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Detect AD Patients by Using EEG Coherence Analysis
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The purpose of this study is to discriminate mild Alzheimer’s disease (AD) patients from the normal aging.The EEG coherence was
applied to analyze the data from auditory oddball paradigm to discriminate the differences of corticocortical connections between
mild AD patients and healthy subjects. The results showed that the lower values of coherence were performed in mild AD patients
than in the normal aging subjects, especially in theta band. The implications and suggestions are shown in this study.

1. Introduction

Event-related brain activity remains incompletely under-
stood in terms of the nature of the networks of corticocortical
connections during normal aging [1]. Recently, the graph
analysis was based upon matrices of synchronization, which
analyzed the brain networks of aging applied in electroen-
cephalography (EEG) studies [2].

Dementia which is an age-related disease affects 17–25
million people worldwide [3]. With the rapidly increased
population of old people, the dementia patients also increased
rapidly. Alzheimer’s disease (AD) is the leading cause of
dementia. And the early stage of AD is mild Alzheimer’s
disease (AD). Hence, to diagnose mild AD earlier is very
important to help patients to change to AD patients.

Event-related potentials (ERPs) have the benefit of being
a noninvasive technique with good time resolution and it is a
biological marker for early detection of AD used to discrimi-
nate between normal aging andAD [4]. However, while ERPs
components were often able to discriminate between patients
and control groups, they have not proved sufficiently sensitive
for the diagnosis of individual patient [5]. Now, during
cognitive task, EEG coherence herein provides additional
sources of information about the corticocortical potential
interactions [6].

Previous researches suggested that patterns of high
coherence between EEG signals recorded on different scalp
locations have functional significance and are correlated with
different kinds of cognitive information processing [7]. In
clinical studies, the measure of coherence has been used
to investigate the connectivity between the various cortical
areas of Alzheimer patients. Studies comparing normal older
adults to patients with AD have reported further reductions
in interhemispheric alpha band (8–12Hz) coherence between
occipital sites and in temporo-parietooccipital areas [8].
Besides, the functional connectivity of age-related changes
is still poorly understood [9] in auditory ERP studies.
Therefore, more information about age-related changes in
ERP oscillations is needed, especially in the time-frequency
domain [10]. Therefore, this study analyzed the differences of
the coherence between the frontal and tempoparietal regions
about mild AD and healthy controls upon the application
of auditory oddball paradigm. Furthermore, this study also
investigates the components of ERPs in brain networks by
ERPCOH analysis.

2. Methods

This study recruited 15 healthy university students (mean =
21, S.D. = 1.13), 15 normal aging (mean = 72, S.D. = 10.47),
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and 16AD patients (mean = 80, S.D. = 9.61). None
of the participants reported hearing loss or neurological or
psychological problems, and all were naive to electrophysi-
ological studies. Participants gave informed consent. At the
time of investigation no patients were taking any prophylactic
medication or receiving nonpharmacological treatments.

Standard (2000Hz) and target (1000Hz) auditory stimuli
were presented binaurally over headphones to each partici-
pant with a duration of 1000msec. The target tone occurred
regularly with a 0.20 probability.The rise and fall time of each
tone was 5msec. During the recording session, participants
sat in a chair, in a brightly illuminated room, in a relaxed
position.They were instructed to sit with open eyes, to follow
the stimuli carefully, and then try to detect target tone of
1000Hz. All participants achieved minimum 95% accuracy.

EEG was recorded with the SynAmps/SCAN 4.4 hard-
ware and software (NeuroScan, Inc., Herndon, VA) from
32 tin electrodes mounted in a commercial electro-cap
(ElectroCap International, Eaton, OH), and the electrode
impedance was always kept below 5 kΩ. The common refer-
ence electrodes for EEG measurements were placed on mas-
toids behind the ears. Stimulus presentationwas generated by
Neuroscan Stim 3.3 Software. Formonitoring eyemovements
an electrode placed at the external canthi of the left eye was
used. EEG channels were continuously digitized at a rate
of 10000Hz by a SynAmp amplifier. The signal was analog-
filtered (0.1–200Hz), A/D converted with a sampling rate
of 10000Hz and 14 bit precision, and digitally filtered in the
range 0.1–50Hz.

TheEEGdatawere recoded from30 electrodes positioned
according to the International 10–20 system (i.e., FP1, FP2,
F7, F3, Fz, F4, F8, FT7, FC3, FCz, FC4, FT8, T3, C3, Cz,
C4, T4, TP7, CP3, CPz, CP4, TP8, T5, P3, Pz, P4, T6,
O1, Oz, and O2), with analog-to-digital (A/D) conversion
with a sampling rate of 1,000Hz. Data from single-trial
epochs exhibiting excessive movement artifacts (>90𝜇V)
were rejected. After removal of artifacts, between 28 and
30 target events remained for each participant, from which
a mean was calculated. The EEG data was recorded in a
sound-attenuated room.During auditory oddball conditions,
subjects kept their eyes closed.

