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Abstract: Innovation agglomeration plays a decisive role in improving the input–output scale and
marginal output efficiency of factors. This paper takes carbon emissions as the unexpected output
and energy consumption as the input factor into the traditional output density model. The dynamic
spatial panel Durbin model is used to analyze the mechanism for innovation agglomeration and
energy intensity to affect carbon emissions from 2004 to 2017 in thirty Chinese provinces. Then, we
test the possible mediating effect of energy intensity between innovation agglomeration and carbon
emissions. The major findings are as follows. (1) The carbon emission intensity has time-dependence
and positive spatial spillover effect. That is, there is a close correlation between current and early
carbon emissions, and there is also a high-degree correlation between regional and surrounding areas’
carbon emissions. (2) Carbon emissions keep a classical inverted U-shaped relation with innovation
agglomeration, as well as with energy intensity. However, the impact of innovation agglomeration
on carbon emissions in inland regions of China does not appear on the right side of the inverted
U-shaped curve, while carbon emissions are subject to a positive nonlinear promoting effect from
energy intensity. (3) When the logarithm of innovation agglomeration is more than 3.0309, it first
shows the inhibition effect on energy intensity. With the logarithm of innovation agglomeration
exceeding 5.0100, it will show the dual effect of emission reduction and energy conservation. (4)
Energy intensity could work as the intermediary variable of innovation agglomeration’s influence on
carbon emissions. Through its various positive externalities, innovation agglomeration can produce
a direct impact on carbon emissions, and through energy intensity, it can also affect carbon emissions
indirectly.

Keywords: innovation agglomeration; energy intensity; carbon emission; dynamic spatial Durbin model

1. Introduction

Material wealth has been greatly increased amid the rapid expansion of urbanization
and global industrialization, but meanwhile, the consumption of a large amount of energy
in the extensive model of economic development has brought severe challenges to the
ecological environment, such as the greenhouse effect and the rising of sea level increased
with global climate change. Such serious ecological and environmental problems have
attracted more and more attention from governments [1]. While carbon emissions account
for the most of the greenhouse gas caused by anthropogenic activities [2], global carbon
emissions are expected to increase by 30% above the 2010 level by 2030 [3]. At present, the
problem of carbon emissions is becoming increasingly serious, threatening the well-being
of mankind.

Given the impact of climate change and global warming, carbon emission reduction
has become a hot topic worldwide and has attracted extensive attention from many coun-
tries. C. Watanabe (1995) appealed to the industry to replace limited fossil energy with clean
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energy, based on the 20-year development experience of renewable energy in Japan [4].
G.A. Efthimeros (2000) believed that improving energy efficiency was the key to improving
the industrial competitiveness of EU countries, which could not only significantly reduce
the operating costs of industrial enterprises, but also reduce the carbon emission caused by
economic activities [5]. In addition, China [6], Thailand [7], Britain [8], and other countries’
relevant scholars discussed the energy production and consumption of each country, and
all advocated that industrial sectors replace fossil energy with renewable energy to reduce
carbon emissions in the manufacturing process.

Technological innovation, as a significant factor contributing largely to the enhance-
ment of energy efficiency, is an important way to realize low-carbon economy, emission
reduction, and energy conservation [9,10]. Existing research on technological innovation
and carbon emission is mainly carried out from three aspects. (1) Based on EKC curve,
those papers study the relationship between technological innovation, economic growth,
and carbon emissions. With the improvement of income level and the enhancement of
environmental awareness, technological innovation not only plays a role in economic
development, but also takes environmental protection into account [11,12]. Especially,
low-carbon technological innovation is of great significance to carbon emission reduc-
tion [13]. (2) The driving factors of carbon emissions was explored by the IPAT equation
and STIRPAT model [14]. The results show that technological innovation is helping to
slow down the growth of carbon emissions. (3) The impact of technological innovation
on carbon emissions in different industrial sectors has been frequently reported to play a
huge role in energy conservation and emission reduction in agriculture [15], transport [16],
electrical engineering [17], construction industry [18], and automobile industry [19].

However, technological innovation was found by Acemoglu et al. (2012) to have
two-sided effects on carbon emissions [20]. As we all know, technological innovation
can reduce carbon emission through using clean energy, adopting carbon capture and
storage technology, and improving energy efficiency [21,22]. On the other hand, while
promoting economic scale growth, technological innovation might cause more carbon
emissions by require higher energy consumption. For example, Jin et al. (2014) [23],
according to the empirical data analysis of 35 industrial sectors in China, found that the
effect of emission reduction brought by technological efficiency improvement cannot offset
the effect of carbon emission growth caused by labor efficiency improvement. Additionally,
this labor efficiency improvement was due to economic growth promoted by technological
efficiency improvement. Furthermore, Fisher-Vanden et al. (2004) [24] believed that
advanced technology could reduce energy consumption intensity. However, due to the
“rebound effect”, the output level was greatly increased; thus, the total energy consumption
and carbon emission increased. Yan et al. (2011) [25] used the data sample of China’s
manufacturing industry and found that in the short term, the technological innovation
of manufacturing was conducive to reducing environmental pollution, but in the long
term, there was no inevitable causal relationship between technological innovation and
environmental pollution. Therefore, carbon emission and technological progress have an
uncertain relationship.

China’s economy has been growing dramatically since the reform and opening up.
Nevertheless, China is forced to reduce carbon emissions, due to the great pressure brought
by the extensive development of traditional industries with “low efficiency, high con-
sumption, and high input”. As indicated by the International Energy Agency (IEA), as a
result of the rapid increase of total emission, China is ranked first throughout the whole
world in terms of carbon emissions [26]. Under the premise that promoting low-carbon
economy and tackling climate change have become a consensus worldwide, the Chinese
government announced in 2020 to achieve carbon neutrality by 2060 and proposed that
carbon emissions should peak by 2030. The proposal of achieving energy conservation and
emission reduction brings challenges to China’s future economic development, and also
provides important opportunities for China’s green economic transformation. As a critical
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driving force in economic and social development, technological innovation will provide
strong support for China’s goal of reducing emissions and saving energy.

As for China’s reality, with the rise of the urban agglomeration economy, innovation
activities and achievements have a strong regional cluster characteristic. Abundant studies
proved that technological progress is an important method to achieve energy conservation
and emission reduction in China [27]. Technological progress can contribute to an improve-
ment in carbon emission efficiency, found by Li et al. (2020) [28]. Xue et al. (2020) [29]
also found that the direct effect of technological innovation was significantly negative in
carbon emission. However, Shen et al. (2014) [30] investigated the relationship between
spatial agglomeration and carbon emission reduction from a new economic geographical
perspective. They found that the externality of spatial agglomeration is an important
mechanism to reduce carbon emission, and spatial agglomerations of different levels and
ways correspond to different carbon emission behaviors. On the one hand, as a compact
spatial economic behavior, innovation agglomeration is accompanied by various positive
externalities and has significant spatial spillover effect. It enables the subject of innovation
to acquire tacit and explicit knowledge, and greatly reduces the cost of innovation, so as to
enhance the level of innovation output and improve the utilization efficiency of elements,
showing the positive role of reducing emissions and saving energy. On the other hand,
innovation agglomeration may accelerate energy consumption and carbon emission by
expanding regional production scale and factor input. This will have a negative impact on
the target of reducing emissions and saving energy. However, the traditional agglomera-
tion theory holds that there are a variety of spillover effects from agglomeration, and the
spatial concentration of elements is conducive to saving various costs and improving the
efficiency of production [31]. The agglomeration process, when environment and energy
are considered to be input factors of production, should contribute to the enhancement
of the efficiency of environmental elements and energy [32]. Therefore, can innovation
agglomeration show the double effect of reducing emissions and saving energy as pre-
dicted by theory? According to China’s reality analysis, will innovation agglomeration
lead to increased regional energy consumption and aggravated environmental damage?
China has a vast territory, and provinces have significantly different resource endowments,
development stages, and other conditions. What are the differences between different
regions in terms of the effect of innovation agglomeration on carbon emissions?

As for the method, existing studies showed that pollution was not a purely local
environmental problem [33]. Wesley Burnett et al. (2013) [34] estimated the relationship
between U.S. state-level carbon emissions by a long panel data, economic activity, and other
factors, exploring several spatial models to account for spatial dependence between states.
Therefore, spatial autocorrelation should be taken into account to research carbon emission
intensity [35,36], and there are already some applications in China [37,38]. Therefore, a
spatial econometric model can be used to analyze the spatial effect, considering the “path-
dependence” of carbon emission intensity, ignoring the influence of time effect and space
effect will lead to systematic bias.

