treatment discontinuation was 
performed in 8 patients (2.4%) due to pneumoni-
tis. Hepatotoxicity was diagnosed in 13% of 
patients, with a grade 3 or 4 severity seen in 6% 
and treatment discontinuation of 0.9%. Based on 
these results, the US FDA conceded accelerated 
approval for capmatinib (TabrectaTM) for NSCLC 
patients with an METex14 alteration detected by 
a companion diagnostic tool (FoundationOne 
CDx assay).

Even though capmatinib showed promising 
results, drug resistance was seen in patients with 
MET exon 14 mutations. Currently, the mecha-
nisms for this drug resistance are not completely 
known and need to be further characterized. 
Secondary resistance to type-I MET inhibitors 
have been seen for MET mutations in D1228 and 
Y1230, through in vitro screening and mutagene-
sis assays.144,145 Different case reports have 
described these resistance mutations during cri-
zotinib therapy for METex14 altered tumors.146–

149 In vitro experiments with MET-amplified cell 
lines exposed with capmatinib suggest that activa-
tion of EGFR signaling occurs, with further 
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recruitment of downstream mediators like PIK
3CA.144,150–152 Similarly, preclinical data suggest 
that KRAS signaling may be upregulated in MET 
exon 14–mutated neoplasms, and this expression 
of mutant KRAS can induce resistance to MET-
directed therapy.153 Different genetic alterations 
are positively selected under MET-directed ther-
apy. A case series of 20 patients under MET-
directed TKI therapy found acquired MET 
resistance mutations, MET mutant allele amplifi-
cation, new KRAS mutations, and amplifications 
of different drivers (KRAS, EGFR, HER3, and 
BRAF) after post-therapy NGS.154 Acquisition of 
MET D1228 N mutations with additional HER3 
and EGFR amplification was confirmed with 
NGS for one patient, and EGFR amplification 
with HER3 gain in a second patient.154

An extensive series of 298 patients with MET 
exon 14 altered NSCLC showed a prevalence of 
concurrent MDM2 amplification of 35%, CDK4 
amplification in 21%, EGFR amplification in 6%, 
and KRAS mutations in 3%.155 Furthermore, 
simultaneous MET amplification was found in 
15%, which was associated with a higher tumor 
mutational burden (TMB). Co-ocurring RAS-
MAPK pathway genetic alterations in genes like 
KRAS and NF1 were also associated with a 
decreased response to MET TKI therapy in a 
case series of 289 patients.156 All the potential 
implications of the mentioned genomic altera-
tions over capmatinib-associated response and 
resistance are yet to be validated.

The patterns of clinical progression after cap-
matinib are described. In particular, brain metas-
tases occur with greater frequency in 
oncogenic-driven NSCLC; however, it has not 
been possible to establish the MET exon 14 
mutation population’s risk.157 In a series of 34 
patients with MET exon 14 altered NSCLC, 
brain metastases were diagnosed in 21% of 
patients, being the second-most common meta-
static location after bone. In other descriptive 
study that evaluated 71 patients, the incidence of 
brain metastatic lesions was 37%.158 As described 
previously, only a small subset of patients with 
brain metastases were included on GEOMETRY 
mono-1. However, intracranial responses were 
seen in over half, 75 suggesting moderate intrac-
ranial activity for capmatinib.

Lately, Dagogo-Jack et al.154 reported the results of 
a phase-II trial that evaluated the use of capmatinib 

in patients with MET-Altered lung cancer previ-
ously treated with an MET inhibitor. A total of 20 
patients were enrolled between May 2016 and 
November 2019, including 15 patients with MET 
skipping alterations and five patients with MET 
amplification. All patients had received crizotinib, 
and three had also received other MET-directed 
therapies. Two patients (10%) achieved an objec-
tive response to capmatinib, and 14 had SD, yield-
ing a disease control rate (DCR) of 80%. Among 
five patients who discontinued crizotinib for intol-
erance, the DCR was higher (83%), including two 
cases with tumor shrinkage close to 30%. 
Intracranial DCR among four patients with meas-
urable brain metastases was 100%, with no intrac-
ranial objective responses. Overall, the median 
PFS and OS were 5.5 (95% CI: 1.3–11.0) and 
11.3 (95% CI: 5.5–NR) months, respectively. 
MET D1228 and Y1230 mutations and MAPK 
alterations were recurrently detected in post crizo-
tinib, pre capmatinib plasma, NGS evaluation. 
Besides, new and persistent MET mutations and 
MAPK pathway alterations were detected at cap-
matinib progression.159

