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Could the Olfactory System Be a Target
for Homeopathic Remedies as Nanomedicines?
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Abstract

Homeopathic remedies (HRs) contain odorant molecules such as flavonoids or terpenes and can lose their
efficiency in presence of some competitive odors. Such similarities, along with extreme sensitivity of the olfactory
system, widespread presence of olfactory receptors over all organic tissues (where they have metabolic roles
besides perception of odors), and potential direct access to the brain through olfactory nerves (ONs) and trigeminal
nerves, may suggest the olfactory system as target for HRs. Recent works highlighted that HRs exist in a dual
form, that is, a still molecular form at low dilution and a nanoparticulate form at high dilution, and that remnants
of source remedy persist in extremely high dilutions. From the literature, both odorants and nanoparticles (NPs)
can enter the body through inhalation, digestive absorption, or through the skin, especially, NPs or viruses can
directly reach the brain through axons of nerves. Assuming that HRs are recognized by olfactory receptors, their
information could be transmitted to numerous tissues through receptor–ligand interaction, or to the brain by either
activating the axon potential of ONs and trigeminal nerves or, in their nanoparticulate form, by translocating
through axons of these nerves. Moreover, the nanoparticulate form may activate the immune system at multiple
levels, induce systemic various biological responses through the pituitary axis and inflammation factors, or
modulate gene expression at the cellular level. As immunity, inflammation, pituitary axis, and olfactory system are
closely linked together, their permanent interaction triggered by olfactory receptors may thus ensure homeostasis.

Keywords: homeopathy, olfactory system, odorants, nanoparticles

Introduction

Homeopathic remedies (HRs) contain plant, animal,
mineral, and metal products with specific odors such as

flavonoids and terpenes in plant extracts, for example,1–5 and
two well-recognized homeopaths, Hahnemann and Schmidt,
asked their patients to smell HRs.6–9 Odorant molecules
(OMs) and HRs share some properties: some OMs can enhance
the perception of other OMs, and some odors can inhibit HRs
efficiency.6–8,10,11 Too, OMs can exhibit different odors de-
pending on the level of concentration in a manner analogous to
how HRs can have inverse reaction depending on the level of
dilution (hormesis).11,12 Some studies have demonstrated ef-
fects of HRs through inhalation,13–18 but HRs are generally too
dilute for an odor to be consciously recognized.

Two hypotheses explain the differential sensitivity of
individuals toward OMs, and maybe toward HRs: different
levels of olfactory receptors (ORs) gene expression and
anatomical differences in the nasal cavity, both resulting
from genetic polymorphism.19,20 Notion of competitiveness,
modifications of electroencephalogram (EEG) during inha-
lation, and modifications of genes expression, among which
those of ORs by high dilutions of Gelsemium,21 strongly
suggest that ORs can be a target for HRs.

Infinitesimal Dose Medicine

Up to now, nobody is able to explain the way homeopathy
operates and this medicine acting at infinitesimal dose became
a subject of distrust and sarcasm. In contrast, nanomedicine is
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expanding rapidly in both allopathic and homeopathic5 fields.
Recently, several groups1,22–30 have highlighted the presence
of nanoparticles (NPs) in highly diluted HRs. Bellavite and
coworkers described how HRs, at different levels of dilution,
can influence immunity and inflammatory factors and even
modulate gene expression,2,21 based on a ligand–effector type
interaction, whereas Bell et al.1,28–30 suggested a systemic
reaction to HRs as stressors.31,32

Demangeat33 suggested that the two concepts would not
contradict each other but rather reflect a dual character of
HRs depending on their level of dilution. At low dilution,
below C2–C4, HRs in a still molecular nature would act
locally on cellular or intracellular receptors, whereas at high
dilution, in a nanoparticulate form, they would cross cell
membranes and physiological barriers as mucous mem-
branes, lungs, blood–brain barrier5 (BBB), or would directly
reach the brain through a neural pathway.

The Vomeronasal Organ

First, Benabdallah34 and McGuigan10 suggested that the
vomeronasal organ (VNO), which is very sensitive and able
to induce a stereotypical behavior, could be a target for HRs.
In terrestrial animals, most pheromone receptors are located
in the VNO, within the nasal cavity, whereas in insects they
are located in antennae.35 Bombyx pheromone can be de-
tected at exposure levels of about 200 molecules per cm,3

equivalent to a homeopathic dilution between C8 and C9.35

VNO directly interacts with the pituitary axis, bypassing the
olfactory cortex and generating hormone secretion that pro-
vokes behavior changes: mating, aggression, and parental
behavior.36,37 Moreover, VNO plays a role in immunity by
detecting metabolites produced by endo- or exogenous
germs.36,38 In humans, VNO develops during fetal stage, then
regresses to a vestigial organ, considered as a nonfunctional
secondary olfactory organ in adulthood.36–38 To date, no
human pheromone has been identified with certainty. How-
ever, according to some authors,11,39 hypothetical human
pheromones are sensed by olfactory and gustatory receptors
(GRs) and by the trigeminal pathway.

