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Abstract: Piezoelectric actuators are widely used in micromanipulation and miniature robots due
to their rapid response and high repeatability. The piezoelectric actuators often have undesired
hysteresis. The Prandtl–Ishlinskii (PI) hysteresis model is one of the most popular models for
modeling and compensating the hysteresis behaviour. This paper presents an alternative digitized
representation of the modified Prandtl–Ishlinskii with the dead-zone operators (MPI) hysteresis
model to describe the asymmetric hysteresis behavior of piezoelectric actuators. Using a binary
number with n digits to represent the classical Prandtl–Ishlinskii hysteresis model with n elementary
operators, the inverse model can be easily constructed. A similar representation of the dead-zone
operators is also described. With the proposed digitized representation, the model is more intuitive
and the inversion calculation is avoided. An experiment with a piezoelectric stacked linear actuator
is conducted to validate the proposed digitized MPI hysteresis model and it is shown that it has
almost the same performance as compared to the classical representation.

Keywords: asymmetric hysteresis modeling and compensation; modified Prandtl–Ishlinskii (MPI)
hysteresis model; piezoelectric stacked linear actuators; micromanipulation

1. Introduction

Piezoelectric actuators are widely used in micromanipulation applications due to their
rapid response and high repeatability, for example, microsurgical robots [1,2], autofocus
optical systems [3–5], precise fabrication [6–8] and other applications [9–11]. One of the
biggest challenges while using the piezoelectric actuators in dynamic applications is to
model and compensate for the undesired complex hysteresis.

Various methods have been proposed for modeling and compensating the hystere-
sis behavior. The existing methods can be classified into physics-based models and
phenomenology-based models [12]. Physics-based models [13] are often derived on the
basis of physical principles of certain material or system properties [14–16]. Physics-based
models often require a deep understanding of the causes of hysteresis and are often specific
to the related properties.

The phenomenology-based model can also be roughly divided into three main groups [17]:
differential-based models, such as the Bouc-wen [18] model, the Duhem [19] model, the
Dahl, and the LuGre [20] model; neural-network models, such as the back propagation
neural network based model [21], the gated recurrent unit based model [22], the neu-
ral network adaptive control method [23] and etc; operator-based models, such as the
Preisach [24] model, the Krasnosel’skii–Pokrovskii(KP) [25] model, the Maxwell-slip [26]
model, the Prandtl–Ishlinskii(PI) [27] model, and their variations.

The PI hysteresis model is one of the most popular models because of its simple imple-
mentation and analytical inversion [28]. Ang [29] concluded the relationship between the
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rate and the operators and modified the PI hysteresis model to model the rate-dependent
hysteresis behavior. Tan [30] extended the PI hysteresis model to compensate for the
ill-conditioned hysteresis behavior with a negative gradient. Mohammad [31] proposed
a nonlinear play operator for modeling the asymmetric hysteresis of the Shape Memory
Alloy (SMA) operators. Kuhnen [32] proposed to use the dead-zone operators for modeling
the memory-free asymmetric hysteresis behavior.

In the above literature, the design procedure generally consists of parameters identi-
fication of the description model and the construction of the inverse model as a desired
compensator. The mathematical complexity of the identification and inversion problem
depends on the selected modeling approaches [33]. The amount of calculation may increase
significantly with an increase in the number of elementary operators.

In this paper, we present an alternative digitized representation with which the inverse
model can be easily constructed to compensate for the hysteresis behavior. The inversion
calculation is avoided. The proposed representation is also more intuitive due to the
geometric meanings of the parameters of the operators.

The paper is organized as follows: Section 2 describes the classical representation from
which the proposed representation can be derived. Section 3 gives the experimental results
with discussion. Section 4 covers the conclusion.

2. Hysteresis Mathematical Model

This section describes the classical representation and an alternative digitized repre-
sentation of the classical PI hysteresis model. A similar representation of the dead-zone
operators is also described, the construction of the inverse model with the proposed
representation is also presented.

