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ABSTRACT
Introduction  Population-level and individual-level 
analyses have strengths and limitations as do ‘blackbox’ 
machine learning (ML) and traditional, interpretable 
models. Diabetes mellitus (DM) is a leading cause of 
morbidity and mortality with complex sociodemographic 
dynamics that have not been analyzed in a way that 
leverages population-level and individual-level data as well 
as traditional epidemiological and ML models. We analyzed 
complementary individual-level and county-level datasets 
with both regression and ML methods to study the 
association between sociodemographic factors and DM.
Research design and methods  County-level DM 
prevalence, demographics, and socioeconomic status 
(SES) factors were extracted from the 2018 Robert 
Wood Johnson Foundation County Health Rankings and 
merged with US Census data. Analogous individual-
level data were extracted from 2007 to 2016 National 
Health and Nutrition Examination Survey studies and 
corrected for oversampling with survey weights. We 
used multivariate linear (logistic) regression and ML 
regression (classification) models for county (individual) 
data. Regression and ML models were compared using 
measures of explained variation (area under the receiver 
operating characteristic curve (AUC) and R2).
Results  Among the 3138 counties assessed, the mean 
DM prevalence was 11.4% (range: 3.0%–21.1%). Among 
the 12 824 individuals assessed, 1688 met DM criteria 
(13.2% unweighted; 10.2% weighted). Age, gender, race/
ethnicity, income, and education were associated with 
DM at the county and individual levels. Higher county 
Hispanic ethnic density was negatively associated with 
county DM prevalence, while Hispanic ethnicity was 
positively associated with individual DM. ML outperformed 
regression in both datasets (mean R2 of 0.679 vs 0.610, 
respectively (p<0.001) for county-level data; mean AUC of 
0.737 vs 0.727 (p<0.0427) for individual-level data).
Conclusions  Hispanic individuals are at higher risk of 
DM, while counties with larger Hispanic populations have 
lower DM prevalence. Analyses of population-level and 
individual-level data with multiple methods may afford 
more confidence in results and identify areas for further 
study.

Significance of this study

What is already known about this subject?
►► Much has been reported about the relationship 
between certain sociodemographic factors and 
diabetes mellitus (DM): low SES, African-American 
ethnicity and other factors have been associated 
with higher rates of DM.

What are the new findings?
►► Machine learning (ML) outperforms regression in 
modeling DM in both of the datasets used (ie, at 
both the individual and population levels) and may 
thus be a better tool in guiding community-level 
and population-level health efforts.

►► ML identifies nearly identical risk factors for DM as 
those identified by regression both in this analysis 
as well as in past analyses using regression.

►► There exists a paradoxical relationship between 
Hispanic ethnicity and DM; Hispanic individuals 
are at higher risk of DM themselves, while coun-
ties with larger Hispanic populations have lower 
DM prevalence as a whole.

How might these results change the focus of 
research or clinical practice?

►► First, this analysis should prompt thoughtful eval-
uation of how different communities—such as 
Hispanic populations—both affect and are affect-
ed by their surroundings. This evaluation, in turn, 
should be used to guide more effective, meaning-
ful efforts to support disadvantaged communities. 
Additionally, the result that ML outperformed re-
gression in both datasets serves as an impetus for 
increased use of ML in guiding population-level 
interventions and policy—even small increases in 
predictive power are meaningful at these scales. 
Finally, we hope that the technique used in this 
study of analyzing complementary datasets with 
multiple methods serves as a model for future, ro-
bust analyses.

http://drc.bmj.com/
http://orcid.org/0000-0001-5885-8024
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2 BMJ Open Diab Res Care 2020;8:e001725. doi:10.1136/bmjdrc-2020-001725

