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Abstract

Although synergy is a pillar of modern pharmacology, toxicology, and medicine, there is no

consensus on its definition despite its nearly one hundred-year history. Moreover, methods

for statistical determination of synergy that account for variation of response to treatment

are underdeveloped and if exist are reduced to the traditional t-test, but do not comply with

the normal distribution assumption. We offer statistical models for estimation of synergy

using an established definition of Bliss drugs’ independence. Although Bliss definition is

well-known, it remains a theoretical concept and has never been applied for statistical deter-

mination of synergy with various forms of treatment outcome. We rigorously and consis-

tently extend the Bliss definition to detect statistically significant synergy under various

designs: (1) in vitro, when the outcome of a cell culture experiment with replicates is the pro-

portion of surviving cells for a single dose or multiple doses, (2) dose-response methodol-

ogy, (3) in vivo studies in organisms, when the outcome is a longitudinal measurement such

as tumor volume, and (4) clinical studies, when the outcome of treatment is measured by

survival. For each design, we developed a specific statistical model and demonstrated how

to test for independence, synergy, and antagonism, and compute the associated p-value.

Introduction

The definition of synergy is one of the most controversial concepts in biology and medicine.

Despite its fundamental importance in pharmacology, toxicology and experimental medicine,

including cancer research, many, sometimes contradictory, definitions of synergy and drugs

interaction exist in the literature [1], [2].

There are two main competing definitions of drugs independence: based on (a) Loewe [3]

definition of additivity (isobologram approach) and implied combination index (CI) and (b)

Bliss definition of independence [4] or, equivalently, Webb [5] fractional product. Herein, we

discuss the advantages and limitations of these two major definitions, and then apply Bliss def-

inition of independence for determination of statistically significant synergy in popular experi-

mental and clinical trial settings in biology and medicine. Although several statistical packages

in R for determination of synergy exist, such as hbim [6], mixlow [7], COMBIA [8], and
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CImbinator [9], they lack rigorous statistical testing and computation of the p-value for var-

ious treatments/drugs interaction designs under one methodological umbrella, as we propose

in the present work.

Advantages and limitations of Loewe additivity and combination index

According to Loewe, in the case of no interaction between drugs A and B, the drug combina-

tion with doses dA and dB leading to the same mortality M must satisfy the so called “median-

effect” equation

dA

D1A
þ

dB

D1B
¼ 1; ð1Þ

where D1A and D1B are the doses that lead to mortality M when applied individually. Conse-

quently, if the left-hand side, termed Combination Index (CI), is less than one, we claim syn-

ergy (lower doses yield the same mortality M) and otherwise antagonism. Typically, M = 0.5 is

used, then D1A ¼ ECA
50

and D1B ¼ ECB
50

are half maximum dose concentrations, and we arrive

at the Loewe additivity condition on drugs independence

dA

ECA
50

þ
dB

ECB
50

¼ 1: ð2Þ

This equations defines a segment on the plane with dose concentrations (dA, dB) splitting

the positive quadrant into two parts corresponding to synergy and antagonism, and as such

is visually attractive. The CI can be computed using the popular CalcuSyn software available

at http://www.biosoft.com/w/calcusyn.htm [10] using the following steps: (a) conduct n
experiments with drugs A and B alone at a set of doses {dAi, i = 1, . . ., n} and {dBi, i = 1, . . .,

n}, and the same doses in combination when the drugs are given simultaneously {(dAi, dBi),

i = 1, . . ., n}, (b) construct individual dose-response curves for each drug, (c) for each mortal-

ity value M with the drug combination find equivalent single-agent doses D1A and D1B by

inverting the individual dose-response relationships from the previous step, and finally (d)

compute n values of the left-hand side of Eq (1) and report the mean and standard deviation

of the CI.

Although visually attractive, this approach has several limitations:

1. Statistical testing of drugs independence based on CI or Loewe definition (2) is troublesome

because the uncertainty estimation of D1A and D1B is not taken into account. Moreover, the

suggested grading of synergy based on the CI value, as suggested in [11], ignores the uncer-

tainty of the CI estimation. A more comprehensive and scientifically accepted way to test

for drug interaction is to use methods of statistical hypothesis testing through computation

of the p- or d-values [12], [13]. Since these statistics are reported, synergy may be claimed

when the drugs interaction is not statistically different from being independent. In short,

CI<1 is not sufficient to claim synergy due to inevitable stochastic nature of experimental

data.

2. The criterion for independence (1) requires knowledge of single-drug dose-response rela-

tionships, and particularly in the case of (2) knowledge of EC50. This requirement is often

not satisfied when basic preliminary cell culture experiments are performed using just a few

drug concentrations. Simply put, individual single-drug dose-response relationships are

often not available or derived just using few data points and as such prone to large uncer-

tainty not taken into account when computing the CI.
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3. Why is the killing benchmark set at 50%? Although EC50 is an established parameter in tox-

icology it may be not appropriate in other applications where the point of interest is the tail

of the dose-response curve. For example, epidemiology is concerned with pollutant concen-

tration with relatively small mortality effect. On the other hand, cancer researchers mostly

look at the response to the drug where cancer cell mortality is close to 1. Unlike Loewe addi-

tivity, Bliss independence does not use EC50 as the benchmark of the drug effect and there-

fore applicable on the entire range of doses.

4. It is well-known that the response to treatment is better to model on the log scale. Indeed,

the authors of the CI approach use the log-transformed data for the single-agent dose-

response relationships [14], [15], [16], [17], [18], yet drugs in Eq (1) are expressed on the

linear scale. The Loewe additivity model assumes that drugs interplay in the linear fashion

and as such has neither theoretical nor empirical foundation. We agree with Geary [19]

who noted that “This metric is ad hoc based neither on physiology nor on formal axioms.”

5. CI is difficult to generalize to many other drug interaction settings such as cell culture in

the presence of an affected control group, longitudinal organism experiments such as

tumor growth in animals, or survival in clinical studies.

Most authors who discuss drug interaction provide definitions, but few publications

address the topic of statistical determination of drug interaction. Data on response to treat-

ment derived from experiments/trials in biology and medicine are subject to considerable vari-

ation. Simply reporting a CI is insufficient to claim synergy because CI < 1 may happen due to

natural biological variation and stochastic nature of experiment outcomes. We assert that

determination of synergy is incomplete without rigorous statistical testing against the null

hypothesis of drugs independence and reporting the respective p-value.

The basis for our statistical developments is Bliss definition of drugs/treatments indepen-

dence. We adjust this definition to various designs in biology and medicine and show how to

test for synergy with maximum statistical power.

Probabilistic interpretation of Bliss independence

The goal of this section is to illustrate Bliss independence by the formula for the probability of

survival in independent events where the proportion of survived cells in assay is treated as the

probability of surviving of a single cell.

According to Webb [5], drugs A and B act independently if the surviving fraction (SF) of

cells or organisms upon simultaneous administration, denoted SAB, is equal the product of

SFs, SA and SB, when drugs are given separately, or in mathematical language,

SAB ¼ SASB: ð3Þ

We say that there is synergy if SAB< SASB and antagonism if SAB> SASB. This definition of

independence has a clear interpretation: after treatment with drug A the proportion of cells in

the population is SA. When drug B is subsequently given after drug A, drug B affects only living

cells; therefore if drugs act independently, the proportion of living cells upon simultaneous

drug administration is SASB.

