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Abstract
Empirical Bayes is a versatile approach to “learn from
a lot” in two ways: first, from a large number of vari-
ables and, second, from a potentially large amount of prior
information, for example, stored in public repositories. We
review applications of a variety of empirical Bayes methods
to several well-known model-based prediction methods,
including penalized regression, linear discriminant analy-
sis, and Bayesian models with sparse or dense priors. We
discuss “formal” empirical Bayes methods that maximize
the marginal likelihood but also more informal approaches
based on other data summaries. We contrast empirical
Bayes to cross-validation and full Bayes and discuss hybrid
approaches. To study the relation between the quality of an
empirical Bayes estimator and p, the number of variables,
we consider a simple empirical Bayes estimator in a linear
model setting. We argue that empirical Bayes is particularly
useful when the prior contains multiple parameters, which
model a priori information on variables termed “co-data”.
In particular, we present two novel examples that allow for
co-data: first, a Bayesian spike-and-slab setting that facili-
tates inclusion of multiple co-data sources and types and,
second, a hybrid empirical Bayes–full Bayes ridge regres-
sion approach for estimation of the posterior predictive
interval.
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1 INTRODUCTION

High-dimensional data with tens or hundreds of thousands of variables are frequently part of
biomedical (or other) studies nowadays. In addition, a lot of prior information is available in the
public domain, for example, in genomics data repositories or in data bases containing structural
information on the variables such as genomic pathways. When one aims to develop a predictor for
a new study, one is challenged to learn from this wealth of data. For many high-dimensional pre-
diction methods, such learning consists of two phases: 1) learning the tuning parameter(s) like, for
example, penalty parameters in a frequentist framework or prior parameters in a Bayesian frame-
work; and 2) learning the predictor as a function of the variables given the tuning parameter(s).
Empirical Bayes (EB) is a widely acknowledged approach to complete the first phase.

Broadly speaking, EB is a collection of methods that estimate the tuning parameter(s), often
formulated in terms of prior parameters, from the data, thereby borrowing information across
variables of the same type. We focus mostly on high-dimensional prediction settings, so p > n,
with p as the number of predictors and n as the number of independent samples. For other set-
tings, several excellent contributions exist. Carlin and Louis (2000) is an extensive introduction to
EB. It discusses parametric and nonparametric EB, provides many examples for standard models,
presents suggestions on computations (in particular, for maximization of the marginal likeli-
hood), and compares performances of EB methods with fully Bayesian and frequentist ones in
low-dimensional settings. Efron (2010) has quickly become a standard work for applications of
Empirical Bayes to multiple testing, particularly for estimation of the false discovery rate and vari-
ants thereof. Van Houwelingen (2014) is a recent critical review with many data examples on the
application of EB to low-dimensional estimation problems, particularly in meta-analysis, and to
high-dimensional multiple testing problems. Some of the pros and cons of EB mentioned in these
references are reiterated here, but cast in the perspective of high-dimensional prediction. Note
that the properties and usefulness of EB estimators may be different in high- and low-dimensional
prediction settings. First, high-dimensional data allows for more complex, possibly sparse priors
with several hyperparameters. Moreover, the computational advantage (with respect to full Bayes)
is larger in high-dimensional settings. In addition, the large p may lead to better estimation of the
prior (see Sections 2.1 and 5.2) and allows for modeling the prior in terms of prior information on
the variables (see Section 6). Finally, regularization changes the bias–variance tradeoff and hence
the properties of the EB estimator (see Section 5.2).

While the emphasis in this paper is on high-dimensional prediction, we sometimes refer to the
“medium-dimensional” setting. The latter is informally defined as a p < n setting but with p large
enough (with respect to n) to render estimation ill-behaved and hence desire regularization. We
believe that this medium-dimensional prediction setting is becoming increasingly relevant. For
example, targeted high-throughput molecular devices have become cheaper, implying that their
use for clinical prediction has become realistic. These devices typically measure tens or hundreds
of molecular markers, possibly selected from “whole-genome” screening studies. Examples of
such devices are multiplex polymerase chain reaction (PCR) and targeted sequencing platforms.