Epidemiology/Health services research

BACKGROUND AND SIGNIFICANCE
Over 30 million individuals in the USA live with diabetes 
mellitus (DM), a leading risk factor for cardiovascular 
disease, kidney disease, and health expenditures.1–3 Prior 
work has identified numerous sociodemographic and 
health risk factors associated with either population-level 
or individual-level DM, such as age, race/ethnicity, and 
income levels.4–9 However, neither individual-level nor 
population-level analyses alone are likely to identify all 
relevant associations, as the interaction between an indi-
vidual and their geography may impact DM prevalence 
and in risk factors associated with DM.9 10

Population-level and individual-level analyses of health 
data are each associated with specific strengths and limita-
tions. Population-level studies based on interview data 
have the advantage of size, but the disadvantage of poten-
tially inaccurate self-reported data.11 These disparities 
are exacerbated by the fact that rates of under-reporting 
differ across populations.12 However, individual-level, 
in-person analyses may produce more accurate data but 
are limited in size and may fail to capture important 
macro-level phenomena associated with health outcomes 
such as access to healthcare, one’s built environment, 
or the median income of the community in which one 
lives.8 9 13 Unfortunately, few studies of DM have simul-
taneously used both county-level and individual-level 
data to validate (or identify discrepancies between) the 
factors associated with DM at the community and indi-
vidual level. For these reasons–and given recent emphasis 
on the need to perform external validation of analyses of 
large data sets—we sought to identify sociodemographic 
factors associated with county-level DM prevalence and 
to validate our analyses using individual-level DM data.14

The collective understanding of diabetes and its asso-
ciated risk factors will likely be furthered by the rapid 
growth and utilization of machine learning (ML). In 
fact, ML models, as compared with traditional epidemi-
ological models, have shown promise in studying disease 
prevalence and explaining variation in health outcomes, 
including risk factors and complications associated with 
diabetes.13 15 However, in healthcare, the theoretical 
promise of ML has perhaps exceeded its demonstrated 
successes.16 17 Three closely related properties of ML 
likely contribute to reluctance in embracing its use: (1) 
ML models allow such complex relationships between 
variables that they are capable of ‘overfitting’, potentially 
reporting apparently statistically significant yet spurious 
associations; (2) ML models may encode bias from the 
data on which they are trained or the way in which their 
features are designed; and (3) even if a model does 
suffer from these aforementioned shortcomings, it is not 
always apparent since ML models are ‘blackboxes’—the 
exact ways in which features interact with each other 
to inform the results are typically not readily interpre-
table.18 19 Depending on data used for analysis, these 
issues are further complicated by questions about the 
reliability of self-reported data. Thus, using traditional 

epidemiological models alongside ML to study the same 
questions on the same datasets—as is done in this anal-
ysis—can help to alleviate concerns about the relation-
ships identified by ML or to identify those instances in 
which ML suffers from the aforementioned flaws.

In this study, we sought to investigate the association 
between sociodemographic factors and county-level DM 
prevalence, validating the analysis using individual-level 
data. Additionally, for both analyses, we used contem-
porary ML methods, validating each analysis with tradi-
tional regression methods. Thus, we employed two layers 
of validation in this analysis: validation at the level of 
datasets (ie, individual-level and county-level data) and 
statistical techniques (ie, traditional regression and ML). 
By using these validation measures, we hoped to respon-
sibly extend the current literature surrounding DM and 
how DM is modeled.

METHODS
This manuscript is reported following the Strengthening 
the Reporting of Observational Studies in Epidemiology 
guidelines for cross-sectional studies.20

Data sources
County-level DM prevalence, demographics, and socio-
economic factors were extracted from the 2018 Robert 
Wood Johnson Foundation County Health Rankings 
(CHR)—the most recent CHR dataset available at the 
time this analysis was performed. The CHR, produced 
annually, is based on data from the Behavioral Risk Factor 
Surveillance System, the Centers for Disease Control, 
and other research organizations. The CHR county-level 
factors include demographic, socioeconomic, health-
care, and environmental factors. These data are collected 
from 3138 US counties. Details regarding this dataset, 
including the interpolation and estimation methodology 
used, are available online.21 These data were merged 
with US Census data to identify each county’s respective 
census region.