This definition of synergy has straightforward probabilistic interpretation [20]: associate

surviving fractions SA and SB in the population of cells with probabilities of death of a single

cell due to single-agent administration of either drug A or B, respectively. If the events of sur-

vival are denoted as A and B, then their probabilities are Pr(A) = SA and Pr(B) = SB. If the

drugs act independently, the probability of survival (as follows from the probability theory,

[21]) upon simultaneous administration of both drugs is the product of individual

Statistical determination of synergy
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probabilities:

SAB ¼ Pr ðA \ BÞ ¼ Pr ðAÞPr ðBÞ ¼ SASB:

The independent action of drugs is illustrated in Fig 1 using the Venn diagram.

The definition of independence (3) expressed in terms of survival is equivalent to Bliss [4]

independence expressed in terms of mortality,

MA þMB � MAMB ¼ MAB; ð4Þ

where M is the proportion of cells killed, M = 1 − S. Indeed, expressing the surviving fraction

through cell kill in our definition of drugs independence we obtain

SASB ¼ ð1 � MAÞð1 � MBÞ ¼ 1 � MA � MB þMAMB ¼ 1 � MAB;

which is equivalent to MA + MB −MAMB = MAB.

The definition of drugs independence expressed in Eq (4) can be explained as follows: the

sum MA + MB is the the total number of cells killed when two drugs act independently, but it

contains double-counted cells MAMB that must be subtracted, as cell can only die once.

Below, we systematically apply the definition of drugs independence either in the form of

survival (3) or equivalently in the form of mortality (4) to various settings of drug interaction

in vitro and in vivo for statistical determination of synergy or antagonism.

Fig 1. Geometrical illustration of drug independence according to Bliss (M = mortality, S = survival, M = 1 − S). The two circles

depict surviving fractions in the population of cells upon single-agent administration of either drug A or drug B, denoted SA and SB,

respectively. When administered in combination, drug B only affects cells that survived drug A (and vice versa). Therefore, if drugs

act independently, the surviving fraction of cells following treatment with the drug combination is the product: SA × SB.

https://doi.org/10.1371/journal.pone.0224137.g001
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Treatment interaction with single dose

This section deals with a simple yet fundamental study design for investigation of treatment

(e.g. drug) interaction at specific dose. As above, the effect of a drug is associated with a surviv-

ing fraction (SF) of cells or organisms. It is critical to recognize the importance of replicates in

each drug group to account for natural variation of response to treatment to make a statisti-

cally-informed statement about possible treatment independence, synergy, or antagonism. In

many previous synergy analyses, such as those implemented in CompuSyn software mentioned

above, replicates were reduced to averages by which the statistical variation of the treatment

effect has been down-played. In contrast, our statistical approach to synergy is more realistic

because it addresses the inevitable variation of response to treatment in cells or organisms,

both and between treatment groups [20].

We underscore the importance of the single-dose assay as a preliminary step to further

employment of a full-range dose investigation because it requires fewer samples. More funda-

mentally, synergy may exists for a specific pair of treatment doses and not an entire range of

doses, therefore, a single-dose synergy may be overlooked in the traditional whole-curve dose-

response approach. We emphasize that CI cannot be used with single-dose experiments

because EC50 is not available.

Treatment interactions with replicates

Let there be n1 replicate experiments in drug group A, n2 replicates in drug group B, and n3

replicates in drug group D when drugs with the single dose from groups A and B are given

simultaneously. Since the observed SFs are positive it is convenient to model the variation of

SF on the log scale, which can be expressed through the exponential function as follows:

Aj ¼ em1þε1j ; Bj ¼ em2þε2j ; Dj ¼ em3þε3j ; ð5Þ

where ε1j, ε2j, ε3j denote normally distributed unobserved errors with zero mean and common

variance σ2. The statistical advantage of the multiplicative error scheme compared to the tradi-

tional additive scheme is two-fold: (1) the log transformation leads to the distribution that

complies with the normal distribution assumption, (2) it simplifies statistical testing of synergy

by turning the product of SFs into the sum.

The true unknown μs are expected to be negative and connected to unknown true surviving

fractions from the previous section as SA ¼ em1 , SB ¼ em2 and SAB ¼ em3 : According to Bliss,

drugs act independently if

ln SA þ ln SB � ln SAB ¼ 0: ð6Þ

We will test this hypothesis by statistical means using replicates in each group.

An advantage of representation (5) is that after log transformation, the model turns into an

analysis of variances (ANOVA) model. Specifically, let the log fractions in each group be y1i =

ln Ai, y2i = ln Bi and y3i = ln Di. Then the system (5) can be rewritten as an ANOVA model

[13], [22], [23] with three groups,

yij ¼ mi þ εij; i ¼ 1; 2; 3; j ¼ 1; :::; ni

where ni is the number of replicates in the ith group. Now the drugs independence can be con-

ventionally expressed in terms of μs as the linear null hypothesis

H0 : m1 þ m2 � m3 ¼ 0:

Statistical determination of synergy

PLOS ONE | https://doi.org/10.1371/journal.pone.0224137 November 25, 2019 5 / 22

https://doi.org/10.1371/journal.pone.0224137


This hypothesis is tested using the test statistic T which has a t-distribution with
P3

i¼1
ni �

3 degrees of freedom, namely,

T ¼
ð�y1 þ �y2 � �y3Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P3

i¼1
ni � 3

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP3

i¼1

Pni
j¼1
ðyij � �yiÞ

2P3

i¼1
n� 1

i

q ; ð7Þ

where �y1; �y2 and �y3 are the average log fractions in groups A, B and D [13]. To test the null

hypothesis of drugs independence, we compute the two-sided the p-value; to test for synergy

or antagonism we compute the one-sided p-value. We emphasize that the t-test (7) is exact

and it does not rely on the large-sample theory as several other tests have been used for testing

synergy, including [24], [25]. Exact tests are especially important in biomedical research

because the sample size is usually small. In order to make our statistical test tractable, we

assume the equal-variance assumption across groups, common assumption in statistical the-

ory [26].

Other than log transformation can be applied to surviving fraction to comply with the nor-

mal distribution assumption. For example, one may use the logit transformation, ln (S/(1 −
S)), or inverse Weibull cumulative distribution function transformation [27]. The advantage of

the log transformation is that the Bliss definition of independence turns into a linear equation

easy to test by standard linear statistical theory.

Several authors used ANOVA models to test Loewe additivity condition based on the CI, or

test the Bliss independence null hypothesis H0: SAB − SASB = 0 using the traditional t-test. Par-

ticularly, the CI-based ANOVA models have been criticized in [2] and [28]. We have to com-

ment that the normal distribution assumption is not adequate here because it makes the

possibility of CI or surviving fraction taking negative values, which makes no sense. We, how-

ever, test the Bliss independence on the log scale, as follows from Eq (6), and therefore normal

distribution and negative values are permissible.