We review several versions of EB plus their applications to a variety of prediction methods. We
follow Morris (1983): “Empirical Bayes modeling permits statisticians to incorporate additional
information in problems” and argue that such prior information on the variables, referred to as
“co-data” (see also Neuenschwander, Roychoudhury, & Schmidli, 2016), is particularly useful in
high-dimensional settings because it may improve prediction and variable selection. Such co-data
may be continuous, for example, p-values from a related but independent study or nominal, for
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example, known sets of variables that share a function. The use of such co-data to accommo-
date different priors for variables is known as “local adaptation” in full Bayes settings (O'Hara &
Sillanpää, 2009); we discuss the EB counterpart.

When the unknown hyperparameter(s) concern tuning parameters in a frequentist setting,
cross-validation is a popular alternative for EB. Therefore, we contrast the two approaches and
shortly discuss hybrid solutions. We cannot cover the entire scala of high-dimensional predic-
tion methods and hence focus on model-based prediction. We do discuss a fairly broad spectrum,
including penalized regression (e.g., lasso, ridge, and elastic net), linear discriminant analysis,
and Bayesian approaches using sparse or dense priors. Ridge regression is used to illustrate mat-
ters on several occasions, particularly to analytically study the expected mean squared error of an
empirical Bayes estimator of the prior variance as a function of p. Although the theory on EB in
large p settings is an active field of research, results are still mostly limited to very simple models
as discussed in Section 4.

Finally, we present two novel examples of the usage of EB for high- and medium-dimensional
prediction. The two examples both allow to account for co-data when estimating the prior(s). The
first example illustrates how EB may be used to inform prior inclusion probabilities in a Bayesian
spike-and-slab model that is fit using Markov chain Monte Carlo (MCMC) sampling. Second, a
simulation example demonstrates the benefit of a hybrid Bayes–EB approach for the estimation
of the posterior predictive interval using group-regularized logistic ridge regression.

2 EMPIRICAL BAYES METHODOLOGIES

We review several EB methodologies in the context of model-based high-dimensional prediction.
Their applicability depends on the prediction method, which we will specify in the sections below.
We distinguish:
1. MMLU EB: maximize the marginal likelihood product derived from univariate models.
2. MMLJ EB: maximize marginal likelihood derived from a joint model.

• Direct EB: maximize an analytical expression for the marginal likelihood.
• Laplace EB: maximize marginal likelihood using Laplace approximation.
• MCMC EB: maximize marginal likelihood using MCMC sampling.
• VB EB: maximize marginal likelihood using Variational Bayes (VB).

3. MoM EB: method of moments; equate theoretical moments to empirical ones.

Several fundamental similarities and differences across 1) to 3) exist. First, the use of 1) is
restricted to prediction methods that combine univariate models into one prediction such as
diagonal linear discriminant analysis. We show that marginal likelihood-based empirical Bayes,
which shrinks the effect sizes, is then very similar to “standard” empirical Bayes in estimation
problems. Methodology 2) applies formal EB to the full multivariate setting, hence to a single joint
p-dimensional model like, penalized regression. As such, it is the most generic methodology. The
methodology is then subclassified by methods that are used to facilitate the maximization, the
suitability of which depends on the prediction model used. Finally, 3) refers to an intuitive classi-
cal use of EB: equating moments. Naturally, this is restricted to predictors for which the moments
are known. Below, we provide details on 1) to 3).

Throughout this article, we denote response by Y = (Y1, … ,Yn) and the high-dimensional
parameter by 𝜽 = (𝜃1, … , 𝜃p). Variables are denoted by X = (XT

1 , … ,XT
n )T ,Xi = (Xi1, … ,Xi𝑝).
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2.1 Maximum marginal likelihood from univariate models: MMLU EB
One of the simplest classifiers that may be used in a high-dimensional setting is diagonal lin-
ear discriminant analysis (DLDA). It assumes a diagonal covariance matrix Σ for the variables.
While this is unlikely to be true, the results of DLDA may be better than that of ordinary LDA,
which requires a (regularized) estimate of Σ (Bickel & Levina, 2004). One of the early classi-
fiers introduced for high-dimensional prediction, the shrunken centroid algorithm (Tibshirani,
Hastie, Narasimhan, & Chu, 2002), may be regarded as a DLDA. Moreover, DLDA is discussed
here because EB for DLDA turns out to be very similar to EB for estimation problems, allow-
ing a gentle introduction to EB. Here, we follow the notation of Efron (2009); DLDA combines
univariate effect–size estimates 𝜃̂𝑗 in one classification rule by the sign of Si, with