2.1. Classical PI Hysteresis Model

The classical PI hysteresis model has a series of elementary operators, the system
output can be obtained by a weighted sum of n elementary operators with different
thresholds. As shown in Figure 1, the working principles of the classical representation of
the PI hysteresis model can be represented using the following equations:

y(0) = y0 (1)

y(t) =
n

∑
i=1

wi ·max{u(t)− ri, min{u(t) + ri, yei(t− T)}} (2)

where wi is the weight corresponding to the ith elementary operator, ri is the threshold
of the ith elementary operator, n is the number of the elementary operators and yei is the
output of the ith elementary operator.

Figure 1. Working principles of the PI hysteresis model.
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When the parameter ri and wi are identified, the hysteresis curve model in the (u, y)
plane is shifted so that it is in the positive section of the plane. An example with three
elementary operators is shown in Figure 2, bwi = 2ri is the input value xi of turning
point where the slope of the hysteresis curve is changed. The kth output value yk can be
formulated as follows [34]:

yk =
k

∑
i=1

(bwk+1 − bwi) · wi (3)

Figure 2. Example of (shifted) hysteresis obtained with three elementary operators.

The Figure 2 can also be regarded as a series of 4 segments. Let (∆xi, ∆yi) by the
input and output value of each of the n segments, the value of the ∆xi is the change of bwi
while the value of the ∆yi is the change of yk. The slope gradk of the kth segment can be
calculated using the following equation:

grad1 = 0; (4)

gradk =
k

∑
i=1

wi; (5)

As bwi = 2ri, the value of ∆xi can be calculated using the following equations:

∆x1 = 2 · r1; (6)

∆xi = 2 · (ri+1 − ri); (7)

∆xn = 2 · (uA − rn−1); (8)

The value of ∆yk can then be obtained using the following equations:

∆y1 = 0; (9)

∆yk = (
i

∑
i=1

w(i)) · ∆xk (10)

The paired property (∆xi, ∆yi) represents the change of input and output value of each
segment of the hysteresis curve and is thus more intuitive and the parameters are easier to
be identified. The value of the paired property can be derived from the parameters of the
classical representation. With this paired property, an alternative digitized representation
of the classical PI hysteresis model is described in the next section.
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2.2. Digitized Classical PI Hysteresis Model

The state of the classical PI hysteresis model with n operators is represented with a
binary number B = bn . . . b2b1 with n digits. Each digit of the binary number is a elementary
operator with a binary state that can be either 0 or 1. Each elementary operator bi also has
a paired property (∆xi, ∆yi), where ∆xi represents a change in the system input and ∆yi
represents a change in the system output. An example with two operators is shown in
Figure 3. With an increase in the number of operators, the system output and input can be
approximated to be a linear relationship within each operator. The paired properties H of a
PI hysteresis model with n elementary operators can be expressed in one equation:

H =

[
∆x1 . . . ∆xn
∆y1 . . . ∆yn

]
(11)

Figure 3. The paired properties of the digitized representation with two operators.

The model also has a paired property (XB, YB) that corresponds to its state. The state
of the system always changes to either one of its two neighbors: upper state or lower state.
Let b1 be the least significant digit and bn be the most significant digit, the change of the
state is always from the least significant digit. Let the least significant digit with a binary
state of 0 at the current state be the A digit, let the least significant digit with a binary state
of 1 at the current state be the Z digit.

When the state of the system changes to its upper neighbor, the binary state of the bA
digit is changed from 0 to 1, the paired property of the system is increased by (∆xA, ∆yA).
Denote XBt , YBt be the system input and output of the current state and XBt+1 , YBt+1 be the
system input and output after a change, the change to its upper neighbor can be shown in
the following equations:

XBt+1 = XBt + ∆xA (12)

YBt+1 = YBt + ∆yA (13)

Similarly, when the state of the system changes to its lower neighbor, the binary state
of the bZ digit is changed from 1 to 0, the paired property of the system is decreased by
(∆xZ, ∆yZ). Denote XBt , YBt be the system input and output of the current state, and XBt+1 ,
YBt+1 be the system input and output after a change, the change to its lower neighbor can
be shown in the following equations:

XBt+1 = XBt − ∆xZ (14)

YBt+1 = YBt − ∆yZ (15)
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The traditional PI hysteresis model with n elementary operators has 2n possible states.
A simple example with 3 operators can be shown in Figure 4. The modeling and control
accuracy may be improved with an increase in the number of operators.