Individual-level demographics, socioeconomic factors, 
and health data were extracted from the biannual 
National Health and Nutrition Examination Survey 
(NHANES) studies conducted from 2007 to 2016—the 
most recent, complete NHANES dataset available at the 
time of this analysis. NHANES, established by the National 
Center for Health Statistics, is a series of complex, multi-
stage cross-sectional examinations administered annu-
ally to approximately 5000 non-institutionalized civilian 
individuals of all ages from 15 randomly selected coun-
ties or small groups of contiguous counties. NHANES 
participants initially participate in a health interview in 
their home, followed by clinical tests, a dietary inter-
view, and physical exams at mobile examination centers. 
Through these interviews, tests, and exams, NHANES 
collects sociodemographic and physiological informa-
tion. NHANES amasses data on a wide variety of diseases, 
medical conditions, and health indicators, including DM, 
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cardiovascular disease, sexual behavior, physical activity, 
dietary intake, and environmental exposures. Further 
details are available on the NHANES website.22

Assessment of DM status
County-level DM prevalence, obtained directly from 
CHR data, is the interpolated county-level percentage of 
adult survey respondents aged 20 years and above with 
diagnosed DM in a given county, that is, those adults 20 
years and older who responded ‘yes’ to the question, ‘Has 
a doctor ever told you that you have diabetes?’. Given the 
data available, the present analysis did not distinguish 
between type 1 and type 2 DM. To do so, further study lever-
aging additional richer datasets is necessary.23 Individual-
level DM status was manually classified in this analysis 
using a defined set of laboratory and/or survey criteria in 
order to capture diagnosed and previously undiagnosed 
DM. Specifically, if an individual met/answered ‘yes’ to 
either of the following criteria, he or she was deemed 
to have DM: (1) hemoglobin A1c (HbA1c) >6.5% or (2) 
‘Have you ever been told by a doctor or health profes-
sional that you have diabetes or sugar diabetes?’. HbA1c 
was used to capture previously undiagnosed participants 
in keeping with recent studies that demonstrated that 
HbA1c represents the gold-standard indicator of undiag-
nosed DM in the NHANES dataset.24 25

Eligibility criteria
Among the CHR data, individuals younger than 20 years 
of age were automatically excluded as part of the survey 
design. Of the NHANES data, the present study included 
adults over the age of 20 years who reported not being 
pregnant. This was done to exclude participants with 
gestational DM, which has been shown to be associated 
with different etiologies, risk factors, and prevention 
strategies than other types of DM.26

Statistical analyses
All analyses were performed using R V.3.5.2 software 
(The R Foundation). The continuous outcome assessed 
(ie, county-level prevalence) was modeled with multivar-
iate linear regression; the binary outcome assessed (ie, 
individual-level DM status) was modeled with multivar-
iate logistic regression. Models were evaluated based on 
the percent of variation explained (ie, mean R2 (county) 
or area under the receiver operating characteristic 
(AUROC) curve (individual)). For both individual-level 
and county-level data, univariate regression models were 
fit on each prespecified sociodemographic factor and 
DM status or prevalence. Multivariate linear regression 
was used to find the association between county-level DM 
prevalence and all county-level factors in each group of 
factors: demographic, socioeconomic, healthcare, envi-
ronmental, and region. Multivariate logistic regression 
was used to find the association between individual-level 
DM status and all individual-level factors in each group of 
factors: demographic, socioeconomic, and behavioral/
health. Finally, given that some risk factors have been 

shown to be associated only with undiagnosed DM, sensi-
tivity analyses were performed to apply the same defini-
tion of DM (ie, only undiagnosed DM) to both datasets; 
that is, HbA1c levels were excluded from assessment of 
DM status in the individual-level (NHANES) dataset.27 28