From the above analysis, the existing literature has carried out a relatively rich discus-
sion on the relationship between energy, technological innovation, and carbon emissions.
However, there are still relatively insufficient theoretical and empirical studies on inte-
grating the three into the same analysis framework. Additionally, most of the current
studies in China only focus on the inhibition of innovation on carbon emission, but ignore
the possible promoting effects. Meanwhile, the differences of the effects of innovation
on reducing energy consumption and carbon emissions have not been deeply studied.
Based on the foregoing, this paper introduces energy factors and carbon emissions into
output density model, using 2004–2017 panel data samples from thirty Chinese provinces.
The spatial dynamic econometric model is used to test the relationship among innovation
agglomeration, energy intensity, and carbon emission, which can control both spatial and
endogenous effect. The marginal contribution of this research is threefold: (1) The output
density model proposed by Ushifusa and Tomohara (2013) was extended in this paper [39].
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We put energy and carbon emission into the output density model, and mathematically
explain the effect and mechanism of innovation agglomeration and energy intensity on
carbon emission under different threshold conditions. (2) We discuss the possible double
effects of energy conservation and emission reduction that innovation agglomeration may
exhibit, and tests the possible mediating effect of energy intensity between innovation
agglomeration and energy intensity. (3) The dynamic panel Durbin model combined with
Han Phillips (GMM) [40] estimation method is used to control the time lag effect, spatial
lag effect, and endogenous problem of carbon emission, which provides reliable empirical
support for the proposed theoretical hypothesis under robust conditions.

The remaining parts of this paper are arranged in the following manner: The sec-
ond part constructs the theoretical model, normatively exploring the effect of innovation
agglomeration on energy conservation and emission reduction. An empirical model is
established in the third part to explain the data sample. The fourth part discusses and
analyzes the empirical results. Finally, conclusions and recommendations are given.

2. Theoretical Model and Research Hypothesis

Innovation agglomeration refers to the intensity of human innovation activities in unit
space. It is generally believed that regions with a higher degree of innovation agglomeration
have a larger output scale in the same space. The aggregation of innovative activities in
different spaces can bring about various spillover effects through sharing, matching, and
learning [41,42]. Different from the traditional neoclassical model, the output density
model proposed by Ciccone and Hall (1996) allows for increasing returns to scale, and
this model fully considers the influence of spatial factors on output, thus providing a
basic analytical framework for depicting spatial production activities [43]. Ushifusa and
Tomohara (2013) [39] further simplified the output density model as follows:

qi = Qi/Ai = τi

[
(ni)

βk1−β
i

]α
[Qi/Ai]

(λ−1)/λ (1)

where Qi and Ai are respectively non-farm output and total area of the region; qi is the
unit area non-agricultural output of the i region, namely the output density; τi is the Hicks
neutral parameter; ni is employment density; β(0 < β < 1) represents the income share
of labor to capital input; and ki is the capital input per unit area. The main difference
between Equation (1) and traditional Cobb–Douglas production function is that it contains
the parameter α(0< α ≤ 1) representing the income share of the two inputs, capital and
labor, to land. It reflects the diminishing marginal productivity of the factors caused by
crowding. The smaller α represents the lower factor production efficiency [39]. Ciccone and
Hall (1996) [43] identified the loss of productivity due to additional factor input per unit
area as congestion effect, and give the following explanation: Under the condition of Hicks
neutral technology, land elements are relatively fixed. With the increased input of capital
and labor, factor input will deviate from the optimal configuration levels of capital–land
and labor–land. This gradually reduces the marginal output level and factor productivity
of capital and labor per unit area, leading to diminishing marginal returns of capital and
labor. Obviously, α=1 means the marginal return of the factor is constant. λ(λ > 1) refers
to the output coefficient of density. (λ − 1)/λ is output elasticity, which is used to reflect
the agglomeration effect. It is clear that the bigger λ, the greater the elasticity of output
density (λ − 1)/λ, the stronger the positive externality of agglomeration, and the larger its
contribution to output density. Therefore, λ can be regarded as the externality parameter
of agglomeration. Because of the close link between the agglomeration effect and the stage
of innovation development, the spatial concentration of innovation activities in different
stages has different agglomeration effects. Usually, regions with a high level of innovation
development will also present strong agglomeration externalities [44]. Therefore, the size
of λ corresponds to different stages of innovation development. More importantly, the
existence of λ gives the output density function the possibility of showing increasing
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returns to scale. After sorting out Equation (1), the final form of output density can be
obtained as follows:

qi = Qi/Ai = τi
λ
[
(ni)

βk1−β
i

]
αλ (2)

It can be seen that the size of αλ determines the scale return characteristic of output
density function. There is 0 < α ≤ 1, but as long as λ is large enough to make αλ > 1, then
the output density can show the feature of increasing returns to scale. At this point, the
contribution of positive externalities of agglomeration effect to output is greater than the
“inhibition” effect of crowding effect on output, which makes up for the loss of production
efficiency caused by element agglomeration in a given space. It is obvious that the output
density function reflects the crowding effect of production factors and the agglomeration
effect of innovation activities simultaneously. It also allows the production function to have
different scale return characteristics under different conditions (the relationship between
αλ and 1). It will provide a general explanation of the real innovation activities from the
perspective of spatial behavior.

However, the existing output density model has some limitations. It does not reflect
the energy and environmental constraints caused by innovative activities. Given this, this
paper tries to incorporate energy and environment (carbon emission) into this model. From
the input side, energy, as a basic factor input in the production process, can be included
into the production function together with capital and labor [45]. From the perspective
of output, pollutants such as carbon emissions can be regarded as a kind of undesired
output resulting from the use of energy factors, and could be included into the production
function together with the expected output [46]. Therefore, based on the facts in the
actual production process and the assumptions of existing studies, this paper takes energy
consumption and carbon emissions as input factor and undesired output respectively, and
integrates them into the above output density function. Let Ei be the energy consumption
and ei=Ei/Ai be the energy consumption per unit area. At the same time, it is assumed that
the entire production process will produce Ci units of carbon emissions. In this way, (1)
can be extended to:

(Qi + Ci)/Ai = (Qi/Ai)(1 + Ci/Qi) = τi

[
(ni)

βκl
i e

1−β−l
i

]α
(Qi/Ai)

(λ−1)λ(1 + Ci/Qi

)(λ−1)λ
(3)

where l (0 < β+l< 1) is the contribution rate of innovation capital input to output per unit
area, α is redefined as the share of output per unit area of physical capital, labor and energy.
The meanings of other variables are consistent with the above. Assuming that capital can
free flow across regions. Therefore, the capital price (the interest rate) is equal in every
region under the equilibrium. Under the equilibrium, the marginal output of capital in the
factor market is equal to the capital price, so the capital demand density (the ratio of total
capital K to regional area) can be expressed as:

κi =
Ki
Ai

=
αl
r
× (Qi/Ai)(1 + Ci/Qi) (4)

Substituting (4) into (3) to get:

1 +
Ci
Qi

= τ
λ

1−αlλ × (
αl
r
)

αlλ
1−αlλ

× (
Qi
Ni

)

−αβλ
1−αlλ

× (
Ei
Qi

)

α(1−β−l)λ
1−αlλ

× (
Qi
Ai

)

αλ−1
1−αlλ

(5)

The logarithm of both sides of (5) can be obtained as follows:

ln(1 +
Ci
Qi

) = φ− αβλ

1− αlλ
ln(

Qi
Ni

) +
α(1− β− l)λ

1− αlλ
ln(

Ei
Qi

) +
αλ− 1
1− αlλ

ln(
Qi
Ai

) (6)

where φ =
λ

1− αlλ
ln τ +

αlλ
1− αlλ

(ln αl − ln r)
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As a result, (6) can be transformed into:ln(1 + Ci/Qi) ≈ Ci/Qi

Ci
Qi

= φ− αβλ

1− αlλ
ln(

Qi
Ni

) +
α(1− β− l)λ

1− αlλ
ln(

Ei
Qi

) +
αλ− 1
1− αlλ

ln(
Qi
Ai

) (7)

The left side of Equation (7) is the carbon emission intensity of non-farm output, and
the right side contains the innovation agglomeration level Qi/Ai, energy intensity Ei/Qi, and
labor productivity Qi/Ni. It indicates that under the condition of considering innovation
agglomeration, carbon emission intensity depends on the density of output, energy inten-
sity, and labor productivity. Among the three, the direction of carbon emission intensity
being affected by output density and energy intensity is determined by agglomeration
externalities and the return on investment. Therefore, under different levels of agglomera-
tion externalities, the impact of innovation agglomeration and energy intensity on carbon
emission intensity is also different. The comparative static analysis results obtained in this
paper based on Equation (7) are discussed (Table 1).