EEG coherence represents the covariance of the EEG
spectral activity at two electrode locations and the temporal
synchronization or functional coupling of the two cortical
populations generating the scalp EEG data collected by
the paired electrodes [11]. It can be a measure of tempo-
ral synchronization of the EEG signals recorded on pairs
of electrodes. In reality, the EEG coherence analysis just
captures the linear component of the functional coupling
of the paired EEG oscillations. And the analysis of EEG
coherence is the most common approach for the study
of functional coupling of EEG oscillations in aging [8].
Now, coherence was calculated by the following equation:
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equation returns a real number between 0 (no coherence)
and 1 (max coherence). In this study, the EEG coherence was
computed onCP3 and F4 pairs of electrodes interest to obtain
the two electrodes. Coherence values were computed about
the younger, normal aging, and Mild AD.

Time-frequency representations of the ERPCOH data
were used in the theta (4–7Hz), alpha-1 (7–10Hz), alpha-2
(10–13Hz), beta-1 (13–20Hz), beta-2 (20–30Hz), and gamma
(30–50Hz) bands. Early and late components of ERPs were
N1 (80–140ms) and P3 (280–450ms) for the auditory stimuli.

In this study, the time-frequency transformation provides
an estimation of the average time-varying ERPCOH of the
signal in each frequency band. If 𝑥 and 𝑦 denote two signals
from two electrode sites, then the ERPCOH can be defined as
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tude of ERPCOH varied between 0 (absence of synchroniza-
tion) and 1 (perfect synchronization), which is normalized
for comparative purposes. Conditions of high ERPCOH
correspond to stronger connectivity, which relates to neural
synchronization. A sliding temporal Hanning window of
256 points was used to obtain 1Hz frequency resolution
and 4ms time resolution. To avoid possible edge effects and
artifactual contamination (eye movement or muscle activity)
for the ERPCOH measurement, the frequency band used in
the time-frequency domain was 3.9–50Hz. The ERPCOH
analysis was conducted using EEGLAB v9.0 [10] under
Matlab 7.

The ERPCOH values were used to construct a 30 × 30
matrix of all possible pair-wise combinations. The matrix
was transformed into a binary (unweighted) graph using a
threshold value, which was chosen for each graph using a
fixed mean degree. The efficiency of brain networks was then
calculated.

The two main efficiency parameters, which were intro-
duced by Nunez [11], were global efficiency, 𝐸glob, and local
efficiency, 𝐸loc. Let 𝑁 be the set of all nodes in the network,
𝑛 the number of nodes, and (𝑖, 𝑗) a link between nodes 𝑖 and
𝑗, (𝑖, 𝑗 ∈ 𝑁). The global efficiency 𝐸glob of the network can be
defined as
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Figure 1: Difference of coherence in frequency between groups.
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shortest path between 𝑗 and ℎ that contains only the neigh-
bors of 𝑖. Global efficiency and local efficiency are involved in
characterizing functional integration and segregation among
cortical areas, respectively [12]. Global efficiency assesses the
ability for information transfer between any two nodes via
multiple parallel paths, while local efficiency assesses the
ability of information transfer through the entire subgraph
of a node’s connection [13]. Since the structure of the graph
can be biased by the number of edges between nodes, a
statistical measure, equal degree 𝐾, was calculated for the
graph. Therefore, the threshold value was chosen such that
each analyzed graph had a fixed mean degree (𝐾 = 8),
suggesting that each subject also has the same cost value,
which is 0.277 in this study. We then computed 𝐸glob and
𝐸loc. The 𝐸glob and 𝐸loc values were compared with the
same nodes and degrees of 50 random graphs (𝐸glob-rand and
𝐸loc-rand) using the ratios 𝜀glob = 𝐸glob/𝐸glob-rand and 𝜀loc =
𝐸loc/𝐸loc-rand. Additionally, the global efficiency of SWN is
less than the corresponding efficiency of random networks,
leading to normalized global efficiency 𝜀glob < 1. Moreover,
an SWN in local efficiency is higher than that of a random
network, as described by normalized local efficiency 𝜀loc ≫ 1
[14]. Statistical results were obtained with analysis of variance
(ANOVA) using SPSS 12.0.

3. Results and Discussion

The result in Figure 1 shows that the mean values of the
younger and normal aging are almost the same, but the mean
value of mild AD is significantly different. The value of AD
is lower than the normal aging and the younger, especially,
between frequency 4–7Hz. It reveals that the coherence value
of the AD is lower than the normal aging and the younger
from 0.1 to 50Hz frequency. The trend reveals AD patients
have decreased EEG coherence and it is extremely significant
difference.

Then, this study is compared with coherence value of
three groups from different frequency bands in Figure 2. The
results show that the effect of individual discrimination is the
most significant in theta band (frequency 4–7Hz).
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Figure 2: The effect of individual discrimination and the AD
patients all have lower coherence value between 0 to 0.1.