The ML models included in the present investiga-
tion were chosen, trained, and evaluated following an 
approach from recent, related work on obesity.29 The 
models used were Gradient Boosting (GBM), regres-
sion trees, random forest, a linear model chosen using 
penalized-likelihood criteria such as Akaike informa-
tion criterion and Bayesian information criterion, and 
a penalized linear model based on the least absolute 
shrinkage and selection operator. The parameters of 
each model were tuned using fivefold cross-validation, 
where the training data were divided into five subsets or 
folds, in order to balance performance on training data 
and overall generalizability. For each parameter of each 
model, all combinations of values from a predetermined 
range were combined into a search grid from which 
values were sampled consecutively. For each combination 
of parameter values in this grid, one testing fold was set 
aside as a testing fold, while the model was trained—and 
the AUROC (individual) or R2 (county) was evaluated—
on the other four folds of the data. This was repeated five 
times, so that each of the five folds was used once as a 
testing fold, and the average of the AUROC/R2 values over 
the five testing folds was reported. The top-performing 
model and its parameters were selected based on per 
cent of variation explained (ie, mean AUC (individual) 
or R2 (county)). Then, in both individual-level and 
county-level datasets, regression and the top-performing 
ML model were compared using the Wilcoxon rank-sum 
test for paired samples based on the relevant measure of 
percent variation explained in 30-fold cross-validation.

To account for the complex survey design of NHANES, 
sample survey weights were employed using the ‘survey’ 
package in R to generate population summary statistics 
and to adjust regression analyses accordingly.30 Sepa-
rately, summary statistics and regression analyses were 
generated without survey weights. The impact of the 
exclusion of survey weights was examined by comparing 
the confidence intervals for the regression coefficients in 
the models that did and did not use survey weights.

RESULTS
Among the 3138 counties from the 2018 CHR dataset, 
the mean county-level DM prevalence was 11.4% (3.0%–
21.1%); among the 12 824 individuals from the 2007–
2016 NHANES data, 1688 met laboratory and/or survey 
criteria for DM (13.2% unweighted; 10.2% weighted). 
There are marked regional differences in DM prevalence 
(figure  1); the US South and Midwest had the highest 
DM prevalence, while the Northeast and West regions 
had the lowest prevalence (see online supplemental table 
5). In univariate regression models, among the sociode-
mographic variables shared by both the NHANES and 

https://dx.doi.org/10.1136/bmjdrc-2020-001725
https://dx.doi.org/10.1136/bmjdrc-2020-001725
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CHR datasets, age, male gender, percentage identifying 
as African-American, average household income, and 
education level were all associated with both individual 
DM status and county-level DM prevalence (table  1). 

Higher household income and education level were 
associated with lower rates of DM at both the county and 
individual levels; African-American per cent (county) or 
status (individual), as well as older age, was associated 

Table 1  Univariate regression results

Individual DM status – univariate logistic regression results

Category Factor Mean (SD) (range) Coefficient (SE) AUROC

Demographic Age 49.4 (15.9) (20.0–80.0) 0.0472 (0.00210)* 0.694

Female 50.9 −0.168 (0.0712)* 0.520

African-American 10.2 0.512 (0.0699)* 0.535

Hispanic 14.2 0.106 (0.0694)* 0.512

Socioeconomic Household income NA −0.866 (0.143)* 0.580

Some college 61.1 −0.544 (0.0722)* 0.565

County-level DM prevalence – univariate linear regression results

Category Factor Mean (SD) (range), % Coefficient (SE) R2

Demographic Per cent <18 years old 22.3 (3.5) (0.0–40.9) 0.0452 (0.0129) 0.00389

Per cent >65 years old 18.4 (4.6) (4.6–56.3) 0.128 (0.00957)* 0.0543

Per cent Female 49.9 (2.3) (27.8–56.6) 0.226 (0.0194)* 0.0417

Per cent African-American 9.0 (14.3) (0.0–85.2) 0.0792 (0.00280)* 0.203

Per cent Hispanic 9.3 (13.7) (0.5–96.3) −0.0521 (0.00316)* 0.0799

Socioeconomic Median household income 91.3 (2.1) (84.6–100.0) −0.739 (0.0174)* 0.367