Table 1. Influences of innovation agglomeration and energy intensity on carbon emission intensity under different external
conditions.

Variable Name External Stage of Development Environmental Effect Main Mechanisms

Innovation
agglomeration

1 < λ < 1/αl Initial stage;
Acceleration stage Promotion Pursuing economic interests;

Lax environmental regulation

1 < α < 1/αl Mature stage Inhibition

Green technology spillover;
Economies of scale;

Resetting technological trajectory;
Greening industrial structure

Energy intensity
1 < λ < 1/αl Initial stage;

Acceleration stage Promotion

Increasing demand for energy;
Outdated energy conservation

Technologies;
Lax environmental regulation

1 < α < 1/αl Mature stage Inhibition Reasonable energy allocation structure;
Clean energy structure;

2.1. Effect of Innovation Agglomeration on Carbon Emission Intensity

When 1 < λ < 1/αl, the improvement of innovation agglomeration brings no benefit
to reducing carbon emission intensity. The economy is in the preliminary phase of innova-
tion at this time. During this stage, the degree of innovation concentration is constantly
improving, and the results of innovation output are significantly increased. However,
the economies of scale, technology spillover, and knowledge sharing effect brought by
innovation agglomeration are still not obvious. Technological innovation is mainly aimed
to improve the economic output per unit of labor time [47]. The rapid expansion of pro-
duction capacity will increase the total amount of pollution emission per unit space and
aggravate the environmental pollution, thus leading to a higher level of carbon emission
intensity. In addition, to pursue economic benefits, the government has relatively lax
environmental regulations and low environmental protection standards, which cannot
form an effective “driving force” effect on polluting enterprises [48]. As a result, carbon
emission per unit of output continues to increase, so carbon emission intensity is affected
by innovation agglomeration in a positive direction.

When λ > 1/αl, the improvement of innovation agglomeration helps reduce carbon
emission intensity. At this time, the economy is in the mature stage of innovation. The
agglomeration of a large number of enterprises reduces the risk of technological innova-
tion of a certain individual enterprise. This is beneficial to the exchange, learning, and
large-scale promotion of energy conservation and emission reduction technologies among
enterprises [49]. In the meanwhile, spillovers and sharing of various green technologies,
centralized supervision of environmental departments, and other positive externalities
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brought by higher innovation agglomeration level can give full play to economies of scale,
reduce the cost of environmental supervision and environmental publicity, so as to curb
carbon emissions [50]. Meanwhile, innovation can help reset the technological trajectory
and trigger a series of subsequent and related innovations. It will lead to the forming of
new technology and production systems, which could bring a significant decline in carbon
emissions [51]. For example, the introduction of battery technology in the automobile
industry has led to a series of innovations that have reduced the reliance of automobiles
on fossil energy. In addition, due to the continuous improvement of technological level,
the tertiary industry has an increasing share in the market due to its low-level carbon
emissions and low-level energy consumption. The industrial structure has been adjusted
to the direction of the tertiary industry. The green upgrading effect of regional industrial
structure brought by innovation agglomeration has somewhat prevented carbon emission
intensity from increasing [52]. Based on this, the direct impact of innovation agglomeration
on carbon emission intensity mainly depends on the direction of technological progress
and the comprehensive effect of positive or negative externalities of agglomeration.

Therefore, this paper proposes the theoretical Hypothesis 1.

Hypothesis 1 (H1): With the improvement of innovation agglomeration level, carbon emission
intensity will show an inverted U-shaped trend when other conditions remain unchanged.

2.2. Influence of Energy Intensity on Carbon Emission Intensity

The accumulation of regional innovation resources is still in the initial and accelerated
stage when 1 < α < 1/αl. Meanwhile, the innovation output level is gradually improving
but still relatively low. The consumption of fossil energy is usually regarded as the direct
source of environmental pollution in environmental economics. The combustion of fossil
fuel represented by coal will directly produce carbon dioxide, sulfur dioxide, and other
pollutants in production process [53]. In this period, the externality of agglomeration
has not been fully reflected, and the increase of energy intensity has no positive effect on
reducing carbon emission. Although the regional innovation level has been improved, the
innovation output of most enterprises is mainly based on the introduction, imitation, and
re-absorption of technology in developed regions, and their independent innovation ability
is relatively weak [54]. From the point of empirical fact, some developing countries, due
to the low prices of labor, energy, land rent, and other factors, and the lax environmental
regulations, attracted a lot of high-pollution and high-energy-consumption industries from
developed countries [55]. Although they could absorb some of the international technology
spillovers, they also become “pollution haven” of foreign investment. At the same time,
it is difficult to make breakthroughs in technologies for reducing emissions and saving
energy in a short period, bringing a certain degree of time lag. Additionally, the high cost
of new energy development makes it difficult to achieve the price advantage. Therefore,
the energy consumption structure dominated by traditional fossil energy is difficult to
change [15]. This problem makes it hard to effectively decouple carbon emission intensity
and energy intensity, and may even hinder the reduction of carbon emission intensity.

When λ > 1/αl, the region is in the mature stage of innovation development. The
higher level of innovation agglomeration enables its positive externalities to be significantly
manifested, and the improvement of energy intensity is beneficial for reducing carbon
emission intensity. The various spillover effects of innovation agglomeration and charac-
teristics of economies of scale become prominent in this stage. It will effectively promote
the concentrated use and improve the use efficiency of energy products in production and
consumption [56]. The breakthrough of new energy technology can effectively reduce the
production cost and market price of clean energy, and therefore the need for clean energy
and new energy will increase significantly. This is also useful for promoting the “green”
adjustment of energy consumption structure [57]. Above all, the direct impact of energy
intensity on carbon emission intensity mainly depends on the structure of energy consump-
tion. More fossil fuel combustion will inevitably lead to an increase in carbon emission
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intensity. The use of clean and new energy from innovation agglomeration not only substi-
tutes part of fossil fuel, but also optimizes the energy consumption structure, which has
a certain inhibition effect on carbon emission. On this basis, theoretical Hypothesis 2 is
proposed:

Hypothesis 2 (H2): With the increase of energy intensity, carbon emission intensity will show an
inverted U-shaped trend when other conditions remain unchanged.

2.3. The Mediating Effect of Energy Intensity between Innovation Agglomeration and Carbon
Emission Intensity

Through the above analysis, it is found that innovation agglomeration, energy in-
tensity, and carbon emission are closely related. Innovation agglomeration is the main
manifestation of spatial allocation of various innovation elements and spatial distribution
of innovation activities. The latter will undoubtedly have an important impact on energy
demand and carbon emissions [58] and also have an important impact on production
efficiency of energy elements [59]. From this perspective, the direct impact of innova-
tion agglomeration on carbon emissions is mainly reflected in various spillover effects
of agglomeration, such as agglomeration of innovative enterprises, which benefits the
learning and advancement of green innovation technologies [60]. Carbon emission usually
comes from fossil energy combustion. Therefore, once innovation agglomeration has an
impact on energy utilization efficiency, it is bound to have an indirect impact on carbon
emission. On the one hand, the invention and use of new and clean energy are conducive
to reduce energy consumption. It will decline the per unit of energy consumption output
and improving utilization efficiency [61]. On the other hand, agglomeration can improve
the efficiency of production factors by technology spillover, knowledge sharing, and factor
matching, so as to achieve the improvement of energy utilization efficiency [62]. Thus,
innovation agglomeration exerts an indirect influence on carbon intensity by influencing
energy efficiency. Accordingly, this paper further puts forward theoretical hypothesis 3.

Hypothesis 3 (H3): Energy intensity may have a mediating effect in the impact of innovation
agglomeration on carbon emission intensity.

3. Data Description and Empirical Model
3.1. Data Description
3.1.1. Explained Variable: Carbon Emission Intensity (CO2)

The carbon emission calculation method of IPCC (2006) [63] is adopted in this paper.
The energy types considered are all the 17 fossil energy sources appearing continuously
in the China Energy Statistical Yearbook, including natural gas, refinery dry gas, washing
coal such as washed coal, briquette, and coal, coking products like coke oven gas and
coke, and oil products like kerosene liquefied petroleum, fuel oil, diesel oil, crude oil, and
gasoline [64].