Tepotinib (TEPMETKO). Tepotinib (EMD1214063) 
is also a type-Ib MET inhibitor with a high selectivity 
and potency profile. In preclinical studies, tepotinib 
was able to inhibit HGF-induced MET phosphoryl-
ation in cancer cell lines with a mean of IC50 of 3 
nM. Tepotinib also induced clearance of human 
tumors in xenograft animal models. These results 
were seen regarding of MET activation (HGF-
dependent or -independent).160,161

The first-in-human phase-I trial (registered with 
NCT01014936) of tepotinib in 149 patients with 
different advanced solid malignant neoplasms (17 
cases of primary lung cancer) was conducted. 
There was not characterization of a maximum-
tolerated dose with a daily dose of 1400 mg. The 
recommended dose for the following phase-II 
study (RP2D) was determined as 500 mg QD, as 
modeling data supported that this dose would be 
enough to achieve ⩾90% MET inhibition in 
⩾90% of patients.162

The VISION study (registered as NCT02864992), 
was a multi-center, open-label, and multi-cohort 
phase-II trial, clinically meaningful efficacy was 
seen with tepotinib in patients with advanced 
NSCLC with MET exon 14 mutations. Three 
cohorts were included as follows: cohort A were 
patients with skipping mutations; cohort B 
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included subjects with MET amplification; and 
cohort C, which is still enrolling subjects with 
skipping alterations for confirmatory analysis of 
cohort A results. Until January 2020, 152 patients 
with MET exon 14 skipping tumors, that were 
diagnosed on tissue or liquid biopsy had received 
tepotinib (500 mg PO), from which 99 subjects 
(89 with adenocarcinoma) were eligible for analy-
sis of outcomes. ORR was 46% (95% CI: 36.4–
56.8; all were PRs) with a DCR of 65.7%. The 
median PFS was 8.5 months, and the median 
duration of OS was 17.1 months (95% CI: 12.0–
26.8); however, data were immature at the time-
point of analysis.163

AEs presented in 89% of the safety population. 
The most frequently seen treatment-related AE 
of grade 3 or higher were peripheral edema (7% 
prevalence), leading to a reduction in drug dose 
in 16% of subjects and a medication interruption 
in about 18%.

In March 2020, tepotinib received approval in 
Japan by the Ministry of Health, Labor and 
Welfare and fast track approval by the US FDA. 
Furthermore, ArcherMET® CDx was also 
approved to detect MET exon 14 mutations in 
advanced NSCLC patients from blood and tissue 
samples for consideration of treatment with 
tepotinib.164

Since MET amplification is a mechanism of 
acquired resistance to EGFR after first-line osi-
mertinib therapy, the hypothesis of adding tepo-
tinib could overcome MET-related osimertinib 
resistance. Information on the combination of 
tepotinib plus gefitinib demonstrated improved 
patients’ outcomes with EGFR mutations who 
developed MET amplification as a resistance 
mechanism compared to chemotherapy 
(INSIGHT NCT01982955). The PFS was 16.6 
versus 4.2 months (HR: 0.13; 90% CI: 0.04–0.43), 
and the OS was 37.3 versus 13.1 months (HR: 
0.08; 90% CI: 0.01–0.51) for the TKIs combo 
and chemotherapy, respectively.165 INSIGHT 2 
(NCT03940703) is an ongoing global (approxi-
mately 100 sites in 15 countries), open-label, 
phase-II trial of tepotinib plus osimertinib in 
patients with advanced EGFR-mutant NSCLC 
designed to establish ORR by investigator assess-
ment, DOR, PFS, OS, and pharmacokinetics.166

Recently, Pudelko et al. assessed the short- and 
long-term effect of tepotinib on MET 

downstream signaling and the phosphorylation 
status of other than MET RTKs and non-RTKs 
on the parental tepotinib-resistant cells (EBC1 
and EBC1-TR1). They observed activation of 
several RTKs, including ERBB (EGFR, ErbB2, 
and ErbB3), FGFR3, AXL, RET, DDR1, and 
M-CSFR in both cell lines. EBC1-TR1 cells 
displayed elevated levels of phosphorylated 
AXL and EGFR compared to EBC1 parental 
cells and increased phosphorylation of ERK1/2, 
AKT, c-Jun, and YES.167 Also, the inhibition of 
Src homology 2-domain-containing phos-
phatase 2 (SHP2) delayed the emergence of 
tepotinib resistance and synergized with tepo-
tinib in treatment-naive and tepotinib-resistant 
cells as well as in xenograft models.168