Figure 4. A digitized representation of the classical PI hysteresis model with 3 operators.

When the system input is changed to x with the current state BT , the system output
can be calculated with the following procedure:

1. If the system input value, x, is greater than or equal to XBT and less than XBT + ∆xA,
the value of the system output y is calculated using (16).

2. If the system input value, x, is greater than XBT + ∆xA, the state of the system is
changed to its upper neighbor by setting the bA digit from 0 to 1, the (XBT , YBT ) is updated
using (12) and (13). The procedure is then repeated.

3. If the system input value, x, is less than XBT and greater than XBT − ∆xZ, the value
of the system output y is calculated using (17).

4. If the system input value, x, is is less than XBT − ∆xZ, the state of the system is
changed to its lower neighbor by setting the bZ digit, the (XBT , YBT ) is updated using (14)
and (15). The procedure is then repeated.

y = YBT +
∆yA
∆xA

× (x− ∆XBT ) (16)

y = YBT +
∆yZ
∆xZ

× (x− ∆XBT ) (17)

2.3. Digitized Dead-Zone Operators

With the dead-zone operators, the modified PI hysteresis model can model the
memory-free asymmetric hysteresis behavior. The state of the dead-zone operators can be
represented with a number C. The n paired properties can be used to help describe the
values of the n dead-zone operators as shown in (18). An example with two operators is
shown in Figure 5.

S =

[
∆x1 . . . ∆xm
∆y1 . . . ∆ym

]
(18)

The model also has a paired property (XC, YC) that corresponds to its state, the
relationship between the paired property and the state of the model is described in the
following equations:

XC = X0 +
C

∑
i=1

∆Xi; C = 1, . . . , m (19)
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YC = Y0 +
C

∑
i=1

∆Yi; C = 1, . . . , m (20)

Figure 5. Paired properties of the dead-zone operators for extending the classical PI hysteresis model
for asymmetric hysteresis behavior.

When the system input is changed to x with the current state C, the system output
can be calculated with the following strategy:

1. If the system input value, x, is greater than or equal to XC and less than XC + ∆xC,
the value of the system output y is calculated using (21).

2. If the system input value, x, is greater than XC + ∆xC and C is less than m, the state of
the system is changed to its upper neighbor by increasing C, the (XC, YC) is updated
by adding (∆xC, ∆yC). The procedure is then repeated.

3. If the system input value, x, is less than XC and C is greater than 1, the state of the
system is changed to its lower neighbor by decreasing C, the (XC, YC) is updated by
subtracting (∆xC, ∆yC). The procedure is then repeated.

y = YC +
∆yC
∆xC

× (x− ∆XC) (21)

2.4. Inverse Model

The key idea of the parameters identification of the inverse model is to find the
reflection of the resultant hysteresis curves about the 45◦ line. A linear response is obtained
by cascading the inverse hysteresis operator Γ−1 as a feedfoward controller with the
actual hysteresis. The proposed model for the inverse feedfoward controller is illustrated
in Figure 6.

Figure 6. Block diagram of the inverse model as a feedforward controller.

Unlike previous work, the parameters of the inverse model using the proposed
representation can be found by simply exchanging ∆x with ∆y within the paired property,
as shown in the following equations:
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H−1 =

[
∆y1 . . . ∆yn
∆x1 . . . ∆xn

]
(22)

S−1 =

[
∆y1 . . . ∆ym
∆x1 . . . ∆xm

]
(23)

Due to its recursive nature, the calculation of the parameters identification of the
inverse model does not change much with an increase in the number of the operators, while
that of the modified PI hysteresis model is proportional to the number of the elementary
operators. With the proposed digitized representation, the inversion calculation is avoided.