From the comparison of different years, it can be found in Figure 1 that from 2004 to
2017, the carbon emission intensity in China at the provincial level has been continuously
enhanced, showing the characteristics of contiguous distribution. The eastern coastal
region is ranked first and the central region second in terms of carbon emission intensity.
In the western region, only Inner Mongolia has relatively high carbon emission intensity.
It also can be seen that in the aspect of carbon emission intensity, various regions have
a relatively strong spatial correlation, and there is a phenomenon of pollutant diffusion
between regions. Therefore, the spatial econometric model can be used in this paper
to explore the influence of innovation agglomeration at the provincial level on carbon
emission intensity.
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Figure 1. China provincial carbon emission intensity from 2004 to 2017.
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3.1.2. Core Explanatory Variables

(1) Innovation Agglomeration (Agin): Existing literature mainly uses Taylor coefficient
of innovation activities [65], location entropy [66], and spatial Gini coefficient [67] and
other indicators to measure innovation concentration. This paper is consistent with the
theoretical model. Referring to the measurement method of output density model [39], this
measurement of innovation agglomeration can describe the spatial density and distribution
of innovation activities. Patent data are often used because of their palpable link with
innovation output and their relative integrity [68]. In this paper, the number of patents
granted (pieces) is selected to represent regional innovation output. The specific calculation
formula is as follows:

Aginit = Init/Si (8)

where the subscripts i and t correspond to different provinces and years, respectively;
Init refers to the number of patents granted of province i in year t, Si represents the
administrative area of province i.

(2) Energy Intensity (Sen): Consistent with the theoretical model, the ratio of total
energy consumption to industrial value-added (104 yuan) is used in this paper to measure
energy intensity.

The formula is as follows:
Senit = Eit/Yit (9)

where Yit is the industrial value-added of province i in year t, and the energy intensity
(Senit) is the energy consumption level of unit non-farm output.

3.1.3. Control Variables

(1) Labor productivity (Lab): Consistent with the theoretical model, measured by the
ratio of non-farm output to the number of employees. An increase in labor productivity
could lead to an increase in carbon emissions [69]. (2) Per capita income level (Pcin):
Measured by the natural logarithm of GDP per capita. According to the classical EKC
hypothesis [70], in this paper, the first power term Pcin and the second power term sPcin
of per capita GDP derived from natural logarithms are introduced into the model. (3)
Urbanization (Ur) is the ratio of urban population to total population. On one hand, a
large amount of energy will be consumed with the acceleration of urbanization, increasing
carbon emission [71]. On the other hand, with the improvement of urbanization level,
carbon emission is reduced under the low-carbon green city development mode in which
new environmental protection technologies are applied extensively [72]. In this paper,
the first power term Ur and the second power term sUr are introduced into the model at
the same time. (4) The ratio of coal consumption to total energy consumption is used to
measure energy consumption structure (Es). Coal still occupies a dominating position in
China’s energy consumption structure, and carbon emission intensity is lower when the
proportion of coal consumption is higher. (5) Industrial structure (Ind): Expressed as the
ratio of industrial value-added to GDP. It is harder to reduce carbon emission intensity
when industry accounts for a larger proportion in the economic structure [73]. (6) Opening
up (Open): Measured by the proportion of total import and export in GDP. A higher degree
of openness can help a region to better absorb green technology spillover and advanced
management experience from advanced countries, contributing to energy conservation and
emission reduction [74]. (7) Environmental regulation (Er): Measured by the proportion
of environmental expenditure in GDP [75]. Higher environmental regulation intensity
will force enterprises to carry out technological innovation and choose clean energy to
reduce carbon emission intensity. (8) Marketing (Mar): Fan Gang’s marketization index [76]
was used to measure the marketing degree. Innovative elements would enjoy free flow
when there is a higher level of marketing, but the impact of marketing on carbon emission
is uncertain.
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3.2. Data Source

The panel data, obtained on the basis of availability from 30 provincial administrative
regions (provinces, municipalities and autonomous regions) (Tibet was excluded due to
serious data deficiency) in China from 2004 to 2017, are used as research samples in this
paper. The main sources and explanations of sample data are shown in Table 2. Among
them, all kinds of monetary quantity indexes are deflated by the prices in 2000. For
non-percent variables, this paper uses their natural logarithms to reduce the degree of
dispersion of sample data.

Table 2. Data Selection & Description.

Variable Types Index Selection Symbol Indicator Description Variable Source

Explained variable Carbon emission CO2
Carbon emission from

non-farm
China Energy Statistics Yearbook

(2005–2018)

Core explanatory
variable

Innovation
agglomeration Agin Number of patents granted

/administrative area
China Science and Technology

Statistical Yearbook (2005–2018)

Energy intensity Sen
Energy

consumption/industrial
value-added

China Energy Statistics Yearbook
(2005–2018)

Control variables

Labor productivity Ip Industrial
output/employment

China Statistical Yearbook
(2005–2018)

China Science and Technology
Statistical Yearbook (2005–2018)
China Environmental Yearbook

(2005–2018)

Per capita income level Pcin GDP/population

urbanization Ur Urban population/total
population

Energy consumption
structure Es Coal consumption/energy

consumption

Industrial structure Ind Industrial value-added/GDP

Opening up Open Total imports and
exports/GDP

Environmental
regulation Er Environmental

expenditure/GDP

Marketing Mar Marketization index Marketization Index Report

3.3. Empirical Model
Test Model for the Effect of Innovation Agglomeration and Energy Intensity on Carbon
Emission Intensity

Based on above analysis, carbon emission intensity is featured with a strong spatial
correlation in China. Without considering the inherent spatial spillover effect, measurement
results may be biased [77]. The spatial correlation of different sources can be well reflected
by the spatial Durbin model. Therefore, this paper mainly adopts the spatial Durbin model
to carry out empirical test.

CO2it = β0 + β1CO2i,t−1 + ρ1
n
∑

i=1
wijCO2 jt + β2 Agini,t + β3sAgini,t + ρ2

n
∑

i=1
wij Agin jt+

β4Seni,t + β5sSeni,t + ρ3
n
∑

i=1
wijSen jt+δ∑ Xit + λ

n
∑

i=1
wijX jt+ εit + uit

(10)

Carbon emission changes may have time-dependence, namely time lag effect, and
carbon emission may have a two-way causal relationship with technological progress,
energy efficiency, and other factors, which may cause endogeneity [78]. Considering the
above reasons, in this paper, the one-phase lag of carbon emission is introduced into the
standard static space panel Durbin model. Based on (7), build dynamic spatial panel
Durbin model as follows:
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Where CO2 is the carbon emission intensity, i stands for province, and t stands for
year; CO2(t−1) represents the carbon emission with one-phase lag, which is used to control
and investigate the time lag effect of carbon emission intensity; Senit denotes energy
intensity and Aginit refers to the degree of innovation agglomeration. In addition, this
paper introduces the quadratic term of innovation aggregation (sAginit) and the quadratic
term of energy intensity (sSenit) into the model, trying to test Hypothesis 1 and Hypothesis
2. Considering the limitations of using only economic matrix or geographical matrix,
this paper uses the geographical and economic distance spatial weight matrix. ρ and γ
refer to the spatial lag coefficient of each main explanatory variable and control variable,
respectively. β1~β5 are the coefficients to be evaluated, in which β1 is the time lag coefficient of
carbon emission intensity, ε is random disturbance term, and u represents regional fixed effect.

3.4. Parameter Estimation Method

Because Equation (10) includes spatial lag terms and time lag terms of explained
variables as explanatory variables, the residual no longer satisfies the basic assumptions of
homoscedasticity and exogeneity. Traditional ordinary least square (OLS) method, fixed
effect and random effect estimation would get biased estimation results, and the most
commonly used method in estimating the stunned spatial panel Durbin model, maximum
likelihood estimation (MLE), is also powerless to control the potential endogeneity. The
spatial generalized method of moments (GMM) proposed by Han and Phillips (2010) [40]
can effectively overcome the problem of weak instrument in traditional instrumental
variable method and difference GMM estimation. Additionally, its restrictions on the
sample section number N and time T are weak. Particularly, under the condition of small
sample, this method can still get a consistent and unbiased estimation result. Therefore,
this method is mainly adopted in the following part. For comparison, we also report the
estimation results under non-spatial panel OLE-FE, non-spatial panel SYS-GMM, and static
spatial Durbin panel model.