Savolitinib. Savolitinib (AZD6094, volitinib, 
HMPL-504; AstraZeneca) is a potent and selec-
tive (>650 folds selectivity compared to other 
265 kinases) type-Ib selective MET inhibitor that 
has shown anti-tumor activity in the preclinical 
setting and entered phase-I and -II studies. In a 
phase-I trial developed in patients with NSCLC, 
preliminary anti-tumor activity was observed in 
those with increased MET gene copy number, 
gene amplification, or high MET protein expres-
sion.169 Preliminary results from a phase-II clini-
cal trial (registered as NCT02897479) conducted 
in China showed high efficacy and safety of 
savolitinib in subjects diagnosed with pulmonary 
sarcomatoid carcinoma and other types of MET 
exon 14 NSCLC. The latest data disclose from 
this trial170 showed that MET treatment-naïve 
patients (n = 70), from which 57.1% had 
NSCLC, had an ORR of 47.5% (95% CI: 34.6–
60.7), and a DCR of 93.4% (95% CI: 84.1–98.2). 
Approximately 58% of subjects received treat-
ment for 6 months or more. Median PFS was 6.8 
months (95% CI: 4.2–13.8). Adverse events that 
led to treatment withdrawal were seen in 14.3% 
subjects. Hypersensitivity and hepatic injury and 
were the most common manifestations with an 
incidence of 2.9% each. The former study also 
demonstrated that savolitinib was able to enter 
the blood–brain barrier (BBB) and be effective in 
patients bearing central nervous system metasta-
ses. A drug application for savolitinib for the 
treatment of MET exon 14 NSCLC is currently 
under review by the China National Medical 
Products Administration.18

Bozitinib. Bozitinib (APL-101, PLB1001, and 
CBT101) is a highly selective and specific MET 
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inhibitor (8 nM) bearing a great activity in animal 
cancer models, including tumors like lung, hepa-
tocellular, pancreatic, and gastric carcinoma.171 
Bozitinib was shown to have a higher apparent 
permeability as well as a lower efflux rate when 
compared with other MET inhibitors like 
foretinib, crizotinib, and cabozantinib. In an in 
vitro cellular experiment, bozitinib showed a 
higher specificity for MET inhibition and could 
permeate the BBB in murine specimens. Hu et al. 
analyzed the genetic variants of 188 IDH1/
IDH2 + glioblastoma subjects and found MET 
exon 14 mutations in about 14% (95% CI: 8.0–
23.5) of patients, with a positive association for a 
worse prognosis. In a phase-I clinical trial (regis-
tered as NCT02978261), bozitinib was evaluated 
in GBM harboring PTPRZ1-MET fusions and/
or MET exon 14 (n = 6), two achieved PR, and 
two SD.172 In addition, two had PD, and the TKI 
was tolerated with few side effects, recommend-
ing bozitinib as monotherapy with a dosage of 
300 mg BID.

Different studies with bozitinib are already run-
ning. The NCT03175224 is a phase-I/II open-
label, international, multi-center, trial assessing 
the pharmacokinetics, preliminary efficacy, and 
safety of bozitinib in NSCLC patients with MET 
exon 14 and MET dysregulated advanced solid 
malignant neoplasms. Another phase-II study 
(NCT04258033) recently started in China 
included 185 participants with advanced MET-
dysregulated NSCLC with the objective of assess-
ing efficiency and safety of bozitinib.18

TPX-0022. A type-I kinase inhibitor with a mac-
rocyclic structure that designed to inhibit MET, 
CSF1R, and SRC with enzymatic kinase inhibi-
tion IC50 values of 0.14, 0.71, and 0.12 nM, 
respectively.173 In MET-amplified gastric cancer 
cell lines, TPX-0022 inhibited cell division, with 
IC50 < 0.2 nM, which is comparable to cap-
matinib. Compared to crizotinib, TPX-0022 had 
a >10-fold potency. TPX-0022 also demon-
strated tumor growth inhibition by modification 
of the tumor microenvironment via induction of 
differentiation of tumor-associated macrophages 
into an M1 phenotype, as well as increasing cyto-
toxicity of T-cells.173