The Olfactory System

The olfactory system separates the brain from the outside
world and keeps us informed about our environment by
detecting molecules or other particles, some of which are
able to directly reach the brain through the olfactory nerves
(ONs) provided they are smaller than the nerve diame-
ters,40,41 as some viruses do. ONs connect the nasal cavity to
the olfactory bulb (OB) passing the cribriform plate of the
ethmoid bone through nerve endings covered with ORs
immersed in the nasal epithelium mucus.42 The three func-
tions of the olfactory system are sense of smell, immune
function, and ONs regeneration.43 Molecules of various
structure, size, and chemical properties can have an odor.44,45

OMs can directly reach the olfactory epithelium by in-
halation through the nostrils, or indirectly after food chew-
ing, by the retronasal pathway. ORs activation drives a
nerve impulse that reaches first the olfactory glomerulus
within OB, and then, through the ON, the cortex, and the
thalamus.46–51 OB has one of the highest capillary density in
the brain.52 Human sense of smell can detect extremely low
concentrations of odorants,53,54 as low as 10-18 g/L,55

equivalent to a C9 homeopathic dilution. EEG can show
specific changes after inhalation of odorants.56 If an odorant
is too dilute to be recognized consciously as an odor, it can
nonetheless either bind ORs that possess other functions
than recognition of a smell43 or be unconsciously registered
by EEG responses.57 OMs can influence the sympathetic
and parasympathetic nervous systems, intellectual activity,58

neurotransmitters and neuromodulators levels, and the
neuroendocrine system.

OMs can play a role in psychological behaviors as well as
in various organic functions, through the endocrine sys-
tem.37,43,46,47,58–60

The Trigeminal Pathway

The trigeminal nerve directly connects the brain and essen-
tially provides somatosensory feelings within its region of in-
nervation. Detection of irritants takes place at GRs and solitary
chemosensory cells located close to the nerve endings, or di-
rectly at these nerve endings.61,62 Keratinocytes can also par-
ticipate in trigeminal nerve activation when they release
adenosine triphosphate at the vicinity of nerve endings.27,63,64

After intranasal administration, rhodamine-labeled micro-
spheres (20–200 nm) can translocate into the brain through
uptake by the ophthalmic and maxillary branches of the tri-
geminal nerve that supply sensory nerve endings throughout
the nasal mucosa.65 Less than 200 nm NPs,41,66,67 meningitis
virus,65 and other pathogens65,68 can directly reach the brain
through OB and brainstem20,66,68–70 from trigeminal pathway.

Nasal Pathway to Cure Diseases

The main interest of the nasal pathway is to be nonin-
vasive, and thus has been investigated in numerous
studies.20,31,68,71–78 For instance, this way is used for des-
mopressine and sumatriptan that are smelled to treat central
diabetes insipidus and migrainous crises, respectively.79 In
the United States, a flu vaccine is administered by the nasal
pathway.75,76 OMs can boost the immune system58,60,80 using
direct access to the nasal-associated lymphoid tissue (NALT)
and to the systemic blood circulation, notably through com-
munication between the nasal mucosa, the subarachnoid
spaces, and the lymph nodes of the neck.20,71 Activation of
the NALT elicits a strong systemic immune response with
antigen-specific IgA that is found within digestive, respira-
tory, and vaginal mucosae as well as in salivary glands.75

Nasal microbiota can impact the immune system, too.75,81

After nasal administration, drugs encapsulated in NPs can
directly follow the olfactory or the trigeminal nerve toward
OB and, from there, translocate into the central nervous
system (CNS).65,71 NPs can use either an intracellular or an
extracellular pathway, that is, the ON axon or the cells that
envelop the axons of the ONs.20,42,64-67,69,70,82

Particularities of ORs

ORs are G protein-coupled receptors, which are among
the most represented receptors in the body83,84; their plas-
ticity and ability to change conformation make them very
sensitive to various ligands (photons, ions, odorants, amino
acids, fatty acids, neurotransmitters, peptides, and poly-
peptides) as well as to 30%–40% of medicines.84,85 ORs are
not located exclusively in the nasal cavity but widespread
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over all organic tissues (ectopic ORs).19,41,45,47,55,83,86–99 In
humans, olfactory and hormonal systems are related to each
other.19,45,47,50,58,60,100 Ectopic ORs have a local action not
linked with CNS. At the kidney level, they control blood
pressure based on the level of short-chain fatty acids pro-
duced by the gut microbiota.88 Like ORs, GRs exist on
several organic tissues (digestive, respiratory, genitourinary
tracts, brain, and immunity cells) where they have other
functions beside perception of taste.37,101–105