4. Empirical Results and Discussion
4.1. Spatial Correlation Test Results

From the results reported in Table 3, it can be obviously seen that the Global Moran’s I
corresponding to each spatial regression equation is significant at 1% level, and LM-lag
and LM-error statistics are both significant. This indicates that the explained variables of
each equation have obvious spatial correlation. Therefore, it is necessary to research the
problems in this paper by the spatial Durbin panel model, which cannot degenerate to
spatial lag model or spatial error model. Considering the regional individual differences
and the estimation bias caused by temporal factors, the dynamic spatial panel model
with spatiotemporal bidirectional fixed effect is mainly used in this paper to estimate the
parameters. It is more effective to choose fixed effect model when only some specific
individuals are involved in the regression analysis. Moreover, Hausman test results also
show that the panel regression model in this paper is suitable for estimation considering
fixed effect (due to the limited space, this paper does not report the Hausman test results.
Interested readers can obtain the results from the author).

Table 3. Spatial Correlation Test.

Model Type Static Durbin Dynamic Durbin

Model 3 13 14 4 15 16

Global Moran’s I
[P]

0.2308 ***
(0.000)

0.7664 ***
(0.000)

0.2480 ***
(0.000)

0.6665 ***
(0.000)

0.7843 ***
(0.000)

0.7412 ***
(0.000)

LM-lag
[P]

29.8825 ***
(0.000)

4.1013 **
(0.042)

35.0508 ***
(0.000)

19.6130 ***
(0.000)

21.5171 ***
(0.000)

36.154 ***
(0.000)

LM-error
[P]

29.8802 ***
(0.000)

5.1024 **
(0.023)

35.0545 ***
(0.000)

244.2844 ***
(0.000)

349.7951 ***
(0.000)

318.7048 ***
(0.000)

Note: *** and ** representing the significance level of 1% and 5%, respectively.
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4.2. Impact of Innovation Agglomeration and Energy Intensity on Carbon Emission—An
Empirical Test of Hypothesis 1 and Hypothesis 2
4.2.1. Regression Results

From Table 4, the coefficients of most control variables in Model 1 without considering
endogeneity and spatial correlation are not significant, and the coefficients of innovation
agglomeration and its quadratic term in Model 2 where spatial correlation is not considered
are not significant. They indicate that bias may appear if spatial correlation is ignored. The
estimation results of Model 3 and Model 4, which take spatial correlation into consideration,
indeed show better statistical characteristics. Further, from the contrast of Model 3 and
Model 4, the significance level of most control variables and core explanatory variables in
Model 4 is better than that in Model 3. Additionally, in Model 4, the coefficient of time lag
term of carbon emission is positive at a significant level of 1%, which verifies the carbon
emission intensity change described above has a time-dependence feature. The time lag
effect, spatial correlation, and endogeneity of the explained variables are taken into account
in Model 4. Therefore, compared with the other three models, it has the best performance
in measurement and theoretical expectation. Based on this, this paper would focus on the
estimation results of dynamic spatial panel Durbin model (Model 4) with GMM estimation
method in the following discussion.

Table 4. Impact of Agin and Sen on carbon emission intensity.

Variable OLS-FE SYS-GMM Static Durbin Dynamic Durbin

Model 1 2 3 4

L.CO2
0.4630 ***

(5.08)
0.3618 ***

(2.90)

Agin 0.2648 ***
(4.80)

0.0835
(0.27)

0.2119 ***
(4.11)

0.3498 ***
(4.01)

sAgin −0.0388 ***
(−4.32)

−0.0135
(−0.27)

−0.0169 *
(−1.96)

−0.0462 ***
(−3.03)

Sen 0.1332 **
(2.43)

0.1405 ***
(2.92)

0.1837 ***
(3.59)

0.1549 **
(1.99)

sSen −0.0113
(−0.22)

−0.0117
(−0.23)

−0.0111 **
(−2.53)

−0.0126 **
(−2.17)

Lp 0.2170 *
(1.69)

0.4042
(1.36)

0.3286 ***
(2.66)

0.4020 **
(2.43)

Eco 0.8076
(1.24)

0.6237
(0.98)

0.6714
(1.06)

0.8919 **
(2.53)

sEco −0.0033
(−0.11)

−0.0292
−(0.44)

−0.0606 **
(−2.04)

−0.1013 *
(−1.88)

Ur 0.5703
(1.07)

0.5314
(0.96)

0.1632 *
(1.77)

0.4041 *
(1.76)

sUr 0.3674
(1.34)

0.5088
(0.54)

0.2009
(0.08)

0.2016 **
(2.00)

Es 0.2102 ***
(4.44)

0.0971 **
(2.22)

0.2401 ***
(5.13)

0.2191 ***
(5.33)

Ind 0.0984
(1.56)

0.2384 **
(2.07)

0.2276 ***
(3.78)

0.0802 *
(1.88)

Open −0.0319 ***
(−2.21)

−0.0637 ***
(−2.19)

−0.0349
(−1.41)

−0.0786 **
(−2.37)

Er −0.0429 **
(−1.97)

−0.0603 **
(−2.58)

−0.0408 **
(−2.31)

−0.0577 **
(−2.21)
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Table 4. Cont.

Variable OLS-FE SYS-GMM Static Durbin Dynamic Durbin

Model 1 2 3 4

Mar 0.4414 ***
(5.29)

0.7056 ***
(7.14)

0.0813 ***
(4.37)

0.4139 ***
(3.65)

Cons 2.4114
(0.72)

−7.2394
(−0.77)

5.9700 *
(1.86)

3.1693
(0.44)

F(Wald)
[P]

164.52
(0.00)

174.64
(0.00)

3065.36
(0.00)

933.27
(0.00)

AR(2) 1.1386 0.6563

Sargan[P] 27.2539
(0.9997)

26.8437
(0.9998)

Log 362.0113 218.7573

Rho 0.3184 ***
(4.14)

2.5591 ***
(5.75)

Obs 420 390 420 390

Note: The values in brackets are T-value or Z-value, with ***, **, and * representing the significance level of 1%, 5%, and 10%, respectively.
sAgin is the square term of innovation agglomeration; sSen is the square term of energy intensity; L.CO2 is the time lag term of the logarithm
of carbon emission intensity; Spatial dynamic panel model and non-spatial dynamic panel model (SYS-GMM) reported Wald test results,
other models reported F-test results; AR(2) and sargan texts show the GMM estimation method is reasonable; the following tables are
the same.

According to Table 4, carbon emission intensity has significant space spillover effect
and time lag effect simultaneously. The coefficient of time lag term of carbon emission
intensity is significantly positive at 1%, showing that there is a strong path-dependence
in carbon emission intensity in time dimension. Obviously, it shows a “snowball effect”.
If there is a high level of carbon emission intensity in the last year, in the next year it
may also go up continuously. On the other hand, the Model 4′s spatial coefficient is
significantly positive at 1%, indicating that carbon emission intensity among regions
has a palpable spatial agglomeration phenomenon. Therefore, a certain spatial spillover
effect can be detected. A region’s carbon emission intensity is closely related to that of
neighboring regions.

Both the first and second power coefficients of innovation agglomeration are signif-
icant at 1% level, and the sign of the former is positive while the latter is negative. It
indicates the existence of an obvious negative correlation between innovation agglom-
eration and carbon emission intensity. For a quadratic function, referring to Woodridge
(2002) [79], the threshold value can be defined as the turning point of the function or
the variable value when the function gets the maximum value (minimum value). First,
when the natural logarithm of innovation agglomeration level is below 5.0100, the value of
inflection point, it has significant promoting effect on carbon emissions. In this period with
economic developing rapidly, innovation elements quickly gather in the region, and rich
innovative activities cause large economic output and carbon emissions. Meanwhile, the
application of technological achievements also has a certain time lag. The positive external-
ities of energy conservation and emission reduction technologies have not yet appeared.
Thus, there is obvious increase in carbon emission intensity, if the natural logarithm of
innovation agglomeration level exceeds 5.0100, and begins to show inhibiting effects on
carbon emission intensity. Due to the spillover effects of innovation agglomeration, such
as positive externalities, cost saving and specialized division of labor, emission reduction
and energy conservation begin to appear. The gathering of a large number of enterprises is
conducive to sharing facilities for saving energy and reducing emissions, minimizing the
risk of applying “green innovation” technology. From the present stage of each province, in
2017, the innovation agglomeration level of most China’s provinces exceeded the inflection
point, which shows that improving the level of innovation agglomeration helps cut down
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carbon emission intensity in most provinces and then it is beneficial for China’s overall
carbon emission reduction. Only those of Inner Mongolia, Yunnan, Qinghai, Gansu, and
Xinjiang are below the inflection point. It indicates that the agglomerations of innovation
achievements in these provinces mainly take effect in expanding production capacity and
improving economic operation efficiency. The technological progresses in these areas are
not green-oriented, and they will still face great pressure of cutting down carbon emission
in the future.