Example: Daphnia acute test with CuSO4 and NiCl. We illustrate treatment interaction

with a single dose of each treatment using 48-hour acute tests with Daphnia [29], [30]. In each

experiment, organisms in water were treated with two stressors, a single dose of NiCl (1.8 mg/

L), CuSO4 (7.0 μg/L) or the combination, and the numbers of surviving organisms were

counted after 48 hours. There were three repeated experiments (replicates) with NiCl, four

replicates with CuSO4 and four replicates with the combination. The results are portrayed in

Fig 2. The right-most group “Independence” was derived from the individual groups by com-

puting SF under the assumption that treatments act independently, i.e. on the log scale as pair-

wise sums y1j + y2k, where j = 1, 2, 3 and k = 1, 2, 3, 4. Note that although all calculations with

SF were done on the log scale we used the original scale in % on the y-axis for easy interpreta-

tion (the scale is not uniform). For these data, �y1 þ �y2 � �y3 ¼ 0:156 and the ratio of SF under

independence to SF when both treatments are applied simultaneously is exp(y1 + y2 − y3) =

1.168 which means that synergy was 17%, which means that 17% more cells would survive if

stressors acted independently. However, according to the t-test (7) this result is not statistically

significant because p = 0.172—there is no sufficient evidence to reject the null hypothesis that

NiCl and CuSO4 act independently.

It is worthwhile to note that determination of statistical significance of drug interaction is

impossible using the isobologram and Combination Index (CI) approaches because (a) repli-

cates are substituted with average values so that variation between replicates is ignored and

(b) the EC50 values are not available because the data exist only for single dose.

Statistical determination of synergy
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Treatment interaction in the presence of control group

In many biological experiments treatments, elicit delayed but not immediate effects on cell/

organism. During such time, cells may die or proliferate by natural means, which can be cap-

tured through inclusion of a control/sham group C and the associated surviving fraction SC.

Following our probabilistic approach we equate the proportion of cells that survived in group

C with the probability of dying of a single cell, SC = Pr(C). Now we turn our attention to the

group treated with drug A. Appealing to probability theory, we treat fraction SA as the propor-

tion of cells killed by drug A but exclude those cells that naturally died as in the control group,

SA = Pr(A \ C). Thus, the complimentary probability 1 − SA is the probability of death either

due to drug A or natural causes. The probability of survival associated with the effect of drug A
can be viewed as the conditional probability [21]

Pr ðAjCÞ ¼
Pr ðA \ CÞ
Pr ðCÞ

¼
SA

SC
:

Note that this formula connects the treatment effect of drug A with the observed surviving

fraction in groups A and C. We do not observe the conditional event A|C, but treat this as

imaginary occurrence to account for cell loss due to natural death, or reversely, to cell prolifer-

ation observed in control group. A similar probability of survival can be obtained for the

Fig 2. Daphnia acute tests with single-dose stressors NiCl and CuSO4. Although surviving fraction when the two stressors are

applied simultaneously is smaller than if they were acting independently, the “detected” synergy of 17% is not statistically significant.

https://doi.org/10.1371/journal.pone.0224137.g002
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population of cells treated with drug B alone, and for simultaneous treatment with both drugs

A and B,

Pr ðBjCÞ ¼
Pr ðB \ CÞ
Pr ðCÞ

¼
SB

SC
; Pr ðABjCÞ ¼

Pr ðAB \ CÞ
Pr ðCÞ

¼
SAB

SC
:

Following the rule of independence defined in Eq (3) we arrive at a more general definition

of synergy when the population in the control group reduces due to natural cell death,

SA

SC
�

SB

SC
>

SAB

SC
:

or equivalently SASB> SCSAB. When the population in the control group does not change we

arrive at the definition of synergy as expressed in Eq (3). The condition of drugs independence

on the log scale turns into the additive equation,

ln SA þ ln SB � ln SC � ln SAB ¼ 0; ð8Þ

similar to the previous case without an affected control group given by Eq (6). We say that

drugs are synergistic if ln SA + ln SB − ln SC − ln SAB> 0.

The statistical model for testing hypothesis (8) is similar to what was described earlier with

the addition of replicates from the control group Cj ¼ em0þε0j :Denoting log SF as y0i = ln Ci the

system can be rewritten as an ANOVA model with four groups as follows:

yij ¼ mi þ εij; i ¼ 0; 1; 2; 3; j ¼ 1; :::; ni

where μ0 = ln SC, μ1 = ln SA, μ2 = ln SB, μ3 = ln SAB. Now the drugs independence assumption

(8) can be expressed as a null hypothesis:

H0 : m1 þ m2 � m3 � m0 ¼ 0: ð9Þ

Under this hypothesis the ratio of the mean difference to the standard error

T ¼
ð�y1 þ �y2 � �y3 � �y0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P3

i¼0
ni � 4

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP3

i¼0

Pni
j¼1
ðyij � �yiÞ

2P3

i¼0
n� 1

i

q : ð10Þ

is distributed according to the t-distribution with
P3

i¼0
ni � 4 degrees of freedom. We claim a

statistically significant synergy if T is positive and exceeds the critical value of the t-distribution

[13].

Slinker [31] defines synergy in terms close to (9) and urges use of ANOVA to test the inde-

pendence of treatment interaction. However, Slinker was not specific regarding what biologi-

cal quantity/effect to use for μ and simply referred to “experimental outcome.” Instead, (a) we

apply treatment interaction to the data when the outcome of an experiment is survival fraction,

(b) we derived the null hypothesis using the conditional probability, and (c) as a part of our

formal derivation we use the log scale i.e. μ is the log SF and therefore comply with the normal

distribution assumption.

Example. Testing for drug synergy for cancer cells. These cell culture data come in the

form of the surviving fraction of cells per dish. These experiments were intended to test for

synergy between the drugs BYL and GSK in ZR75-1 breast cancer cells in vitro [32]. There

were four treatment groups and three replicates per group: control, 1μM BYL, 1μM GSK, and

the combination at 1μM each. For each treatment group, we first computed 9 pairwise differ-

ences from the control group on the log scale as ln Aj − ln Ck, ln Bj − ln Ck, and ln Dj − ln Ck;

Statistical determination of synergy
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see Fig 3. Secondly, data were plotted with the y-axis as % surviving cells with respect to the

control group. The analysis and graphics representation are similar to the Daphnia case with

no control group. The right-most box depicts the imaginable surviving fraction (SF) if drugs

acted independently according to Bliss. Those values were computed based on 27 triple combi-

nations from groups A, B, and C as follows: (ln Aj − ln Ck) + (ln Bl − ln Ck). If BYL and GSK

acted independently the two right-most boxes would be the same height. However, the SF

under the additive assumption (right-most box) is higher than that from the actual data (com-

bination group); therefore, we may expect treatment synergy between BYL and GSK. Indeed,

the ratio of SF under Bliss independence to SF from the combination group is 1.65, which can

be interpreted as 65% synergy. The problem is that the SFs exhibit variation and the T-statistic

computed by formula (10) yields 1.7 producing p = 0.129 that indicates that observed synergy

is not statistically significant.

Thus, despite a fairly high value of synergy, the p-value is not below 0.05 because of the vari-

ation in the group surviving fraction.

Dose-response relationship

In this section, we discuss statistical determination of treatment interaction when cell/organ-

ism survival experiments are conducted using a range of doses. Two types of analyses are

Fig 3. Drug interaction for testing synergy of BYL and GSK at single doses in breast cancer cells.

https://doi.org/10.1371/journal.pone.0224137.g003
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presented: (a) model-free statistical determination, when survival experiments with the indi-

vidual and combination treatments are dose-escalated in parallel, and (b) estimation of a bivar-

iate dose-response relationship with any set of doses.