The first-in-human dose-escalation phase I clini-
cal trial, SHIELD-1 (NCT03993873), involving 
patients with advanced solid tumors harboring 
MET alterations (exon 14 deletions, MET 

amplification, fusion, or oncogenic kinase domain 
mutations) was recently finished. At the data cut-
off, 22 heavily pretreated patients, with a median 
of 3 prior therapy lines (range: 1–6), were 
enrolled. The median patient age was 63 years 
(range: 44–84), and 15 patients (68.2%) had an 
ECOG performance status of 1. There were 13 
patients (59.1%) with NSCLC, 4 (18.2%) with 
gastric/gastroesophageal junction (GEJ) cancer, 4 
(18.2%) with CRC, and 1 (4.5%) with glioblas-
toma. Most AEs were grade 1 or 2 in severity. 
The most common all-grade treatment-emergent 
AEs were dizziness (55%), attributed to off-target 
TRK inhibition, increased lipase (32%), and 
fatigue (32%). Five patients (23%) experienced 
AEs that led to dose reduction, and 2 (9%) expe-
rienced AEs that led to dose discontinuation. The 
most common all-grade treatment-related AEs 
were dizziness (46%), increased lipase (23%), 
and increased amylase (18%). Of the 10 patients 
who were TKI naive, five achieved PR. Three 
responding patients had gastric/GEJ cancer, 1 
had CRC, and 1 had NSCLC.174

Type II MET small molecule inhibitors. Cabozan-
tinib (CABOMETYX). Cabozantinib (also known 
as Cometriq, XL184, BMS-907351, Exelixis) is a 
type-II MET inhibitor (IC50 value of 1.3 nM) 
with activity over a wide array of molecular tar-
gets, including VEGFR2, FLT3, c-KIT, AXL and 
RET. Cabozantinib is currently approved by the 
FDA for the treatment of advanced medullary thy-
roid carcinoma, advanced clear-cell renal-cell car-
cinoma and for hepatocellular carcinoma after 
relapse with sorafenib. Starting in 2005, cabozan-
tinib was the first oral MET inhibitor entering 
clinical trials. With IC50 values of 4, 5, and 14.6 
nM, cabozantinib is able to inhibit MET-activat-
ing kinase domain mutations in the residues 
Y1248 C/H, D1246 N, and K1262R, respectively. 
In murine experiments, cabozantinib drastically 
changed tumor histology, resulting in tumoral 
regression, reduced endothelial proliferation and 
increased apoptotic rate. Tumor growth inhibition 
was dose-dependent in breast, lung, and glioma 
models.175 A previous study carried out in an 
unselected population showed an ORR at week 12 
of 10%, including six patients with confirmed PR. 
The overall DCR at week 12 was 38%, and objec-
tive tumor regression was observed in 64%.176

Although clinical trials of cabozantinib in MET 
exon 14 alterations have not been published yet, 
multiple case studies suggest a good safety 
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profile and effectiveness of this multikinase 
inhibitor.111,177,178 An Italian phase-II trial 
(CABinMET, NCT03911193) currently evalu-
ates cabozantinib in patients with MET-mutated 
NSCLC.

Merestinib (LY2801653). Merestinib is a multi-
targeted TKI that can inhibit MET, RON, AXL, 
MER receptor tyrosine kinase (MERTK), TIE-2, 
TIE-1, ROS1, and discoidin domain RTK 1 
(DDR1). The in vitro IC50 of merestinib against 
MET is 4.7 nM and the cell-based IC50 is 35–52 
nM, depending on the cell lines utilized. Inhibition 
of tumor growth and metastasis in NSCLC by 
merestinib, an inhibitor of several kinases, includ-
ing MET.179

Treatment with merestinib inhibited MET signal-
ing’s constitutive activation and resulted in inhibi-
tion of cell proliferation, anchorage-independent 
growth, migration, and invasion. In addition, in 
the H1993 NSCLC cell line, which harbors MET 
amplification and also over-expression of RON, 
merestinib was superior to crizotinib in terms of 
cellular growth inhibitory activity (9.28 nM versus 
45.4 nM, respectively).139 Recently, Recondo et al. 
reported a case of a patient with MET exon 14 
skipping who developed PD on crizotinib, with a 
resistance MET mutation of Y1230 C detected in 
tumor and liquid biopsies at progression. This 
patient achieved PR when switched to meres-
tinib.154 These results might suggest a possible 
introduction of merestinib as a therapeutic 
 alternative for patients with MET exon 14. In the 
first-in-human phase I trial, merestinib was 
 evaluated for tolerability and safety in 186 patients 
with one of three different non-NSCLC tumors. 
Approximately 32% of subjects enrolled had a SD 
as the best response with a recommended dose of 
120 mg QD with acceptable exposure and safety.180