The quadratic term coefficient is significantly negative at 5% level. In terms of energy
intensity, the coefficient is significantly positive at 1% level. It shows that there is a typical
inverted U-shaped link between carbon emission intensity and energy intensity. The
increase of energy intensity has a synergistic influence on carbon emission intensity if the
natural logarithm of energy intensity is lower than the value of inflection point 0.8536.
When it exceeds the inflection point, carbon emission intensity is subject to an inhibitory
effect from the increase of energy intensity. For this reason, the energy intensity mainly
depends on the progress of green innovation technology [31]. When regional innovation
agglomeration is at a low level, it is difficult for the positive externalities of agglomeration to
promote the improvement of energy efficiency. Meanwhile, the promotion and application
of new energy also has a certain lag and the economics of scale of energy consumption
has not formed. The increase of energy intensity brought by capacity expansion has also
pushed up the carbon emission intensity. When the regional innovation concentration
level is relatively high, the knowledge spillover effect brought by innovation will further
improve enterprises’ use of technologies for saving energy and reducing emission. Then
the energy structure will be adjusted towards a cleaner one, which exposes carbon emission
intensity to a restraining effect from the increase of greener energy intensity. The results
manifest that Hypothesis 2 proposed above is valid.

As for control variables, a significantly positive relation is found in the estimated
coefficient of labor productivity. Carbon emission intensity will increase by 0.4202% as
a result of every 1% increase in labor productivity. This indicates that carbon emission
reduction is negatively affected by the improvement of labor productivity. The coefficient
of per capita GDP is significantly positive, but the corresponding quadratic term coefficient
is significantly negative. This proves the existence of a significant inverted U-shaped link
between carbon emission intensity and per capita GDP, which verifying EKC hypothesis.
The significantly positive first power and second power coefficients of urbanization indicate
that carbon emission intensity may be enhanced due to rapid urbanization in China, and the
positive externalities of urban innovation agglomeration are not prominent. The coefficient
of energy structure is significantly positive. Carbon emission intensity will increase by
0.2191% as a result of every 1% increase in energy structure. It proves again that the current
high-carbon energy consumption structure in China has hindered the reduction of carbon
emission intensity to a large extent. The significantly positive coefficient of industrial
structure also indicates that the reduction of carbon emission intensity is impeded in the
industrial structure with a large industrial proportion. The coefficient of opening up is
significantly negative, indicating that the introduction of FDI plays a positive role in cutting
down carbon emission intensity due to its higher environmental standards and the spillover
effect of advanced technologies for saving energy and reducing emission. The significantly
negative coefficient of environmental regulation reveals the improvement in the intensity
of environmental regulation in China and its effective function in reducing carbon emission.
From 2005 to 2009, China experience a reduction of about 48.1% in its carbon intensity,
and by the end of 2019, 15.3% of China’s total energy consumption was contributed by
non-fossil energy. China has completed ahead of schedule the target of saving energy and
reducing emission promised to the international community at the Copenhagen Climate
Summit. From the significantly positive coefficient of marketing degree, it can be seen
that China’s market economy has been developing rapidly at the cost of destroying the
environment. Therefore, in the process of saving energy and reducing emission, the most
important thing is to maintain the normal market competition order through government



Int. J. Environ. Res. Public Health 2021, 18, 382 16 of 24

supervision. It will help to make up for the negative externalities caused by market failures,
such as waste of resources and environmental pollution, to create a healthy and orderly
market environment for carbon emission intensity reduction.

4.2.2. Further Testing by Subregion

China has a vast territory, and there are great differences in economic development
level and energy characteristics among different regions. The overall economic develop-
ment has shown a basic trend from south to north, from inshore to inland [80]. The leading
economic development in coastal areas also directly leads to the rapid increase in energy
consumption and the continuous emission of carbon dioxide. However, China’s petro-
chemical energy resources such as coal, crude oil, and natural gas are mainly distributed
in inland areas, producing more high energy consumption and high pollution products
such as electric power for coastal areas, resulting in an increasing in China’s overall carbon
emission intensity. Therefore, based on China’s inshore and inland areas, this paper further
discusses the regional differences in the impact of innovation agglomeration and energy
intensity on carbon emission intensity.

From Table 5, the spatial correlation coefficient shows that carbon emission has a
stronger positive spatial spillover effect in inshore areas, which is stronger than in inland
areas, and all of them are significant at the 1% level. It shows that China’s inshore areas
have gradually become the gathering places of global factories and domestic exporting
enterprises relying on their comparative advantages of labor, land and other factors. How-
ever, this extensive growth mode also results in a huge ecological and environmental cost.
The path-dependence and “snowball effect” of carbon intensity are still significant in both
inshore and inland areas of China.

Table 5. Regional test based on the spatial Durbin model.

Variable Static Durbin Dynamic Durbin

Inshore Inland Inshore Inland

Model 5 6 7 8

L.CO2
0.9904 ***

(7.81)
0.5082 ***

(5.64)

Agin 3.36388 ***
(2.66)

0.2914 ***
(4.09)

2.4505 ***
(3.11)

0.2231 ***
(3.50)

sAgin −0.4753 ***
(−2.92)

−0.0096
(−0.64)

−0.2696 ***
(−2.73)

−0.0076
(−0.59)

Sen 0.1703
(0.50)

0.1440 **
(2.13)

0.9114 ***
(5.20)

0.2248 ***
(3.66)

sSen −1.1120 ***
(−3.16)

0.0748
(1.53)

−0.2696 ***
(−2.73)

0.2200 ***
(3.98)

Lp 1.4830 **
(2.57)

0.4170 ***
(2.85)

1.1699 ***
(3.60)

0.4493 ***
(2.96)

Eco 0.9276 ***
(4.34)

0.0103
(0.01)

0.9447 ***
(3.90)

0.2053
(1.48)

sEco −0.0595 ***
(−4.63)

−0.0464
(−0.99)

−0.4814 ***
(−4.62)

−0.2952
(−0.81)

Ur 0.3033 ***
(4.34)

0.3959
(0.53)

1.2274
(1.32)

0.4504
(0.69)

sUr 0.0595
(4.63)

0.2262
(0.60)

0.7340 *
(1.88)

0.0324
(0.31)

Es 0.5864 ***
(3.20)

0.0742
(0.92)

0.2773 **
(2.09)

0.0192
(0.15)
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Table 5. Cont.

Variable Static Durbin Dynamic Durbin

Inshore Inland Inshore Inland

Model 5 6 7 8

Ind 0.0550 ***
(3.61)

0.0704 **
(0.68)

1.1550 ***
(4.97)

0.0802 *
(1.88)

Open −0.4801 **
(−2.01)

−0.0683 **
(−2.15)

−0.7651 ***
(−6.72)

−0.0123
(−0.28)

Er −0.0095
(−0.15)

−0.0410
(−1.40)

−0.0257 **
(−2.31)

−0.0509
(−1.42)

Mar 0.4753 ***
(4.08)

0.5238 ***
(4.44)

1.6531 ***
(4.36)

0.5308 ***
(3.36)

Cons 2.4114
(0.72)

3.1624
(0.33)

−37.0666 ***
(−3.28)

−10.1274
(−0.94)

F(Wald)
[P]

164.52
(0.00)

174.64
(0.00)

865.36
(0.00)

706.66
(0.00)

AR(2) 0.7115 0.7654

Sargan
[P]

28.4182
(0.9995)

27.2240
(0.9876)

Rho 0.3225 ***
(4.58)

0.1028 **
(2.36)

2.8445 ***
(6.78)

2.0112 ***
(3.38)

Log 124.4714 169.7098 132.5438 159.5702

Obs 154 266 143 247

Note: The values in brackets are T-value or Z-value, with ***, **, and * representing the significance level of 1%, 5%, and 10%, respectively.