Model-free statistical determination of synergy

This method was originally suggested by Webb [5] and is commonly referred to as the frac-

tional product method [1]. The idea is compare the SF from the combination group with the

SF computed as the product of the SFs from the two single-agent groups. Although the idea is

straightforward, no rigorous statistical model or statistical test for synergy has been developed.

For example, [33] suggest estimating the beta-slope coefficient in the linear regression of the

SF in the combination group on the product of the SFs from single-agent treatment groups.

However, this approach has a number of limitations: (i) it does not comply with the normal

distribution assumption because the SF is in the range from 0 to 1, (ii) it assumes that the sin-

gle-agent SFs do not have variation (fixed) but the SF from the combination group does, (iii)

no statistical test for the Bliss independence hypothesis H0: β = 1 has been developed. In con-

trast, statistical methods described below comply with the normal distribution because the

analysis of the SF is carried out on the log scale and rigorous statistical tests of Bliss indepen-

dence are developed for different assay designs.

We propose to test Bliss independence by employing the theory of a linear model similar

but not equivalent to the ANOVA model discussed above. Two types of design are studied

here: incomplete and complete pairwise design. In incomplete design, the same number of

doses are used in individual and combination treatments. In complete design, all pairwise

combination of treatments are required. An advantage of the model-free statistical determina-

tion of synergy is that no dose-response relationship is required, but experiments with com-

bined treatments must be included with the same concentrations as individual treatment.

Although the models described below do not account for an affected control group, their gen-

eralization is straightforward following the idea in the preceding section.

Incomplete pairwise design. Let SAi and SBi be SFs of cells in the ith experiment with

dose dAi of drug A and dose dBi of drug B for i = 1, 2, .., n. Let SDi be the SF in the ith experi-

ment when drugs A and B are combined with doses (dAi, dBi). If drugs are acting indepen-

dently ln SAi + ln SBi and ln SDi must be close. To test the difference, the following statistical

model under multiplicative error scheme is suggested. Denote xi = ln SAi, yi = ln SBi, and zi = ln

SDi and let

xi ¼ mi þ εi; yi ¼ ti þ zi; zi ¼ mi þ ti þ dþ Zi; i ¼ 1; :::; n;

where μi and τi are the true SFs from groups A and B on the log scale, and εi, zi, ηi are indepen-

dent and identically normally distributed error terms with zero mean and constant variance.

Parameter δ is of interest: if δ = 0, drugs act independently; if δ< 0, we have synergy; if δ> 0,

we have antagonism. To test the null hypothesis H0: δ = 0 we take the difference zi − (xi + yi)
and estimate the delta-parameter as �z � ð�x þ �yÞ; where the bar indicates the average. The

paired t-test with n − 1 degrees of freedom is used to test the null hypothesis. Note that the tra-

ditional (unpaired) t-test to compare zi with xi + yi is not appropriate here because these obser-

vations/measurements have means dependent on i because SF depends on the dose.

As an example, we illustrate this test using the data from [34]. For these data, the estimate

of the delta-parameter is 1.64 which indicates that there is antagonism between the drugs with

two-sided p = 6.43 × 10−7.

Complete pairwise design. Under this design simultaneous application of drugs is con-

ducted at all pairs of the doses. Let SAi be the SF of cells in the ith experiment with dose dAi of
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drug A where i = 1, 2, . . ., nA. Similarly, let SBj be the SF in the jth experiment of drug B with

dose dBj, where j = 1, 2, . . ., nB. It is assumed that in nAnB experiments (group D), drugs are

given in combination (dAi, dBj) and result in the SF SDij. According to Bliss independence we

need to compare values ln SAi + ln SBj with ln SDij. As in the previous model, we assume a mul-

tiplicative error scheme with xi = ln SAi, yj = ln SBj, and zij = ln SDij, where

xi ¼ mi þ εi; yj ¼ tj þ zj; zij ¼ mi þ tj þ dþ Zij; i ¼ 1; :::; nA; j ¼ 1; :::; nB;

where μi and τj are unknown and subject to estimation log SF, δ is the parameter of interest,

and εi, zj, and ηij are error terms and considered as independent and identically normally dis-

tributed with zero mean and constant variance σ2. Drugs A and B are independent if δ = 0.

The drugs are synergistic if δ< 0 and antagonistic if δ> 0. As in the previous models hypothe-

sis testing of δ reduces to the t-distribution with the test statistic

T ¼
�x þ �y � �z

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=nA þ 1=nB þ 1=ðnAnBÞÞ

p

where

s2 ¼

PnA
i¼1
ðxi � �xÞ2 þ

PnB
j¼1
ðyj � �yÞ2 þ

PnA
i¼1

PnB
j¼1
ðzij � �zÞ2

nA þ nB þ nAnB � 3

is the pooled variance and nA + nB + nAnB − 3 is degrees of freedom.

Choice of drug concentration

It is important to chose the right set of doses to conduct experiments when dose-response rela-

tionship is estimated or when synergy is being tested by statistical means. A simple rule for

estimation of individual dose-response curves has been devised in [29] to optimally choose

drug concentrations that induce mortality (or reduce SF) to 0.122 and 0.878, the pivotal points

on the logistic response curve.

In choosing optimal drug concentrations to detect synergy it should be remembered that

under the null hypothesis of drug interaction the SF is the product of individual SFs. The opti-

mal statistical identification of the product (e.g., when p-value is minimal) is when variance is

maximal. If SFs are computed from Bernoulli random variables (dead/alive) for two drugs X
and Y, we want to maximize var(XY) where Pr(X = 1) = SA and Pr(Y = 1) = SB. The optimal

choice is when SASB = 0.5. As an example, we suggest the combinations of drugs that leads to

products 0.4, 0.5, and 0.6, which can be achieved using the following individual SFs: 0.6, 0.7,

and 0.77, or their combination, depending on the size of the study.

The two-drug copula mortality function

In the analysis above, we were concerned with statistical testing for synergy. But if synergy is

detected, how do we predict the mortality probability given two synergistic treatments? The

answer relies on the two-drug dose-response function. Several two-drug dose-response rela-

tionships, as a part of the response surface methodology, have been suggested [1], but none sat-

isfy the properties formulated below. Most relationships been developed in connection with

CI, not Bliss independence, such as [14]; see reviews [2] and [35]. Several authors associated

the interaction effect with the product of drug concentrations as customarily used in the linear

model framework [36], but justification is lacking. A typical example of an ad hoc dose-

response model [37] is a quadratic polynomial and as such can be negative and/or not an

increasing function of dose concentration.
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The goal of this work is to present a novel rigorous two-drug copula mortality function M
(dA, dB) that satisfies the following properties:

1. Log scale: Model M is expressed on the log scale (i.e., drug concentrations enter the model

as ln dA and ln dB).

2. Singe-drug inheritance in the absence of the other drug, the two-agent copula model col-

lapses to a single-drug model, MA(dA), or M(dA, 0) = MA(dA), the mortality function of

drug A applied alone. Similarly, we require that M(0, dB) = MB(dB), the mortality function

of drug B.