Glesatinib (MGCD265). Glesatinib (MGCD265) 
is an orally bioavailable, small molecule, multi-
targeted tyrosine kinase inhibitor with potential 
antineoplastic activity. Glesatinib binds to and 
inhibits the phosphorylation of several RTKs, 
including the MET receptor, Tek/Tie-2 receptor, 
VEGFR types 1, 2, and 3, and RO.181 Inhibition 
of these RTKs and their downstream signaling 
pathways may inhibit tumor angiogenesis and 
tumor cell proliferation. Preclinical studies 
showed a dose-dependent inhibition in tumoral 
growth with glesatinib, with an IC50 of 80 nM, in 
the H1299 NSCLC cell line.182

Studies in a gastric cancer xenograft model 
revealed that, in addition to the typically reported 
cellular activities, glesatinib combined with erlo-
tinib disrupted the glycolysis pathway, suggesting 
a novel mechanism of action for this drug. 
Glesatinib has been studied in various advanced 
solid tumors, including NSCLC, as a monother-
apy and in combination with either docetaxel or 
erlotinib. In an ongoing phase-1 study in patients 
with MET-positive or AXL-rearranged advanced 
solid tumors, glesatinib demonstrated prelimi-
nary single-agent activity with all three patients 
with MET dysregulated NSCLC. For example, a 
patient with MET exon 14 NSCLC achieved 
response with glesatinib following a relapse under 
crizotinib, including a considerable size decrease 
of a liver metastatic lesion positive for MET 
Y1230 H as well as the inability to detect this 
alteration in plasma DNA.18

Antibody-based therapies. Unlike small molecule 
inhibitors that are ATP-competitive by inhibiting 
MET kinase domain, immunotherapy targeting 
the HGF/MET pathway alter signaling by inhibi-
tion of the interaction between receptor and 
ligand. Different than small molecule inhibitors 
that usually target multiple RTKs, monoclonal 
antibodies specifically target the MET protein, an 
event proven in preclinical and clinical studies in 
progress. Because antibody-based therapies’ 
mechanism of action is disrupting HGF/MET 
interaction, most trials enroll patients with MET 
over-expression, not restricted to MET exon 14.

Targeting MET with monoclonal antibodies has 
been challenging. In the randomized phase-III of 
the monoclonal antibody onartuzumab 
(MetMAb) in unselected patients with NSCLC, 
adding onartuzumab to erlotinib in patients pre-
viously treated with chemotherapy had a detri-
mental effect on OS; this therapy also showed no 
benefit in an exploratory analysis of patients with 
MET-amplified tumors by FISH (>5 copies).183 
Similarly, the addition of onartuzumab to chemo-
therapy treatment for patients with advanced 
NSCLC, gastrointestinal tumors, and glioblas-
toma was not effective.184 A similar compound 
emibetuzumab (LY2875358) was initially evalu-
ated, but its development was later stopped.185 
Rilotumumab, a monoclonal antibody directed 
against soluble HGF, also resulted in deleterious 
outcomes combined with chemotherapy in 
patients with advanced gastric and esophagogas-
tric tumors.186 These early trials lacked adequate 
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biomarker enrichment and patient selection and 
MET expression by IHC has not proven to be a 
reliable indicator of MET oncogenic dependency. 
The leading cause of the ineffectiveness of com-
bining monoclonal METs with chemotherapy in 
unselected patients is unclear.187 However, one of 
the hypotheses is that MET inhibitors may dys-
regulate immune-mediated cytotoxicity by alter-
ing the tumor microenvironment. For instance, 
MET inhibition can impair interferon-gamma 
induction of programmed cell death ligand 1 
(PD-L1) expression in vitro and decrease neutro-
phil anti-tumor activity.188,189

Telisotuzumab vedotin. Telisotuzumab vedotin 
(ABBV-399, ABT-700; ABBVie) is an antibody-
drug conjugate comprised of telisotuzumab, which 
is a monoclonal antibody that targets MET RTK, 
conjugated to a cytotoxic agent called monomethyl 
auristatin E (MMAE) using a valine-citrulline (vc) 
peptide linker (vc-MMAE; vedotin). After the con-
jugate binds to MET, internalization and intracel-
lular enzymatic cleavage occurs, releasing MMAE 
in the cytosol, where it binds to tubulin monomers, 
inhibiting tubulin polymerization, inducing a G2/M 
phase arrest with further cancer cell apoptosis.190 
Telisotuzumab vedotin can antagonize MET sign-
aling in both HGF-dependent and -independent 
manners and inhibit tumor growth driven by MET 
over-expression, amplification, or autocrine HGF 
stimulation.191,192

In the first in-human trial of ABBV-399 
(NCT02099058), 46 patients were enrolled. 
Approximately 60% of the subjects presented 
with NSCLC positive for MET alterations.