In Figure 2, the effect of individual AD patients could
be discriminated, but the differences between younger and
elders could not be discriminated. Hence, this study used
ERPCOH analysis to demonstrate the differences between
younger and elders. In Figure 3, the (normalized) global
efficiency was lower in the elderly (𝐹[1, 28] = 11.340, 𝑃 =
.001) than in the young, whereas the values of early theta
band for the two groups were significantly different for the
target stimuli (𝑃 < .001). The (normalized) local efficiency
was higher in the elderly (𝐹[1, 28] = 4.929, 𝑃 = .027, see
Figure 3(b)) than in the young, whereas no differences were
found in any of the frequency bands for the two groups.

To sum up, EEG coherence from the waveform of all sub-
jects revealed that the connection between temporoparietal
and right frontal lobe is important, especially in theta band.
Decreased coherence of AD patients was found for alpha
frequency bands and in some cases also for the beta band
[8]. Besides, this study indicates that the global efficiency of
brain networks was decreased in the elderly when responding
to the target stimulus, especially in the early theta band,
providing evidence that processing efficiency declines with
aging. Additionally, these decreases in global efficiency were
correlated with reduced connections, which is likely to reflect
a prolonged mean reaction time in auditory information
processing for the elderly. The pattern of changes in the
elderly probably reflects a tendency of an aging-related shift
toward regular networks [15].

4. Conclusion

This study analyzes the EEG coherence by using the response
from auditory oddball paradigm to know well the differ-
ences of corticocortical connections between AD patients
and healthy controls. EEG coherence is better indicator to
discriminate AD and the normal, especially in the theta band.
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Figure 3: (a) Mean 𝜀glob and (b) mean 𝜀loc values from ERPCOH were obtained for the young and elderly in various frequency bands when
responding to the target stimuli. The vertical bars indicate 95% confidence intervals. Statistically significant differences are marked with
symbols representing significance levels ( ∗∗𝑃 < .05).

Further, amajor finding fromERPCOH is also shown that the
theta band is the primary characteristic of normal aging.

The result may suggest that AD patients have problem
in connection between frontal and temporoparietal lobe
while performing attention and memory task. Finally, the
individual discrimination in Alzheimer’s disease is efficient
by the method of EEG coherence.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] D. S. Bassett and E. T. Bullmore, “Human brain networks in
health and disease,” Current Opinion in Neurology, vol. 22, no.
4, pp. 340–347, 2009.

[2] Z. A. Gaál, R. Boha, C. J. Stam, andM.Molnár, “Age-dependent
features of EEG-reactivity-spectral, complexity, and network
characteristics,” Neuroscience Letters, vol. 479, no. 1, pp. 79–84,
2010.

[3] D. Melzer, M. Ely, and C. Brayne, “Cognitive impairment in
elderly people: population based estimate of the future in
England, Scotland, andWales,”The British Medical Journal, vol.
315, no. 7106, p. 462, 1997.

[4] R.M.Chapman, J.W.McCrary,M.N.Gardner et al., “Brain ERP
components predict which individuals progress to Alzheimer’s
disease and which do not,”Neurobiology of Aging, vol. 32, no. 10,
pp. 1742–1755, 2011.

[5] J. Polich and K. L. Herbst, “P300 as a clinical assay: rationale,
evaluation, and findings,” International Journal of Psychophysi-
ology, vol. 38, no. 1, pp. 3–19, 2000.

[6] A. Gevins and M. E. Smith, “Neurophysiological measures of
working memory and individual differences in cognitive ability
and cognitive style,” Cerebral Cortex, vol. 10, no. 9, pp. 829–839,
2000.

[7] M. J. Hogan, G. R. J. Swanwick, J. Kaiser, M. Rowan, and B.
Lawlor, “Memory-related EEG power and coherence reduc-
tions in mild Alzheimer’s disease,” International Journal of
Psychophysiology, vol. 49, no. 2, pp. 147–163, 2003.

[8] T. Locatelli, M. Cursi, D. Liberati, M. Franceschi, and G. Comi,
“EEG coherence in Alzheimer’s disease,” Electroencephalogra-
phy and Clinical Neurophysiology, vol. 106, no. 3, pp. 229–237,
1998.

[9] L. H. Phillips and P. Andrés, “The cognitive neuroscience of
aging: new findings on compensation and connectivity,”Cortex,
vol. 46, no. 4, pp. 421–424, 2010.

[10] A. Delorme and S. Makeig, “EEGLAB: an open source toolbox
for analysis of single-trial EEG dynamics including indepen-
dent component analysis,” Journal of NeuroscienceMethods, vol.
134, no. 1, pp. 9–21, 2004.

[11] P. L. Nunez, “EEG coherencemeasures inmedical and cognitive
science: a general overview of experimental methods, computer
algorithms, and accuracy,” in Quantative and Topological EEG
and MEG Analysis, M. Eselt, U. Zwiener, and H. Witte, Eds.,
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