From the perspective of innovation agglomeration, the first power and second power
coefficients of innovation agglomeration in China’s inshore areas are significant, and the
signs are positive and negative, respectively. Similar to the regression results of the whole
China, innovation agglomeration and carbon emission intensity have a significantly nega-
tive correlation. The first power and second power coefficients of innovation agglomeration
in China’s inland areas are significantly positive and non-significantly negative, respec-
tively. This indicates that the negative correlation between innovation agglomeration and
carbon emission intensity in China’s inland areas is not obvious, which is only limited to the
left part of the inverted U-shaped curve. In terms of energy intensity, the first power and
second power coefficients in China’s inshore areas are positive and negative, respectively,
both significant at 1% level, indicating the existence of a typical inverted U-shaped curve
relation between carbon emission intensity and energy intensity. However, it should be
noticed that the first power and second power coefficients of energy intensity in China’s
inland areas are significantly positive at 1%, showing no negative relation.

For control variables, the directions of their influence on carbon emission intensity
in inshore areas are, respectively, the same as those in inland areas, but the significance
is different. In inshore areas, the improvement in labor productivity, industrial structure,
and degree of marketization has a higher degree of promotion on carbon emissions than
inland areas. Urbanization, energy consumption structure in inshore areas significantly
increased the carbon emission intensity, while opening up and environment regulation
greatly decreased it. Additionally, carbon emissions intensity also shows a significant
inverted U-shaped curve relationship with per capita GDP.

The reasons why there is different performance between the inshore and the inland
are as follows. First of all, inshore areas have an excellent environment of technology
researching and developing leading the country. With the improvement of innovation
agglomeration level, the investment of science and technology resources and the turnover
of technology market have been increasing rapidly year by year. Meanwhile, the degree
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of opening up is much higher than the national average. Market economy has a higher
degree of freedom. This is more conducive to the imitation, absorption, and re-innovation
of internationally advanced technologies for saving energy and reducing emission, pro-
moting the continuous green upgrading of industrial structure. Inshore areas will have
a good performance in reducing carbon emission intensity and improving the ecological
environment. They are expected to reduce overall carbon emission intensity in China
by exerting various positive externalities of the agglomeration effect. For China’s inland
areas, the relation between carbon emission intensity and innovation agglomeration stays
at the left part of the inverted U-shaped curve. This is because under the unbalanced
regional economic development pattern, China’s inland region receives a large number of
pollution-intensive enterprises transferred from inshore region, which objectively increases
the carbon emission intensity of inland areas. There is a large number of labor, capital, and
production activities concentrated in inshore areas, making their carbon emission intensity
higher than those of inland areas. Therefore, the elasticity and significance of the estimated
coefficients are higher in coastal areas than in the inland.

4.3. Energy Intermediation Effect Test Based on Carbon Emission

Based on the theoretical Hypothesis 3, innovation agglomeration may affect carbon
emission through energy intensity. In order to test whether energy intensity acts as an
intermediary variable, this paper uses a normative mediation effect model to do further
empirical research. The specific mediation effect test model is set as follows:

Senit = η0 + η1Seni,t−1 + θ1
n
∑

i=1
wijSen jt + η2 Agini,t + η3sAgini,t + θ2

n
∑

i=1
wij Agin jt+

ς∑ Xit + θ3
n
∑

i=1
wijX jt+ ζit + ιit

(11)

CO2it = α0 + α1CO2i,t−1 + π1
n
∑

i=1
wijCO2 jt + α2 Agini,t + α3sAgini,t + π2

n
∑

i=1
wij Agin jt+

ϕ∑ Xit + π3
n
∑

i=1
wijX jt+ νit + σit

(12)

Equations (10)–(12) constitute a complete process of the mediating effect test [81]. If the
coefficients α, β, and η of innovation agglomeration are significant, and the coefficient β is
smaller or significantly smaller than corresponding α, it indicates that there is a mediating
effect. At the same time, we will also study the energy conservation effect of innovation
agglomeration. Specifically, we need to examine the sign of innovation agglomeration and
its quadratic coefficient in Equation (12). If at least one coefficient is significantly negative,
it indicates that innovation agglomeration can show energy conservation effect under
certain conditions. Similarly, for comparison and robustness test, this paper also gives the
estimated fixed effects of the dynamic spatial panel Durbin model, the static spatial panel
Durbin model, the non-spatial dynamic panel model, and the non-spatial panel model
(Table 5). The main interpretation model is still the dynamic spatial panel Durbin model.

The estimation results in Table 6 show the significantly positive coefficients of the
time and spatial lag terms of energy intensity and carbon emission. It indicates that these
two variables have significant path-dependence as well as time and space spillover effects.
The significantly positive coefficient of spatial lag term of innovation agglomeration also
indicates that the innovation agglomeration of neighboring provinces also has a significant
impact on energy intensity and carbon emission. In model 15, the coefficient of innovation
agglomeration is significantly positive at 10%, and the coefficient of quadratic term is
significantly negative at 1%. This shows the existence of a distant negative relation between
innovation agglomeration and energy intensity. As long as the logarithm of innovation
agglomeration is more than 3.0309, it will show energy conservation effect. In 2017, only
in Inner Mongolia, Qinghai, and Xinjiang, the level of innovation agglomeration was
lower than 3.0309, who did not enter the stage of inhibiting energy intensity by innova-
tion agglomeration. Obviously, the critical value of energy conservation effect (3.0309) of
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innovation agglomeration is significantly smaller than that of emission reduction effect of
innovation agglomeration (5.0100). With the improvement of innovation agglomeration, it
will show the inhibition effect on energy intensity firstly. When it continues to increase to
a certain threshold, it will show the dual effect of saving energy and reducing emission.
Besides, compared with its emission reduction effect, innovation agglomeration has a more
obvious energy conservation effect. Based on the testing steps and judgment criteria of
mediating effect described above, it can be seen from model 4, 15, and 16 that the coefficient
of innovation agglomeration is significant in model 15, while its coefficient decreases in the
comparison between model 16 and 4. It is proved that energy intensity is the mediating
variable of innovation agglomeration affecting carbon emission intensity. Thus, Hypothesis
3 is valid. At the same time, the testing process of energy intensity intermediary effect
mentioned above verifies that innovation agglomeration will show the dual effect of saving
energy and reducing emission when it reaches the threshold.

Table 6. Energy intermediation effect test based on carbon emission intensity.

Variable
OLS-FE SYS-GMM Static Durbin Dynamic Durbin

L.Sen L.CO2 L.Sen L.CO2 L.Sen L.CO2 L.Sen L.CO2

Model 9 10 11 12 13 14 15 16

L.CO2
0.3728 ***

(5.13)
0.4857 ***

(3.47)

L.Sen 0.9253 ***
(29.78)

0.7690 ***
(3.88)

Agin 0.1001 *
(1.74)

0.2743 ***
(4.57)

0.1292 **
(2.25)

0.1997 **
(2.53)

0.0440 *
(1.87)

0.2287 ***
(3.81)

0.1334 *
(1.92)

0.4609 ***
(4.77)

sAgin −0.0334 ***
(−3.68)

−0.0362 ***
(−4.45)

−0.0259 ***
(−2.93)

−0.0315 **
(−2.29)

−0.0233 **
(−2.47)

−0.0151 ***
(−2.41)

−0.0357 ***
(−4.08)

−0.0228 ***
(−2.63)

Lp 0.3005 **
(2.21)

0.2817 **
(2.13)

0.1603
(1.55)

0.4919
(1.16)

0.1737
(1.25)

0.3941 ***
(3.08)

0.1176 *
(1.95)

0.2821 **
(2.31)

Eco 2.7502 ***
(4.07)

1.2542 *
(1.91)

0.8761
(1.20)

0.1129
(0.712)

2.2406
(3.32)

0.0264
(0.04)

1.6020 **
(2.26)

0.347
(0.62)

sEco −0.1359 ***
(−4.24)

−0.0260
(−0.84)

0.1802
(0.46)

0.0306
(0.79)

−0.1088 **
(−2.57)

−0.0265
(0.87)

−0.0756 **
(−2.25)

−0.0266
(−1.40)

Ur 1.1311 ***
(2.00)

0.8794
(1.61)

0.1300
(0.20)

2.240*
(1.91)

1.2511 **
(2.57)

0.5657
(1.14)

1.0111 **
(2.01)

0.5967*
(1.89)

sUr 0.7325 **
(2.54)

0.5826 **
(2.09)

0.1802
(0.46)

0.9450
(1.16)

0.6778 **
(2.57)

0.2419
(0.94)