Homeopathy as Nanomedicine

HRs may take two forms depending on dilution levels.
Low dilutions, below C2–C4, could still contain molecules
in ponderable and subponderal amounts and bind specific
targets as conventional remedies do, whereas high dilutions
could contain the active ingredient in nanoparticulate forms
that contain silica and nanobubbles, produced by shaking
the remedy during the specific dynamization procedure of
manufacturing. Assuming that such nanoparticulate forms of
HRs possess similar properties as conventional NPs, they
would exhibit much higher bioavailability, membrane per-
meability, and intracellular reactivity than the molecular
form.106,107 Such properties drastically depend on NPs size,
shape, charge surface, and lipophilicy.108,109 It has been
shown by Demangeat33 that sizes of nanostructures in HRs
depend of the level of dilution/dynamization. So, the structural
duality may explain various and even paradoxical actions of
HRs according to their dilution levels.

Link Between OMs and NPs, and Potential Actions of HRs

Both OMs and NPs can enter the body through inhalation,
digestive absorption, or across the skin.41 They can potentially
directly reach all ORs located on organic tissues except those
of the brain, which can be reached only through the ONs and
trigeminal nerves or by crossing the BBB.31,59,110–114 The
diameter of individual axons of the ON does not exceed 100–
200 nm, meaning that this way of translocation only concerns
elements with sizes <100–200 nm. As demonstrated several
years ago, polio virus and other NPs can translocate from
the nose to OB65,114 and then be found within microglia
and in deeper brain regions.69 NPs have another toxicity
profile, new target organs, and a higher influx to the brain
than the bulk material.40,51,67,111

Inhaled NPs can penetrate into the lung interstitial tissue
where they can be stored for years. The biological half-time
of solid particles in the alveolar region is about 700 days in
humans.65 From there, they can slowly diffuse toward all
organs including the brain through the systemic blood cir-
culation or the lymphatic vessels.110,112 NPs can induce
various biological responses: inflammatory response, oxi-
dative stress, modulation of gene expression, effects on cell
cycle control, and proliferation.109 NPs can be recognized
by the immune system, following any route of uptake into
the organism.65 Modifications of DNA and noncoding RNA
have been shown for cells repeatedly exposed to NPs. Such
epigenetic modifications may be very stable and sometimes
pass on from one generation to another.115 Microglia is
sensitive to disturbances in the CNS.113 For example, the
nasal instillation of NPs generates pathological changes in
hippocampus, striatum, and OB, such as proliferation of mi-
croglia after uptake of 20 nm Ag-NPs.113,116,118

Repeated exposure to NPs causes oxidative stress, cyto-
toxicity, and autophagy,119 suppresses inflammation, and
secretes proinflammatory cytokines.112,120 Cytokines, as IL-1,
can be directly produced by microglia and act on the pi-
tuitary axis,121 which can, in turn, activate the immune
system with its hormones secretion such as cortisol.121

Leucocytes also possess adrenalin, steroids, insulin, pro-
lactin, growth hormone, and thyroxine receptors. Lym-
phoid organs hold sympathetic and cholinergic nerve
endings and leucocytes possess catecholamine, endorphin,
enkephalin, substance P, somatostatin, and vasoactive in-
testinal peptide receptors.122 The brain, organs, and cells
continuously interact and communicate with each other to
adapt to all kinds of stress.19,88,121,123–125

When a stress stimulates the vegetative nervous system,
the neuroendocrine system is activated and, if the stress
persists, diseases may occur in various distant organs.
Cognitive and emotional centers are also linked to the di-
gestive tract through the gut microbiota.80,126,127

Conclusion

The olfactory system is the main gateway to reach the
brain and the immune system, and ORs are widespread on
all organic tissues; thus, the olfactory system could consti-
tute a suitable explanation for central, local, and immune
action of HRs. Moreover, clinical effects are observed for
HRs administered through inhalation, and HRs exhibit
similar properties as OMs. The complex reality of home-
opathy may be explained by the specific manufacturing
process of dilution/dynamization, which generates different
structural properties of the remedy according to the level of
dilution, especially nanoparticulate forms at high dilution.
The present speculations only constitute a clue that raises
many questions and prompts to further investigations, such
as (1) tracking homeopathic NPs through the nerves and into
the brain by animal studies, (2) studying EEG responses to
various dilutions of a definite HR, (3) identifying immune
responses from the NALT, or (4) directly studying the action
of HRs on ORs from different tissues by in vitro studies.
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English. Online document at: https://tel.archives-ouvertes.
fr/tel-01480950, accessed August 8, 2017.

80. Ainai A, Suzuki T, Tamura S, Hasegawa H. Intranasal
administration of whole inactivated influenza virus vac-
cine as a promising influenza vaccine candidate. Viral
Immunol 2017;30:451–462.

81. Montiel-Castro AJ, González-Cervantes RM, Bravo-
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