Percent some college 57.2 (11.6) (15.1–94.1) −0.115 (0.00331)* 0.276

Univariate regression results for models using factors shared between NHANES (individual level) and CHR (county level) datasets (ie, 
sociodemographic factors). For female gender, Hispanic and African-American race/ethnicity, and education level factors from the individual-
level (NHANES) data, summary characteristics are expressed in terms of per cent of total sample; not all summary statistics could be 
calculated. Similarly, for household income from the individual-level data, values were collected and stored as ranges of income; summary 
statistics could not be calculated. Finally, for county-level median household income, variables were normalized and scaled to have a 
maximum value of 100.
*p<0.001.
AUROC, area under the receiver operating characteristic; CHR, County Health Rankings; DM, diabetes mellitus; NHANES, National Health 
and Nutrition Examination Survey.

Figure 1  Map of DM prevalence by county. Map of US counties according to county-level DM prevalence rates obtained from 
CHR data. CHR, County Health Rankings; DM, diabetes mellitus.
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with high rates of DM at both the county and individual 
levels. A higher percentage of Hispanics was associated 
with lower rates of DM at the county level, while indi-
vidual Hispanic status was associated with higher indi-
vidual rates of DM. Similarly, higher county-level ratios 
of females to males were associated with higher county-
level rates of DM, while being female was associated with 
lower individual rates of DM (table  1). In multivariate 
regression models adjusting for demographic and socio-
economic factors, household income, education level, 
gender, race or ethnicity, and age were all significantly 
associated with DM at the county and individual levels 
(table 2). In sensitivity analyses applying the same defi-
nition of DM (ie, only self-reported DM) to both data-
sets, all associations reported above remained significant 
using multivariate regression; using univariate regression, 
all associations remained significant except that between 
Hispanic ethnicity and individual DM status (p=0.124) 
(see online supplemental tables 3 and 4). In addition-
ally adjusted models—controlling for environmental, 
healthcare access, census region, and behavioral/health 
factors—all of the sociodemographic factors above 
remained significantly associated with county-level DM 
prevalence and individual DM status except education 

level, which was no longer associated with individual DM 
(see online supplemental tables 1 and 5).

Summary statistics and multivariate regression 
output for the individual data constructed without 
using NHANES survey weights can be found in online 
supplemental tables 2 and 6. The same factors remained 
significantly associated with individual DM status–and 
the direction of the relationship (positive or negative) 
remained the same—with and without the use of survey 
weights (table 2, see online supplemental tables 2 and 6).

Model comparison
GBM was the top-performing ML model in both datasets. 
For both, GBM significantly outperformed regression 
(mean AUROC of 0.737 vs 0.727, respectively (p<0.0427) 
for individual-level data; mean R2 of 0.679 vs 0.610, respec-
tively (p<0.001) for county-level data). The parameters of 
the GBM model with the highest AUC using individual-
level data were number of trees=60, interaction depth=6, 
shrinkage=0.05, and minimum number of observations 
in node=2; the parameters of the GBM model with 
the highest R2 using county-level data were number of 
trees=200, interaction depth=16, shrinkage=0.05, and 
minimum number of observations in node=2. These 

Table 2  Multivariate regression results

Individual DM status – multivariate logistic regression results

Category Factor Mean (SD) (range) Coefficient (SE) AUROC

Demographic Age 49.4 (15.9) (20.0–80.0) 0.0467 (0.00185)* 0.695 0.711

Female 50.9 −0.221 (0.0544)*

African-American 10.2 0.633 (0.0688)*

Hispanic 14.2 0.445 (0.0672)*

Socioeconomic Household income NA −0.474 (0.127)* 0.653

Some college 61.1 −0.200 (0.0595)†

County-level DM prevalence – multivariate linear regression results

Category Factor Mean (SD) (range), % Coefficient (SE) R2

Demographic Per cent <18 years old 22.3 (3.5) (0.0–40.9) 0.0567 (0.0112)* 0.377 0.619