Sixteen patients with MET-positive NSCLC 
were treated with a dose of 2.4–3.0 mg/kg, from 
which 3 (18.8%; 95% CI: 4.1–45.7) achieved a 
PR (DOR, 4.8 months and PFS 5.7 months; 95% 
CI: 1.2–15.4). Only one patient with NSCLC of 
squamous histology was confirmed to bear MET 
exon 14 and achieved PD as the best response.193

Lung-MAP S1400 K was designed to evaluate 
the response to telisotuzumab vedotin in patients 
with MET–positive squamous cell NSCLC.194 In 
this trial, patients with previously treated SCC 
with–positive tumors (H score ⩾ 150, Ventana 
SP44 assay) were enrolled into two cohorts 
(cohort 1, immune checkpoint inhibitor-naive, 
and cohort 2, immune checkpoint inhibitor 
refractory). Telisotuzumab vedotin 2.7 mg/kg 

was administered intravenously every 3 weeks 
until disease progression or unacceptable toxicity, 
response assessments were performed every 6 
weeks, and the primary endpoint was the response. 
Forty-nine patients (14% of screened patients) 
were assigned to S1400 K, 28 patients enrolled 
(15 in Cohort 1 and 13 in Cohort 2), and 23 were 
eligible. S1400 K closed on December 21, 2018, 
owing to a lack of efficacy. Overall, two responses 
(ORR of 9%; 95% CI: 0–20%) were reported in 
cohort 1 (1 complete and one unconfirmed PR), 
whereas 10 patients had SD, with a DCR of 52%. 
The median OS and PFS were 5.6 and 2.4 
months, respectively. There were three grade-5 
events (2 pneumonitis in cohort 2, and 1 bron-
chopulmonary hemorrhage in cohort 1).194

Recently, the findings from the phase-2 trial 
(NCT03539536) were presented in a poster at 
the American Association for Cancer Research 
Annual Meeting 2021.195 The study explored the 
safety and efficacy of telisotuzumab vedotin with 
a tubulin inhibitor MMAE, in previously treated 
patients with MET–positive advanced NSCLC. 
The ongoing phase-2 study expects to enroll 
about 233 patients across two stages and has an 
estimated completion date of January 2025. 
During the open-label, single-arm study, patients 
received telisotuzumab vedotin at 1.9 mg/kg 
intravenously every 14 days. Patients with non-
squamous histology were separated into cohorts 
by EGFR mutations and then into subgroups 
based on level of MET expression; intermediate 
MET was defined as staining on ⩾25% to <50% 
of tumor cells at 3+ intensity, and high MET was 
considered ⩾50% staining at 3+ intensity. For 
patients with squamous histology, MET positiv-
ity was defined as staining on ⩾75% of tumor 
cells at 1+ intensity. The results included 93 
evaluable patients from stage 1 of the study. MET 
amplification was reported in 8.6% and MET 
exon 14 skipping mutations were observed in 
4.3% of patients, all in the non-squamous EGFR 
wild-type (WT) cohort. Patients had received a 
median of 2 prior therapies (range: 1–4), which 
included platinum-based therapies in most 
patients, immunotherapy for most patients with 
EGFR WT, and EGFR tyrosine kinase inhibitors 
for all the patients with EGFR mutations.195 For 
the non-squamous EGFR WT cohort (n = 37), 
the ORR was 35.1% (95% CI: 20.2–52.5%). For 
the MET-high subgroup (n = 13), the ORR was 
53.8% (95% CI: 25.1–80.8%) and 25.0% (95% 
CI: 9.8–46.7%) for the MET-intermediate 
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subgroup which in turn had a DOR of 6.9 months. 
For the EGFR-mutant group (n = 30), the ORR 
was 13.3% (95% CI: 3.8–30.7%), with responses 
only in those with high MET (n = 22). Moreover, 
for the squamous cohort (n = 21), the ORR was 
14.3% (95% CI: 3.0–36.3%; all responses were 
PR) and the DOR was 4.4 months.195 An ongoing 
phase 1/1b trial (NCT02099058) is evaluating 
telisotuzumab vedotin in patients with NSCLC 
with MET over-expression and in a subgroup 
(cohort E), the use of the biconjugate plus 
osimertinib.196