3. Independence/synergy parameter: the model depends on parameter ρ, which determines

independence, synergy, or antagonism, or more rigorously, (a) when ρ = 0 the model col-

lapses to the Bliss independence model M(dA, dB) = MA(dA) + MB(dB) −MA(dA)MB(dB), (b)

when ρ< 0 we have synergy M(dA, dB)>MA(dA) + MB(dB) −MA(dA)MB(dB), and (c) when

ρ> 0 we have antagonism, i.e. M(dA, dB)<MA(dA) + MB(dB) −MA(dA)MB(dB).

A two-drug model simplifies statistical determination of independence, synergy, or antago-

nism: estimate ρ; if the null hypothesis H0: ρ = 0 is not rejected, we claim Bliss independence;

otherwise, synergy or antagonism depending on the sign of ρ. None of the two-agent dose-

response models suggested previously satisfy the above properties. The goal of this section is to

introduce a family of novel dose-response functions that describe the mortality effect in the

presence of two drugs (dA, dB) for any given single-drug models MA(dA) and MB(dB), and use

it for statistically determination of synergy.

The basis for our creation is (a) recognition that the mortality function with one or more

drugs can be viewed as a cumulative distribution function (cdf) of one or multiple random var-

iables, respectively, routinely used in probability theory, and (b) apply copula to construct a

two-agent mortality function using individual mortality functions treated as marginal cdfs in

the probability theory [38], [39], [40], [41]. As shown in Appendix (Supporting Information),

the two-drug copula mortality function is expressed through a double integral over the bivari-

ate standard normal density with the correlation coefficient ρ as

Mðx; y; rÞ ¼ 1 �
1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2
p

Z 1

F� 1ðMAðxÞÞ

Z 1

F� 1ðMBðyÞÞ
e�

1

2ð1� r2Þ
ðu2 � 2ruvþv2Þdudv; ð11Þ

where F stands for the standard normal cumulative distribution function with F−1 its inverse

and x = ln dA and y = ln dB are the drug concentrations on the log scale. It is shown that this

integral can be expressed through a single integral. In fact, our approach defines not just a

two-drug function but a family of functions with any combination of single-drug models, such

as Hill, probit, or Weibull [30].

Correlation coefficient ρ receives a new meaning in our copula mortality function. When ρ
< 0, drugs complement each other and therefore the killing effect increases. Conversely, when

ρ> 0 the killing effect diminishes when drugs are applied simultaneously. The following theo-

rem defines the limits of mortality when two drugs are completely antagonistic or synergistic

as extreme cases when ρ approaches 1 or −1.

Theorem. The properties of the two-drug copula mortality function. (a) Complete antag-

onism: when two drugs are the same, i.e. MA = MB and ρ! 1, then M(dA, dB)!MA(max(dA,

dB)). (b) Complete synergy: when ρ! −1 then M(dA, dB)!MA(dA) + MB(dB) if MA(dA) +

MB(dB)< 1 and M(dA, dB)! 1 otherwise.

The proof is in Appendix (Supporting Information). Complete antagonism indicates that

the drugs have completely overlapping effect, e.g. when the drugs affect the same set of cellular

receptors, so the mortality is defined by the maximum dose. Complete synergy occurs when
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the affected cellular receptors do not overlap; then the joint mortality is the sum of single

mortalities.

The two-drug copula function is illustrated in Fig 4 by contours of the two-drug function

(11) with mortality held at the 50% level. To comply with the Loewe additivity approach, the

single-drug mortality functions for this example share the same slope m and therefore give rise

to the two-drug function. Specifically, drugs A and B have the same m = 1, 2 but different

ECA
50
¼ 0:4 and EC50 = 0.5 and therefore the Loewe independence is depicted as a segment

(black), which connects the two EC50s. The fact that Loewe and Bliss independence are not

equivalent is well-known and can be seen from this plot (the black and green lines are differ-

ent). When m = 1 synergy will be overestimated and antagonism will be underestimated using

Loewe independence, compared with that derived from our two-drug copula model, because

the green contour line (ρ = 0) is below the black Loewe segment. The bottom-left corner

depicts synergy and the top-right corner depict antagonism. If drugs complement each other

(ρ = −0.5), a smaller dose can lead to the same 50% kill, and on the other hand, increased doses

are required to get 50% kill. On the other hand, if drugs have overlapping effect (ρ = 0.5) and

are therefore antagonistic. Conclusions change when drugs have a stronger effect on mortality

(m = 2): synergy may be claimed according to the copula model while the Loewe approach

concludes antagonism (the green contour line is above the black Loewe segment).

Example: Testing lethal effects of insecticides. To illustrate our two-agent copula mor-

tality model, we used classic data on lethal effects of two insecticides, rotenone and pyrethrins,

on fruit flies from experiments described by Finney [42] and later analyzed by [15] for deter-

mination of synergy/antagonism. The original data contain two series of experiments with the

ratio of rotenone:pyrethrins as 1:5 and 1:15 mixtures; we used only the first data series for illus-

tration. Using the CI, the authors declared the 1:5 mixture to be “mildly synergistic.” We apply

our statistical model to determine if the synergy is statistically significant.

The estimated probit-based two-drug copula mortality function depicted as a surface in 3D

is shown in Fig 5 and the output of the nonlinear least squares algorithm (the nls function in

R) is listed in Fig 6.

Fig 4. Illustration of the two-drug copula mortality function using EC50 contours. When drugs have moderate effect on mortality

(m = 1) synergy will be underestimated by the Loewe approach and overestimated if drugs have a strong effect (m = 2).

https://doi.org/10.1371/journal.pone.0224137.g004
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All parameters are statistically significant. Note that the two drugs have slopes greater than

one. They termed by Chou and Talalay [15] as of “high order,” which explains why the 50%

contour line points away from the origin as in the right plot in Fig 4. The rho-parameter =

−0.6678, and this negative value confirms synergy. The null hypothesis that drugs act indepen-

dently is rejected with p = 0.0172, and the one-sided p-value for the synergy is 0.0086 =

0.0172/2. Details on the algorithmic implementation and the R code are found in Supporting

Information.

Fig 5. Fit of 1:5 ratio of rotenone to pyrethrins data by the probit-based two-drug copula mortality function. The bold curve

depicts the combination of doses of the two drugs that leads to the expected 50% fly kill (its projection on the xy-plane is depicted as

the dashed line). The synergy between drugs is statistically significant with p-value = 0.0086.

https://doi.org/10.1371/journal.pone.0224137.g005
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Tumor growth experiments in vivo

Before moving to clinical studies, drugs are often tested in animals in vivo. Several authors

apply CI for tumor volume at a specific time point [43], [44], [45], [46]. Here we apply Bliss

definition to tumor volume data measured over time t in four groups of animals: control (C),

group with drug A, group with drug B, and group D with a combination of drugs A and B (all

drugs are given in a single dose). Our analysis of drug interaction relies on the following

assumptions: (1) tumor volume is reflective of number of cancer cells, (2) at the time when

treatments begins (baseline), tumor volume is the same in all four groups, (3) drugs are given

over the course of treatment and result in exponential growth (or decay) of tumors with a

group-specific rate. The combination of these assumptions leads to group-specific exponential

growth/decay of tumors

CðtÞ ¼ eaþb0t; AðtÞ ¼ eaþb1t; BðtÞ ¼ eaþb2t; DðtÞ ¼ eaþb3t; t � 0

where C, A, B and D are tumor volumes measured at time t (e.g. day or weeks), and β0, β1, β2,

and β3 are the respective tumor growth rates. An important assumption is that tumors grow or

shrink according to an exponential law over the course of a drug treatment regimen. Conse-

quently, it is advantageous to plot tumor volume data on the log scale because exponential

growth/decay appears as a straight line and the slope can be visually assessed [47]. The tumor

growth dynamic may not be seen when drugs are given for a short period of time or with a

one-time treatment. With such treatment tumor volume over time may give a U-shaped curve

when a tumor shrinks, reaches nadir, and then resumes growth requiring a different types of

model, namely, regrowth curves described in [20].