Per cent >65 years old 18.4 (4.6) (4.6–56.3) 0.0894 (0.00879)*

Per cent female 49.9 (2.3) (27.8–56.6) 0.220 (0.0143)*

Per cent African-American 9.0 (14.3) (0.0–85.2) 0.0465 (0.00230)*

Per cent Hispanic 9.3 (13.7) (0.5–96.3) −0.0502 (0.00223)*

Socioeconomic Median household income 91.3 (2.1) (84.6–100.0) −0.284 (0.0191)* 0.4

Percent some college 57.2 (11.6) (15.1–94.1) −0.0869 (0.00339)*

Multiple regression results for models using factors shared between NHANES (individual level) and CHR (county level) datasets (ie, 
sociodemographic factors). For female gender, Hispanic and African-American race/ethnicity, and education level factors from the individual-
level (NHANES) data, summary characteristics are expressed in terms of percent of total sample; not all summary statistics could be 
calculated. Similarly, for household income from the individual-level data, values were collected and stored as ranges of income; summary 
statistics could not be calculated. Finally, for county-level median household income, variables were normalized and scaled to have a 
maximum value of 100.
*P<0.05.
†P<0.001.
AUROC, area under the receiver operating characteristic; CHR, county health rankings; DM, diabetes mellitus; NHANES, national health and 
nutrition examination survey.

https://dx.doi.org/10.1136/bmjdrc-2020-001725
https://dx.doi.org/10.1136/bmjdrc-2020-001725
https://dx.doi.org/10.1136/bmjdrc-2020-001725
https://dx.doi.org/10.1136/bmjdrc-2020-001725
https://dx.doi.org/10.1136/bmjdrc-2020-001725
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values maximize performance on training data while 
avoiding overfitting in order to maintain generalizability.

DISCUSSION
Using two nationally representative datasets, we studied 
the associations between sociodemographic factors 
and (1) DM prevalence at the county level and (2) DM 
status at the individual level. We compared the explana-
tory power of traditional epidemiological and novel ML 
methods. All of the sociodemographic factors assessed 
in the present analysis—including age, gender, African-
American race, Hispanic ethnicity, household income, 
and education level—were significantly associated with 
diabetes prevalence or status at both the county and indi-
vidual levels. After adjusting for additional behavioral 
and health factors, all of these associations remained 
except education level. We found that ML outperformed 
multivariate regression in both individual-level and 
county-level data. We observed that higher proportions 
of Hispanic individuals were associated with lower rates 
of county-level DM, but being Hispanic was associated 
with higher rates of individual-level DM, a novel finding 
that would not have been uncovered through the analysis 
of only one type of data.

The finding that Hispanic ethnicity was negatively asso-
ciated with DM prevalence at the county level, but posi-
tively associated with risk of DM at the individual level, is 
noteworthy and warrants further study. Since Hispanics 
disproportionately live in the US West, it is possible that 
counties where Hispanics tend to live have lower overall 
rates of obesity and other risk factors associated with 
DM.29 Counties in the Western USA also have relatively 
smaller populations of African-Americans, who have 
a higher risk for DM.4 Nevertheless, Hispanic ethnicity 
remained an independent predictor of DM prevalence 
after controlling for region. This finding that a higher 
percentage of Hispanics was associated with lower county-
level rates of DM gives credence to the observations of 
previous studies, demonstrating that high proportions of 
Hispanics are associated with a protective effect against 
county-level obesity, which is in turn closely associated 
with DM.29 31 32 The results of those and the present anal-
ysis indicate that higher Hispanic ethnic density is associ-
ated with better health at the county level, corroborating 
the notion of a ‘Hispanic Paradox’—that is, the epide-
miological phenomenon in which Hispanic and Latino 
Americans tend to have health outcomes and mortality 
rates that ‘paradoxically’ are comparable with, or in some 
cases better than, those of their US non-Hispanic white 
counterparts, even though Hispanics have lower average 
income and education.33 34 The observation that being of 
Hispanic ethnicity was associated with higher individual 
DM risk, however, complicates this idea of a Hispanic 
paradox but is perhaps unsurprising, given that Hispanic 
populations are on average associated with lower income 
and education, both of which are independently associ-
ated with higher rates of DM.32–36 This association between 