Amivantamab (JNJ-61186372, JNJ-6372). MET 
amplification is a well-known mechanism of resist-
ance to EGFR-TKI therapy. Different antibodies 
targeting the interaction HGF/MET have been 
evaluated in TKI-resistant EGFR-mutant NSCLC, 
including drugs like onartuzumab,183,197 ficlatu-
zumab,198 rilotumumab,199 and emibetuzumab.200 
Bispecific antibodies for EGFR and MET have 
also been studied in NSCLC harboring both EGFR 
and MET mutations. Some examples are amivan-
tamab and LY3164530. Amivantamab (JNJ-
61186372, JNJ-6372; Janssen) is an EGFR-MET 
bispecific IgG 1 monoclonal antibody with an 
active Fc backbone that can target both activating 
and resistant EGFR mutations and MET muta-
tions and amplification.201

In preclinical studies, the combination of amivan-
tamab with Lazertinib (YH25448), an oral, highly 
potent, irreversible, third-generation, mutant-
selective, and wild-type-sparing EGFR-TKI, 
demonstrates synergistic inhibition of tumor 
growth. The phase-1 CHRYSALIS study 
(NCT02609776) recently present the safety and 
early efficacy results of the combination in EGFR-
mutant patients progressing on Osimertinib. 
Seventy-one patients received the combination 
with an ORR of 43.5% (95% CI: 23.2–65.5), 
including 10 PRs, and nine patients with SD. The 
median treatment duration was 8.2 months (0.5–
10.7), and most treatment-related AEs were 
grade 1–2, with grade ⩾3 reported in 7%.

A first-in-human, open-label, multi-center, phase-I 
trial on amivantamab (NCT02609776) demon-
strated efficacy (ORR 36%) with an acceptable 
safety profile in patients with EGFR exon 20 ins 
NSCLC treated with multiple previous lines.202 
Based on this study, FDA-granted breakthrough 
therapy designation for amivantamab to treat 

patients with metastatic NSCLC with EGFR exon 
20 insertion mutations, whose disease has pro-
gressed on or after platinum-based chemotherapy. 
Recently, the CHRYSALIS Study showed robust 
clinical activity and durable responses in patients 
with metastatic or unresectable NSCLC and EGFR 
Exon 20 insertion mutations.202 The clinical devel-
opment program for amivantamab in untreated 
advanced EGFR-mutated NSCLC includes the 
Phase-3 MARIPOSA and PAPILLON combina-
tion trials.203,204 Emibetuzumab (LY3164530) is 
another bispecific antibody for MET and EGFR 
receptors, consisting of an IgG4 to MET and a sin-
gle-chain variable fragment (scFv) to EGFR fused 
to the N-terminus of each heavy chain. An ORR of 
10.3% was seen in the first-in-human study 
(NCT02221882), with the presence of toxicities 
commonly associated with EGFR inhibition.205

Sym-015. Sym-015 is a combination of two 
humanized IgG1 monoclonal antibodies, 
(Hu9006 and Hu9338), that recognize non-over-
lapping epitopes in the Sema domain of MET, 
which prevents HGF from binding.206,207 An 
open-label, phase Ia/IIa trial (registered as 
NCT02648724) for sym-015, included 12 
patients with MET exon 14 NSCLC, treated 
with a P2 dose of 18 mg/kg on cycle 1 day 1 fol-
lowed by 12 mg/kg Q2 W. Three subjects devel-
oped PR and five SD. Sym-015 showed a good 
level of tolerance with the P2 dose with a good 
response in NSCLC harboring MET exon 14 
skipping mutations.208

Immunotherapy in patients with METex14. Unlike 
EGFR/ALK-positive NSCLC, which are not 
characterized for expression of PD-L1, MET 
exon 14 tumors express remarkable levels of 
PD-L1. Two previous studies, developed in China 
and in the United States, showed that 41% and 
69% of MET exon 14 NSCLC had a had a 
PD-L1 expression of ⩾50%, respectively.209,210 
Both studies results showed a considerably higher 
expression when compared with a larger cohort of 
1398 patients with NSCLC (no specific sub-
group) (20.9%).211 Awad et  al. reported a large 
cohort of 1387 MET exon 14 NSCLC demon-
strating that they express considerably higher lev-
els of PD-L1 compared to wild-type NSCLC 
(48% vs 29%). Even though PD-L1 expression is 
higher in MET exon 14 NSCLC, TMB distribu-
tion in these group of tumors was lower than gen-
eral NSCLC (3.6 vs 7.0 Mut/Mb).212
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A study with 298 MET exon 14 NSCLC reported 
an average TMB of 6.9 Mut/Mb, compared with 
10.7 Mut/Mb for unselected NSCLC.155