Below we demonstrate that the hypothesis of drug interaction in tumor growth experiments

can be reduced to drug interaction in the presence of a control group as discussed above.

Indeed, fix time t and consider the proportion of survived cells in three treatment groups as SA
= A(t)/C(t), SB = B(t)/C(t), and SAB = D(t)/C(t). Following Bliss definition, drugs act indepen-

dently if SAB = SASB or on the log scale if ln SAB = ln SA + ln SB. However,

ln SA þ ln SB ¼ lnAðtÞ � lnCðtÞ þ lnBðtÞ � lnCðtÞ ¼ lnAðtÞ þ lnBðtÞ � 2 lnCðtÞ;

ln SAB ¼ lnDðtÞ � lnCðtÞ

and therefore drugs independence turns into the equation α + β1t + α + β2 t − 2(α + β0t) = α +

β3t − α − β0t. After cancellation of time t, the null hypothesis of Bliss independence can be

Fig 6. The output of program nls for estimation of the probit-based two-drug copula model (11).

https://doi.org/10.1371/journal.pone.0224137.g006
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rewritten in terms of the rate coefficients,

H0 : b1 þ b2 � b3 � b0 ¼ 0:

This condition is similar to condition (9), but is expressed in terms of rate of tumor growth.

We say that there is synergy if β1 + β2 − β3 − β0 > 0 is statistically supported by the p-value

computed from the estimates of the slope and their variances obtained from the output of the

R function lme from the library nlme (see details in Supporting Information). In other

words, synergy means that rate of tumor growth in the drug combination group yields a slower

rate than if drugs acted independently, compared to the control group. Typically, each group

of animals is estimated separately using the theory of mixed models [20] to account for differ-

ences in individual trajectory and baseline tumor volume. The following example illustrates

this approach.

Example: Combination of two drugs (EHT1864 and fulvestrant) for breast

tumor treatment

The data [48] and fit are depicted in Fig 7. The R code is listed in Supporting Information.

Since exponential function on the log scale turns into a linear function it is advantageous to

plot tumor volume data on the log scale but show tickmarks on the y-axis using actual tumor

Fig 7. Exponential growth in four groups of mice for testing synergy between EHT1864 and fulvestrand for breast tumor treatment

estimated by linear mixed model (see details in supporting information). The data are plotted on the log scale; the tickmarks correspond to

the original volume in mm3. There is a statistically significant synergy between the drugs with p-value = 0.006.

https://doi.org/10.1371/journal.pone.0224137.g007
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volume. To address inter-animal heterogeneity the data are fitted by a linear function with ran-

dom effect that reflects the differences of tumor volume at the time of treatment [20]. For

example, the rate of breast tumor growth in the control group is estimated as b̂0 ¼ 0:0432;

which means that tumors grow by 4.32% every week if treated with vehicle. The combination

of drugs (EHT1864 plus fulvestrant) induces tumor shrinkage at the rate of 0.97% per week.

The above formula for p-value yields 0.006, indicating a statistically significant drug interac-

tion between EHT1864 and fulvestrant.

Survival curves

An advantage of Bliss independence over Loewe additivity, and the related CI, is that drug

interaction can be applied to clinical data when the outcome of treatment is survival, e.g. recur-

rence-free survival, time to recurrence/progression, progression-free survival, or overall sur-

vival. We then treat proportions of patients that survive by time t as the probability of an

individual to stay alive.

Let treatments A and B, when applied separately, lead to survival curves SA(t) and SB(t),
respectively, and let SAB(t) be the survival curve if drugs are applied simultaneously. If drugs

were acting independently, as follows from Bliss definition we expect the survival curve to be

1 � ð1 � SAðtÞÞð1 � SBðtÞÞ: ð12Þ

If drugs/treatments are synergistic, the observed survival SAB(t) must be greater than (12),

or geometrically, the curve SAB(t) is above the curve under independence assumption (12). To

Fig 8. Kaplan-Meier survival curves in “Intention-to-treat population” for treatment metastatic melanoma patients with ipilimumab

(drug A) and/or nivolumab (drug B); see [49]. The survival curve “Drug independence” is computed by formula (12). This curve basically

overlaps with the observed survival curve SAB (blue) which means that the hypothesis of independence cannot be rejected.

https://doi.org/10.1371/journal.pone.0224137.g008
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test for drugs independence, we compare the survival curve (12) with SAB(t) using standard

statistical tests for survival curves, such as the logrank test.

We illustrate this approach using a study of the interaction between nivolumab and ipilimu-

mab for the treatment of patients with metastatic melanoma ([49], [50]). Although the authors

hint at possible drug synergy, it was not tested. According to our analysis, the drugs acted

independently in two groups of patients, “Intent-to-treat population” and “Patients with

PD-L1-negative tumors” (Figs 8 and 9). The survival curve denoted as “drugs independence”

and computed as the right-hand side of Eq (12) is expected under the assumption that the two

drugs acted independently. This curve is very close to the patient-derived survival curve SAB

denoted “Nivolumab + ipilimumab” as evidence that the two drugs act independently. A for-

mal statistical logrank test produced the p-values 0.58 and 0.37 (using R package survival)

suggesting that the hypothesis that these two drugs acted independently cannot be rejected

despite the fact that the survival curve with the drug combination is above the single-drug sur-

vival curves.

Discussion

Bliss definition of drugs independence has a solid probabilistic justification that relies upon

the interpretation of the drug effect as the probability that an individual cell or organism dies.

Sometimes, Bliss definition of independence is criticized for possibility of claiming synergy

when the same drugs are applied. Although theoretically this is a limitation of Bliss definition,

fortunately in practice we never split the same drug into two doses. In the end, the endpoint of

dose-response experiments is surviving fraction, not our perception of the biological

Fig 9. The hypothesis that drugs act independently for patients with PD-L1-negative tumors cannot be rejected because the expected

(black) and observed (blue) curves are close; see [49].

https://doi.org/10.1371/journal.pone.0224137.g009
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mechanism of synergy. On the other hand, we argue that Loewe additivity definition may

claim independence for biologically synergetic drugs. Indeed, imagine two different cancer

drugs that act on different set of receptors but equivalent in terms of their individual effect, i.e.

they have the same dose-response relationship. In addition, let us assume that cancer cell die if

only two set of receptors are damaged, that is, drugs are biologically synergistic. However, if

they have the same dose-response relationship, according to Loewe definition, drugs will act

independently.

We offer a rigorous and systematic implementation of Bliss independence applied to com-

mon design of preclinical (in vitro and animal) and clinical (e.g., survival) studies. Statistical

evaluation and computation of a p- and d-value should be a required component when report-

ing on drug synergy or antagonism because of considerable variation in response to treatment

across organisms and replicates. Moreover, the existing shortage of statistical tests for synergy

leads to frequent overstatements and false positive findings. Herein, we demonstrated that

Bliss independence can be tested using comprehensive statistical models tailored to major bio-

medical study designs. Unlike prior reports describing statistically testing for drug indepen-

dence using the traditional t-test we developed statistical models that comply with the normal

distribution required for correct application of many statistical tests and computation of the p-

value.