Hispanic ethnicity and individual DM status remains 
significant after controlling for income and education 
level; this implies that there exist unmeasured risk factors 
for DM beyond these impactful socioeconomic factors. 
Future research should explore potential explanations 
for these paradoxical findings, including whether living 
alongside more other members of one’s own culture is 
associated with improved health outcomes, or whether 
individuals who live in communities with higher propor-
tions of Hispanics or otherwise more ethnically diverse 
communities possess more DM-friendly diets or engage 
in healthier lifestyles or behaviors.

Complementary to other studies, we found household 
income and education level to be protective against DM 
at the county and individual levels.37–41 Our finding that 
female gender was protective against individual DM status 
was consistent with past studies.42–44 However, we found 
that at the county level, a higher proportion of women 
was associated with higher rates of DM prevalence. This 
novel and paradoxical finding could be explained by the 
longer life expectancy of women, insufficiently controlled 
for by the per cent of the population over 65 years old 
or by underlying differences that this analysis did not 
account for. Nevertheless, because there exists relatively 
little variability in percentage female across counties, this 
may also simply be a spurious finding. Further research 
should examine the association between the female 
population of a county and diabetes prevalence.

African-American race was positively associated with 
both county-level DM prevalence and individual DM 
status, consistent with the reports of studies illustrating a 
higher risk of DM among African-American individuals.4 
Historically, African-Americans live in higher proportions 
in counties with lower household incomes as well as in 
the US South, which was independently associated with 
higher rates of DM (see online supplemental table 5).29 
Nevertheless, African-American race was an independent 
predictor of both DM at the county and individual levels 
even when income and geography were adjusted for. It 
should be noted that counties with higher proportions 
of African-American individuals may have more diabe-
togenic environments that we could not adjust for, such 
as fewer healthy food options and fewer opportunities 
for physical activity.36 45 Thus, both African-Americans 
and Hispanics are associated with lower income levels 
and education, but communities with a higher propor-
tion of Hispanics are associated with lower rates of DM, 
while communities with a higher proportion of African-
Americans are associated with higher rates of DM.

Though the findings at the county and individual levels 
were very similar, the differences that emerged—partic-
ularly those for Hispanic individuals and populations–
underscore the importance of validating analyses of large 
datasets. Both population-level and individual-level anal-
yses serve important roles in understanding phenomena 
that differentially influence health outcomes at different 
levels of society, but neither tells the complete story. 
Failing to validate one with the other introduces the 

https://dx.doi.org/10.1136/bmjdrc-2020-001725
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possibility of obtaining spurious or misleading find-
ings, which may yield inefficient or misguided efforts to 
prevent disease development and progression.

We found that ML models explained more of the varia-
tion in individual diabetes status and county-level diabetes 
prevalence than standard regression models, while identi-
fying nearly the same set of risk factors. The fact that ML 
and standard multivariate regression identified the same 
risk factors from both individual-level and county-level 
data provides crucial validation for these ML methods and 
affords additional confidence in the increased explanatory 
power associated with ML. The performance improvement 
generated by ML was significant for the county-level anal-
ysis, suggesting that researchers and policymakers should 
use these models to guide population-level analyses and 
interventions. The marginal performance improvement of 
ML for the individual-level analysis suggests that for such 
studies, more interpretable model will likely be adequate, 
or potentially superior, for most practical purposes. This 
may alleviate the concerns of those using traditional inter-
pretable models in this context that they are missing out 
on the potentially superior performance of ML. This also 
provides an additional data point for the current, impas-
sioned debate about whether interpretable models must 
necessarily suffer from performance far inferior to that of 
ML models.46

Because publicly available CHR data lack individual-
level information—and because publicly available 
NHANES data lack county-level information—there does 
not currently exist a single dataset that can be used to 
examine each potential risk factor at the individual and 
county levels simultaneously using the same data. Using 
two independent datasets does, however, confer value 
in the context of ML by increasing the amount of data 
available—and, through this, increasing explanatory 
power—while mitigating the risk of producing spurious 
or misleading results.