To date, the information on the use of immuno-
therapy in patients with MET alterations, and 
especially with the MET exon 14 mutation, is 
limited. Case reports and case series suggest that 
immunotherapy might not be effective for 
METex14 NSCLC despite a high PD-L1 expres-
sion. One possible hypothesis underlying the infe-
rior response to checkpoint inhibition is the low 
TMB. Baba et al.208 reported a patient with 95% 
PD-L1 METex14 NSCLC that had no response 
to pembrolizumab. Reis et  al.209 reported two 
similar cases.

In a small study of patients with MET exon 14 
NSCLC (N = 25), of whom 13 received an 
immune checkpoint inhibitor in the second-line 
setting, six patients had prolonged PFS (>18 
months). Of these six patients, five showed 
responses within the first four months of treat-
ment, four patients had a PR, and two had a CR. 
PD-L1 levels were ⩾20% for four of six patients; 
however, these data must be interpreted carefully 
because the outcomes for the other seven patients 
are not described.213 In a retrospective study pub-
lished by Sabari et al., 24 patients with MET exon 
14 cancers received either treatment with one 
agent (n = 22) or concomitant immunotherapy, 
including 11 patients on first line, with an ORR of 
17% (95% CI: 6–36%) and a median PFS of 1.9 
(95% CI: 1.7–2.7) months. Responses to immu-
notherapy were not predictable by PD-L1 expres-
sion (including PD-L1 levels ⩾50%) nor TMB.209 
This ORR was similar to the response rate of 14% 
observed in the OAK trial with atezolizumab, 
which had an unselected, previously treated 
patient population (N = 425).214 In contrast, a pre-
clinical study revealed a role for the HGF / MET 
pathway in neutrophil recruitment and function 
and suggested that MET co-treatment may 
improve responses to cancer immunotherapy in 
patients with MET-dependent tumors.215 In an in 
vitro study of a gastric cancer cell line (Hs746 T) 
harboring both MET exon 14 and MET amplifi-
cation, it was found that MET pathway and 
PD-L1 expression can suppress immune cell func-
tion.216,217 The COSMIC-021218 trial is a multi-
center phase Ib clinical trial to evaluate the safety 
and efficacy of cabozantinib in combination with 
atezolizumab in patients with multiple tumor 
types, including NSCLC. The dose-escalation 

phase of this study determined the optimal dose of 
cabozantinib to be 40 mg daily combined with 
atezolizumab.219 In the ASCO Annual Meeting 
2020, Neal et al. reported the results from cohort 
7 of NSCLC with unknown MET status patients 
after prior immunotherapy. In the 30-patient 
cohort, ORR was calculated as 27%, mean time to 
response was 1.4 months, median DOR was 5.7 
months, DCR was 83%, and median PFS was 4.2 
(95% CI: 2.7–7) months.

Other studies explore the efficacy and safety of 
MET TKI combined with immunotherapy. These 
studies including capmatinib + pembrolizumab 
(NCT04139317) and capmatinib + nivolumab 
(NCT02323126). In 2020, enrollment for the 
NCT04323436 trial started. This is a double-
blind, placebo-controlled, randomized study eval-
uating the efficacy and safety of capmatinib +  
spartalizumab (an anti-PD-1 antibody) versus cap-
matinib + placebo as first-line treatment for 
advanced MET exon 14 NSCLC patients. The 
primary endpoints of NCT04323436 trial are 
ORR and PFS.18

Conclusion
As genomic understanding of cancer improves, 
the knowledge regarding lung cancer have created 
so many different categories, that lung cancer is 
no longer a single disease, but a group of heterog-
enous neoplastic disorders that differ slightly or 
even drastically in their genetic makeup. During 
the last decade, the revolution of targeted therapy 
and immunotherapy have increased considerably 
the number of clinical trials and therapies 
approved for specific types of driver-mutated lung 
cancer. The availability of a targeted approach to 
KRAS is just a few years away from current ther-
apy. Some TKIs have improved the survival of 
patients harboring MET alterations, however, a 
wide array of clinical trials are running, with 
promising results in the near future.
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