0.6920 **
(2.58)

0.2529
(0.54)

Es 0.0286
(0.43)

0.2458 ***
(5.30)

0.0575
(0.23)

0.1425 ***
(3.14)

0.2024 ***
(4.19)

0.2764 ***
(6.21)

0.9584 **
(2.20)

0.2184 ***
(5.08)

Ind −0.0200
(−0.44)

0.1327 **
(2.06)

0.0703
(1.50)

0.4197 ***
(3.69)

0.0516
(0.74)

0.2392 ***
(3.85)

0.2148 ***
(3.04)

0.0663 **
(2.53)

Open −0.0232
(−0.85)

0.2182 ***
(4.90)

−0.0349 **
(−2.50)

−0.071 6***
(−6.69)

−0.0631 **
(−2.32)

−0.0334
(−1.33)

−0.0376 *
(−1.71)

−0.0337 ***
(−2.37)

Er −0.0003
(−0.01)

−0.0424 *
(−1.89)

−0.0181 **
(−2.56)

−0.5331 **
(−2.46)

−0.0423 *
(−1.75)

−0.0302
(−1.40)

−0.0051
(−0.24)

−0.0386 *
(−1.89)

Mar 0.1993 **
(2.27)

0.5090 ***
(5.98)

0.1050 ***
(4.09)

0.7751 ***
(8.82)

0.0247
(0.28)

0.4119
(4.92)

0.2739 ***
(2.92)

0.2829 ***
(4.59)

Cons −13.032 ***
(−3.72)

0.4936
(0.15)

4.8002
(1.27)

1.6620
(0.30)

−10.3551 **
(−2.29)

2.9768
(0.91)

−9.1185
(−1.21)

2.2134
(0.29)

F(Wald)
[P]

69.78
(0.00)

185.58
(0.00)

218.76
(0.00)

282.88
(0.000)

907.63
(0.00)

923.12
(0.00)

882.12
(0.00)

858.53
(0.00)
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Table 6. Cont.

Variable
OLS-FE SYS-GMM Static Durbin Dynamic Durbin

L.Sen L.CO2 L.Sen L.CO2 L.Sen L.CO2 L.Sen L.CO2

Model 9 10 11 12 13 14 15 16

AR(2) 0.9698 1.0845 0.8760 0.7665

Sargon
[P]

15.6689
(0.8690)

25.3948
(0.9864)

27.2341
(0.9997)

26.3129
(0.9998)

Rho 0.1640 **
(2.03)

0.3763 ***
(4.93)

2.5743 *
(1.85)

2.1680 ***
(5.38)

Log 299.3801 312.3365 256.8333 253.4485

Obs 420 420 390 390 420 420 390 390

Note: The values in brackets are T-value or Z-value, with ***, **, and * representing the significance level of 1%, 5%, and 10%, respectively.

By comparing the coefficients of the last two columns in Table 5, it can be seen
that there is a completely same influence direction of all control variables on energy
intensity and carbon emission, in spite of the slight differences in significance level. Among
them, the estimated coefficients of labor productivity, urbanization, energy consumption
structure, industrial structure, and marketing degree are all significantly positive. This
indicates that these variables simultaneously promote the enhancement in carbon emission
intensity and energy intensity. In the meantime, per capita GDP is found to have a negative
relationship with both variables. In addition, the coefficients of environmental regulation
and opening up are both negative, indicating that the improvement of China’s opening up
and environmental regulation intensity have a certain effect in restraining the increase of
these two variables in recent years.

5. Conclusions and Suggestion

(1) The time lag terms of carbon emission intensity and energy intensity are significant at
1%, and the spatial correlation coefficient is also significant, which indicate that energy
intensity and carbon emission intensity have strong spatio-temporal dependence
effect. To be more specific, these two variables not only show path-dependence in the
dimension of time, but also produce significant spatial spillover effect. For instance, if
these two variables in the last period are at a high level, then in the next period they
may also continue to rise. It indicates that once the industrial path and technological
path are formed, great efforts may be required to change the evolutionary path of
carbon emission. Therefore, there is still a long and tough way for the implementation
of carbon emission reduction. In the spatial dimension, the carbon emission intensity
and energy intensity among regions show a significantly positive spatial correlation,
suggesting that China’s current work in terms of carbon emission reduction must be
implemented through constructing cooperative linkage effect among regions. It is
necessary to strengthen regional cooperation by establishing a joint prevention and
control mechanism across administrative regions, forming a coordinated pollution
control system in various regions, and clarifying environmental pollution control
responsibilities.

(2) Innovation agglomeration may have dual effect of saving energy and reducing emis-
sion and the critical value of innovation agglomeration’s emission reduction effect
(5.0100) is larger than that of energy conservation effect (3.0309). There is a significant
inverted U-shaped curve relationship between innovation agglomeration and carbon
emission intensity. When the logarithm of innovation agglomeration exceeds 5.0100,
it will have a significant effect on carbon emission reduction. Similarly, there is also a
significant inverted U-shaped curve relationship between innovation agglomeration
and energy intensity. Therefore, when the level of innovation agglomeration is low,
agglomeration will promote the increase of energy intensity. When the logarithm of
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innovation agglomeration exceeds 3.0309, it can show significant inhibition effect on
energy intensity, that is, innovation agglomeration has energy conservation effect.
At present, the degree of innovation agglomeration in some developed provinces in
China has already passed the critical point, above which innovation agglomeration
produces the effect of saving energy and reducing emission. Hence, it could be ex-
pected that with the continuous improvement of regional innovation agglomeration
level in China, the effect of technological innovation in saving energy and reducing
emission will be realized in a larger scope. In China’s inshore areas, there is a signifi-
cant inverted U-shaped curve relationship between innovation agglomeration and
energy intensity or carbon emission intensity. However, in inland areas, innovation
agglomeration does not appear to have a significant non-linear effect on carbon emis-
sions, limited to the left part of the inverted U-shaped curve. That is, innovation
agglomeration acted as a role in promoting the carbon emission intensity of inland
areas. In the meantime, energy intensity has a non-linear positive promotion effect
on carbon emissions. Accordingly, more attention should be paid to inshore areas,
because they may contribute more to reducing the level of carbon emission in China.
We need to adjust the regional innovation system, strengthen cooperation between
inshore and inland areas, and facilitate the interconnection and sharing of innovative
information resources.

(3) There are direct and indirect paths on the mechanism for innovation agglomeration
to affect carbon emission. When the logarithm of energy intensity exceeds 0.8536,
carbon emission will be inhibited, which will have a significantly negative correlation
between them. Therefore, on the one hand, innovation agglomeration can directly
reduce carbon emission intensity through its various positive externalities. On the
other hand, innovation agglomeration influences carbon emission through energy
intensity, that is, energy intensity acts as its intermediary variable. The specific action
mechanism is as follows: When the level of innovation agglomeration is low, it will
promote the increase of energy intensity and reduce energy intensity, thus contributing
to the decline of carbon emission intensity. As for industrial enterprises, they should
be guided to improve production technology and promote energy intensive utilization.
We should encourage enterprise to develop green manufacturing industries such as
energy conservation and environmental protection industries, new energy equipment,
and new energy vehicles, to drive the green upgrading and transformation of industry.

(4) Compared with other studies, the conclusion in this paper is consistent with the
researches of Lin et al. (2013) [82] and Zhang et al. (2017) [83], which show that
China’s carbon emission intensity has a strong spatio-temporal dependence effect.
However, differently from the studies of Li et al. (2020) [28] and Xue et al. (2020) [29],
our empirical results show that in China’s inland areas, innovation increases the
carbon emissions, while for the whole of China, the relationship between innovation
and carbon emissions is nonlinear. Meanwhile, similar to Feng et al. (2019) [84], there
is a threshold effect between technological innovation and carbon emissions. The
difference is that our paper not only tests the threshold effect between innovation
agglomeration and carbon emission intensity, but also empirically studies the nonlin-
ear relationship with energy intensity, showing an energy saving effect of innovation
agglomeration. Although this research has made some valuable achievements, it also
has some limitations. Firstly, carbon emission intensity is calculated following the
provincial data of China. It could be more accurate to use urban data to describe car-
bon emission intensity in China and the corresponding spatial correlation. Secondly,
this paper uses regional patent data to calculate innovation agglomeration by output
density model. However, innovation agglomeration includes not only innovation
output, but also the aggregation of talents and R&D funds in specific regions, which
is the direction that can be expanded in future research.
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