3. Experimental Results

In this section, the asymmetric hysteresis behavior of a piezoelectric stacked linear
actuator, MPO-050100 (Nanofaktur, Stuttgart, Germany), is modeled using the classical
representation as well as the proposed representation. Two experiments have been per-
formed. The first experiment is to identify the parameters and to model the hysteresis
behavior of the piezoelectric actuator. The second experiment is to test the performance of
the proposed representation deploying the inverse model as a feedfoward compensator.

3.1. Experimental Setup

As seen from Figure 7, the input for the driver is a 10 V peak to peak, 1 Hz sinusoidal
wave, is produced by a 16-bit D/A card. The input is passed to an amplifier, EMO-050100
(Nanofaktur, Stuttgart, Germany). The piezoelectric stacked linear actuator will deform,
and the output displacement will be measured by a laser sensor,ZW-7010 (Omron, Kyoto,
Japan) and is then converted to an analog signal which is received by a 16-bit A/D card.
The experimental setup is shown in Figure 8.

Figure 7. Experimental architecture.

3.2. Experimental Results

The hysteresis behavior of the piezoelectric stacked linear actuator under periodic
control inputs is recorded. The parameters of the digitized representation and the classical
representation of the modified PI model with the dead-zone operators are then identified
with n = 25, the identified parameters are used to model the hysteresis behavior of the
piezoelectric stacked linear actuator. With the least square fitted models, the modeling
results using the classical and the digitized representation with dead-zone operators are
superimposed to the measured hysteresis behavior as shown in Figure 9. It is shown that
the modeling results are almost the same using classical representation and the digitized
representation. The root mean square error (RMSE) between the modeled hysteresis behav-
ior and the measured hysteresis behavior are 0.50 µm using either of the two representation
with a stroke of 66.14 µm. The modeling error is around 0.76% of its stroke. This proves that
the proposed representation has almost the same performance compared to the classical
representation while modeling the asymmetric actuator hysteresis.
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Figure 8. Experimental setup.

Figure 9. Modeling results using the classical representation and the digitized representation with
dead-zone operators at 1 Hz, sinusoidal wave.

The inverse model is constructed and is then applied to compensate for the hysteresis
behavior of the system at a changing amplitude sinusoidal wave with xd(t) = A× sin(2×
π × t) + 68.15 (µm). The compensation results are shown in Figure 10. The RMSE between
the measured compensated position and the desired position is 0.36 µm, with a maximum
amplitude of 60 µm. The error is around 0.6%.
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Figure 10. Compensation results at a changing amplitude sinusoidal wave.

3.3. Discussion

Experimental results show that the proposed digitized representation performs almost
the same as the classical representation while modeling the hysteresis behavior of the
piezoelectric stacked linear actuator. This is because the digitized representation is derived
from the classical representation and the two representation are equal mathematically.
With n = 25, the RMSE for modeling the piezoelectric actuator hysteresis is around 0.76%.
The compensation experimental results with the RMSE of around 0.6% is even slightly
better than the modeling results. This also proves that the proposed representation can
compensate for the asymmetric actuator hysteresis. The description and compensation
experimental results prove that the proposed digitized representation and its inverse model
can model and compensate for the asymmetric asymmetric actuator hysteresis.

With the proposed digitized representation, the construction of the inverse model is
less mathematically complicated and this improvement may be significant with a large
value of n. The parameters of the proposed representation is also more intuitive with
their geometric meanings; this may help with the parameters identification. The proposed
representation is more intuitive and may be easier to be modified further.

4. Conclusions

The proposed digitized representation is an alternative to the classical representation.
The inverse model can be easily constructed with the proposed representation and the
inversion calculation is avoided. The proposed representation is also more intuitive.
The proposed representation and its inverse model are validated with description and
compensation experimental results.
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