Supporting information

S1 File. R Codes and Appendix.

(PDF)

S2 File. Raw data on Daphnia experiments with replicates.

(CSV)

S3 File. Raw data on cancer cell experiments in vitro in the presence of control group.

(CSV)

S4 File. Raw data on tumor growth in mice analyzed by a linear mixed model on the log

scale.

(CSV)

Author Contributions

Conceptualization: Eugene Demidenko.

Formal analysis: Eugene Demidenko.

Funding acquisition: Todd W. Miller.

Methodology: Eugene Demidenko.

Project administration: Eugene Demidenko.

Resources: Todd W. Miller.

Software: Eugene Demidenko.

Visualization: Eugene Demidenko.

Writing – original draft: Eugene Demidenko.

Writing – review & editing: Todd W. Miller.

Statistical determination of synergy

PLOS ONE | https://doi.org/10.1371/journal.pone.0224137 November 25, 2019 19 / 22

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0224137.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0224137.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0224137.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0224137.s004
https://doi.org/10.1371/journal.pone.0224137


References
1. Greco WR, Bravo G, Parsons JC. The search for synergy: A critical review from response surface per-

spective. Pharmacological Reviews 1995; 47(2):331–385. PMID: 7568331

2. Foucquier J, Guedj M. Analysis of drug combinations: Current methodological landscape. Pharmacol-

ogy Research & Perspectives 2015; 3:e00149. https://doi.org/10.1002/prp2.149

3. Loewe S. Die quantitation probleme der pharmakologie. Ergebnisse Physiologie 1928; 27(1):47–187.

https://doi.org/10.1007/BF02322290

4. Bliss CI. The toxicity of poisons applied jointly. Ann. Appl. Biol. 1939; 26(3):585–615. https://doi.org/10.

1111/j.1744-7348.1939.tb06990.x

5. Webb JL. Enzyme and Metabolic Inhibitors, vol. 1. New York and London: Academic Press; 1963.

6. Saul A, Fay MP. Human immunity and the design of multi-component, single target vaccines. PLoS

ONE 2007; 2(9): e850. https://doi.org/10.1371/journal.pone.0000850 PMID: 17786221

7. Boik JC, Narasimhan B. An R package for assessing drug synergism/antagonism. Journal of Statistical

Software 2010; 34(6):1–18. https://doi.org/10.18637/jss.v034.i06

8. Kashif M, Andersson C, Mansoori M, Larsson R, Nygren P, Gustafsson MG. Bliss and Loewe interac-

tion analyses of clinically relevant drug combinations in human colon cancer cell lines reveal complex

patterns of synergy and antagonism. Oncotatget 2017; 8(61):103952–103967.

9. Flobak A, Vazquez M, Lægreid A, Valencia A. CImbinator: a web-based tool for drug synergy analysis

in small- and large-scale datasets. Bioinformatics 2017; 33(15): 2410–2412. https://doi.org/10.1093/

bioinformatics/btx161 PMID: 28444126

10. Chou TC, Talalay P. Analysis of combined drug effects: a new look at a very old problem. Trends in

Pharmacological Sciences 1983; 4(11):450–454. https://doi.org/10.1016/0165-6147(83)90490-X

11. Chou TC. Theoretical basis, experimental design, and computerized simulation of synergism and

antagonism in drug combination studies. Pharmacological Reviews 2006; 58(3):621–681. https://doi.

org/10.1124/pr.58.3.10 PMID: 16968952

12. Demidenko E. The p-value you can’t buy. American Statistician 2016; 70(1):33–38. https://doi.org/10.

1080/00031305.2015.1069760 PMID: 27226647

13. Demidenko E. Advanced Statistics with Applications in R. Hoboken, NJ: Wiley; 2019.

14. Chou TC, Talalay P. Generalized equations for the analysis of inhibitions of Michaelis-Menten and

higher-order kinetic systems with two or more mutually exclusive and nonexclusive inhibitors. European

Journal of Biochemistry 1981; 115(1):207–216. https://doi.org/10.1111/j.1432-1033.1981.tb06218.x

PMID: 7227366

15. Chou TC, Talalay P. Quantitative analysis of dose-effect relationships–the combined effects of multiple-

drugs or enzyme-inhibitors. Advances in Enzyme Regulation 1984; 22:27–55. https://doi.org/10.1016/

0065-2571(84)90007-4 PMID: 6382953

16. Chou T. Synergy determination issues, Letter to the Editor. Journal of Virology 2002; 76(20):10577–

10578. https://doi.org/10.1128/JVI.76.20.10577-10578.2002 PMID: 12239339

17. Tallarida RJ. The interaction index: a measure of drug synergism. Pain 2002; 98(1-2):163–168. https://

doi.org/10.1016/s0304-3959(02)00041-6 PMID: 12098628

18. Chou T. Drug combination studies and their synergy quantification using the Chou-Talalay method. Can-

cer Research 2010; 70(2):440–446. https://doi.org/10.1158/0008-5472.CAN-09-1947 PMID: 20068163

19. Geary N. Understanding synergy. American Journal of Physiology Endocrinology and Metabolism

2013; 304(3):E237–E253. https://doi.org/10.1152/ajpendo.00308.2012 PMID: 23211518

20. Demidenko E. Mixed Models: Theory and Applications with R. 2d ed. Hoboken, NJ: Wiley; 2013.

21. Feller W. An Introduction to Probability Theory and Its Applications, 3d ed. New York: Wiley; 1968.

22. Searle SR. Linear Models. 2d ed. New York: Wiley; 1971.

23. Rosner B. Fundamentals of Biostatistics. 8th ed. Boston: Cengage Learning; 2017.

24. Straetemans R, Bijnens L. Application and review of the separate ray model to investigate interaction

effects. Frontiers in Bioscience 2010; 2:266–278. https://doi.org/10.2741/e89

25. Liu Q, Yin X, Languino LR, Altieri DC. Evaluation of drug combination effect using a Bliss independence

dose-response surface model. Statistics in Biopharmaceutical Research 2018; 10(2): 112–122. https://

doi.org/10.1080/19466315.2018.1437071 PMID: 30881603

26. Wackerly DD, Mendenhall W, Scheaffer RL. Mathematical Statistics with Applications, 6th ed., Pacific

Grove, CA: Duxbury Press; 2002.