In order to protect and better serve disadvantaged 
groups, certain ethical considerations should be made 
when using ML and traditional methods alike. First, results 
must not be used to exacerbate existing health or socio-
economic disparities—and results regarding race must be 
interpreted with the understanding that race itself is a social 
construct.47 48 Additionally, in clinical practice, it is crucial 
that providers continue to take into account individual 
priorities and socioeconomic or cultural circumstances, 
which statistical methods are unable to account for. Finally, 
just as with traditional regression, sampling methods in 
ML must minimize bias; ML models are trained on the 
data creators supply them, and their predictive power and 
perceived accuracy on subsequent data is rooted in the 
same biases introduced during the acquisition of the data. 
Both NHANES and CHR have implemented measures 
such as oversampling of minority populations, in the case 
of NHANES, and contribution from multiple datasets, in 
the case of CHR, to ensure sufficient data are gathered for 
often-under-represented populations. Nevertheless, as will 
be discussed, both datasets rely in part on self-reported data 

and on certain difficult-to-obtain data that is unable to be 
obtained for all individuals or counties, which may intro-
duce bias.

Limitations
This study is associated with several limitations. First, the 
NHANES and CHR data used in this analysis were derived 
from time periods of differing lengths. This was crucial 
to increase the data available for analysis of NHANES—
for many variables included, 2-year cohorts of NHANES 
reported fewer than 2000 data points. This was particu-
larly important when training ML algorithms, which rely 
on larger amounts of data. Another possible limitation is 
the fact that the NHANES and CHR data are based in part 
on self-reported measures, which could introduce bias. 
Nevertheless, self-reported DM status has been shown to 
be effective in estimating provider-assessed DM in certain 
populations.49 Moreover, while most population studies 
rely exclusively on self-reported data, the NHANES dataset 
incorporates ample objective laboratory and physiologic 
measures. Another potential limitation is how DM was 
defined or assessed in these two datasets. In the county-
level data, CHR may underestimate county-level DM prev-
alence by only including those diagnosed by a physician. 
Nevertheless, as long as this bias is non-differential by 
county or other factors considered, our statistical results 
remain directionally valid. Additionally, in the individual-
level data, individuals were deemed to have DM if they met 
particular laboratory or survey criteria. Though imper-
fect, these criteria used are consistent with established, 
gold-standard definitions of DM that capture participants 
with both diagnosed and undiagnosed DM. Finally, given 
the data available, we were unable to distinguish between 
type 1 and type 2 DM. Because type 2 represents over 90% 
of US cases of DM, the impact of this limitation is likely 
minimal.50 Ultimately, as data continue to be amassed and 
data linkage techniques grow more sophisticated, it may 
become possible to join different datasets to overcome 
these sorts of data limitations.

CONCLUSION
The present analysis confirmed prior results and uncov-
ered novel findings about county-level and individual-
level DM. All sociodemographic factors assessed were 
associated with DM at the individual and county levels. 
Our finding that a larger Hispanic population was asso-
ciated with decreased county-level DM prevalence, while 
being Hispanic was associated with an increased indi-
vidual risk of DM, requires further study and reinforces 
the need for external validation when analyzing large 
repositories of health data. Subsequent studies should 
continue to explore the complex interplay between envi-
ronmental and individual factors and their differential 
effects on health outcomes. Finally, the additional explan-
atory power afforded by ML compared with traditional 
methods suggests ML possesses significant utility on 
the level of population-level analyses and interventions. 
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Nevertheless, the marginal performance improvement 
on individual-level data suggests that more interpretable 
regression models will likely be adequate, or potentially 
superior, for most practical purposes.
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