27. Englehardt JD. Distributions of autocorrelated first-order kinetic outcomes: Illness Severity. PLoS ONE

2015; 10(6): e0129042. https://doi.org/10.1371/journal.pone.0129042 PMID: 26061263

Statistical determination of synergy

PLOS ONE | https://doi.org/10.1371/journal.pone.0224137 November 25, 2019 20 / 22

http://www.ncbi.nlm.nih.gov/pubmed/7568331
https://doi.org/10.1002/prp2.149
https://doi.org/10.1007/BF02322290
https://doi.org/10.1111/j.1744-7348.1939.tb06990.x
https://doi.org/10.1111/j.1744-7348.1939.tb06990.x
https://doi.org/10.1371/journal.pone.0000850
http://www.ncbi.nlm.nih.gov/pubmed/17786221
https://doi.org/10.18637/jss.v034.i06
https://doi.org/10.1093/bioinformatics/btx161
https://doi.org/10.1093/bioinformatics/btx161
http://www.ncbi.nlm.nih.gov/pubmed/28444126
https://doi.org/10.1016/0165-6147(83)90490-X
https://doi.org/10.1124/pr.58.3.10
https://doi.org/10.1124/pr.58.3.10
http://www.ncbi.nlm.nih.gov/pubmed/16968952
https://doi.org/10.1080/00031305.2015.1069760
https://doi.org/10.1080/00031305.2015.1069760
http://www.ncbi.nlm.nih.gov/pubmed/27226647
https://doi.org/10.1111/j.1432-1033.1981.tb06218.x
http://www.ncbi.nlm.nih.gov/pubmed/7227366
https://doi.org/10.1016/0065-2571(84)90007-4
https://doi.org/10.1016/0065-2571(84)90007-4
http://www.ncbi.nlm.nih.gov/pubmed/6382953
https://doi.org/10.1128/JVI.76.20.10577-10578.2002
http://www.ncbi.nlm.nih.gov/pubmed/12239339
https://doi.org/10.1016/s0304-3959(02)00041-6
https://doi.org/10.1016/s0304-3959(02)00041-6
http://www.ncbi.nlm.nih.gov/pubmed/12098628
https://doi.org/10.1158/0008-5472.CAN-09-1947
http://www.ncbi.nlm.nih.gov/pubmed/20068163
https://doi.org/10.1152/ajpendo.00308.2012
http://www.ncbi.nlm.nih.gov/pubmed/23211518
https://doi.org/10.2741/e89
https://doi.org/10.1080/19466315.2018.1437071
https://doi.org/10.1080/19466315.2018.1437071
http://www.ncbi.nlm.nih.gov/pubmed/30881603
https://doi.org/10.1371/journal.pone.0129042
http://www.ncbi.nlm.nih.gov/pubmed/26061263
https://doi.org/10.1371/journal.pone.0224137


28. Caudle R, Williams G. The misuse of analysis of variance to detect synergy in combination drug studies.

Pain 1993; 55(3):313–317. https://doi.org/10.1016/0304-3959(93)90006-b PMID: 8121692

29. Glaholt SP, Chen CY, Demidenko E, Bugge DM, Folt CL, Shaw JR. Adaptive iterative design (AID): A

novel approach for evaluating the interactive effects of multiple stressors on aquatic organisms. Science

of the Total Environment 2012; 432:57–64. https://doi.org/10.1016/j.scitotenv.2012.05.074 PMID:

22717606

30. Demidenko E, Glaholt SP, Kyker-Snowman E, Shaw JR, Chen CY. Single toxin dose-response models

revisited. Toxicology and Applied Pharmacology 2017; 314:12–23. https://doi.org/10.1016/j.taap.2016.

11.002 PMID: 27847315

31. Slinker BK. The statistics of synergism. Journal of Molecular Cell Cardiology 1998; 30(4):723–731.

https://doi.org/10.1006/jmcc.1998.0655

32. Hosford SR, Dillon LM, Bouley SJ, Rosati R, Yang W, Chen VS, Demidenko E, Morra RP, Miller

TW. Combined inhibition of both p110 α and p110 β isoforms of phosphatidylinositol 3-kinase is

required for sustained therapeutic effect in PTEN-deficient, ER + breast cancer. Clinical Cancer

Research 2017; 23(11): 2795–2805. https://doi.org/10.1158/1078-0432.CCR-15-2764 PMID:

27903677

33. Cokol M, Chua HN, Tasan M, Mutlu B, Weinstein ZB, Suzuki Y, et al. Systematic exploration of syner-

gistic drug pairs. Molecular System Biology 2011; 7:544. https://doi.org/10.1038/msb.2011.71

34. Miller TW, Balko JM, Fox EM, Ghazoui Z, Dunbier A, Anderson H, et al. ER α-dependent E2F transcrip-

tion can mediate resistance to estrogen deprivation in human breast cancer. Cancer Discovery 2011;

1(4):338–351. https://doi.org/10.1158/2159-8290.CD-11-0101 PMID: 22049316

35. Lederer S, Dijkstra TMH, Heskes T. Additive dose response models: Explicit formulation and the Loewe

additivity consistency condition. Frontiers in Pharmacology 2018; 9:31. https://doi.org/10.3389/fphar.

2018.00031 PMID: 29467650

36. Carter WH, Gennings C, Staniswalis JG, Campbell ED, White KL. A statistical approach to the construc-

tion and analysis of isobolograms. Journal of the American College of Toxicology 1988; 7(7):963–973.

https://doi.org/10.3109/10915818809014527

37. Zhao W, Sachsenmeier K, Zhang L, Sult E, Hollingsworth RE, Yang H. A new Bliss independence

model to analyze drug combination data. Journal of Biomolecular Screening 2014; 19(5):817–821.

https://doi.org/10.1177/1087057114521867 PMID: 24492921

38. Nelsen RB. An Introduction to Copulas. New York: Springer; 2016.

39. Fedorov VV, Leonov SL. Optimal Design for Nonlinear Response Models. Boca Raton, FL: CRC

Press; 2014.

40. Ashford JR, Sowden RR. Multi-variate probit analysis. Biometrics 1970; 26(3):535–546. https://doi.org/

10.2307/2529107 PMID: 5480663

41. Lesaffre E, Molenberghs G. Multivariate probit analysis: A neglected procedure in medical statistics.

Statistics in Medicine 1991; 10(9):1391–1403. https://doi.org/10.1002/sim.4780100907 PMID:

1925169

42. Finney DJ. Probit Analysis, 2d ed. Cambridge: Cambridge University Press; 1952.

43. Bijnsdorp I, Giovannetti E, Peters GP. Analysis of drug interactions. Methods Mol. Biol. 2011; 731:421–

34. https://doi.org/10.1007/978-1-61779-080-5_34 PMID: 21516426

44. Verrier F, Nadas A, Gorny MK, Zolla-Pazner S. Additive effects characterize the interaction of antibod-

ies involved in neutralization of the primary dualtropic human immunodeficient virus type 1 isolate

89.6. J. Virol. 2001; 75(19):9177–9186. https://doi.org/10.1128/JVI.75.19.9177-9186.2001 PMID:

11533181

45. Yu D, Kahen E, Cubitt CL, McGuire J, Kreahling J, Lee J, Altiok S, Lynch CC, Sullivan DM, Reed DR.

Identification of synergistic, clinically achievable, combination therapies for osteosarcoma. Scientific

Reports 2015; 5:16991. https://doi.org/10.1038/srep16991 PMID: 26601688

46. Wang F, Dai W, Wang Y, Shen M, Chen K, Cheng P, et al. The synergistic in vitro and in vivo antitumor

effect of combination therapy with salinomycin and 5-fluorouracil against hepatocellular carcinoma.

PLoS ONE 2014; 9(5): e97414. https://doi.org/10.1371/journal.pone.0097414 PMID: 24816638

47. Demidenko E. Three endpoints of in vivo tumour radiobiology and their statistical estimation. Interna-

tional Journal of Radiation Biology 2010; 86(2):164–173. https://doi.org/10.3109/09553000903419304

PMID: 20148701
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