Si =
𝑝∑
𝑗=1
𝜃̂𝑗Wi𝑗 , (1)

where Wij is the standardized value of variable Xij. For this type of classifier, EB-type shrinkage
is based on univariate summaries as in many multiple testing and estimation settings. Following
Efron (2009), we compute the Z-score Zj, which is the standardized difference in means between
the two groups (defined by Y) for variable j. Then, Zj is expressed as a convolution

Z𝑗 = 𝜃𝑗 + 𝜖𝑗 , (2)

where 𝜖j ∼ N(0, 1) and 𝜃j ∼ 𝜋, with assumptions 𝜖𝑗 ⟂⟂ 𝜃𝑗 and Z𝑗 ⟂⟂ Zk, for k ≠ j. Efron (2009) then
continues by developing a nonparametric estimate of 𝜋 using deconvolution, and this could in
fact be regarded as a form of nonparametric EB. The posterior mean, 𝜃̂𝑗 = E(𝜃𝑗 |Z𝑗), then provides
a shrunken estimate of 𝜃j. Dicker and Zhao (2016) use a very similar marginal nonparametric
deconvolution approach. Their work is based on the Bayes classifier and provides theoretical
guarantees on the performance if the deconvolution is accurate and the joint densities of the two
groups of Xi variables are far apart in terms of Hellinger distance.

Here, we discuss the parametric counterpart, meaning𝜋 = 𝜋𝜶 is of a specified parametric form
with unknown hyperparameters 𝜶. This could be useful when one would desire a sparse DLDA,
requiring a sparse prior, for example, a spike-and-slab prior. In the parametric setting, estimating
𝜶 then boils down to maximizing the (marginal) likelihood, which factorizes rendering

𝜶̂ = argmax𝜶

(
𝑝∏
𝑗=1∫𝜃𝑗(Z𝑗 ; 𝜃𝑗)𝜋𝜶(𝜃𝑗)d𝜃𝑗

)
= argmax𝜶 log

(
𝑝∑
𝑗=1∫𝜃𝑗(Z𝑗 ; 𝜃𝑗)𝜋𝜶(𝜃𝑗)d𝜃𝑗

)
, (3)

where (Z𝑗 ; 𝜃𝑗) is the (Gaussian) likelihood implied by (2). The maximization of (3) is relatively
straightforward because the integral is one-dimensional. In case the prior is conjugate, it may
be solved analytically; otherwise, efficient EM-type algorithms are available such as the one in
van de Wiel et al. (2012), which was proven to converge. Once 𝜶̂ and hence 𝜋𝜶̂ are known, the
computation of the shrunken estimate 𝜃̂𝑗 = E(𝜃𝑗 |Z𝑗 ; 𝜶̂) is straightforward; substitution into (1)
then renders the (possibly sparse) DLDA.

Note that convolution (2) and EB estimate (3) are exactly the same as in the well-known nor-
mal means estimation problem. This problem is well studied and theoretically understood (John-
stone & Silverman, 2004). In the Supporting Information, we revisit the famous batting averages
example (Efron & Morris, 1975), which is a normal means problem that is often used as a scholarly
example of EB estimation. It concerns the data of 18 baseball players. Van Houwelingen (2014)
rightfully criticizes EB in this setting because it seems to overshrink the estimate for the best
player(s) when using a Gaussian prior. We show that, when one would have had additional data



6 Scandinavian Journal of Statistics VAN DE WIEL ET AL.

of 10,000 players, the overshrinkage is much less severe because the EB estimate of the Gaussian
prior variance improves a lot. This connects to what we will observe in Section 5 for the linear
ridge regression model. For the enlarged batting data, the large p also accommodates the use of
a more complex prior, like, a three-component Gaussian mixture, which slightly further reduces
the shrinkage for the extremes.

The likelihood product in (3) contrasts the marginal likelihood corresponding to joint pre-
diction models. The latter contains a high-dimensional integral over 𝜽, and is thus much more
complex. Given that the vast majority of statistical prediction methods are based on joint models,
we now turn our attention to those.

2.2 Maximum marginal likelihood from a joint model: MMLJ EB
Suppose that we wish to use a prediction method on the basis of a joint prediction model that
implies likelihood (Y;𝜽). For convenience, variables X, which are usually part of (Y;𝜽) via
regression, are not denoted in it. Then, an empirical Bayes estimate is obtained by maximizing
the marginal likelihood:

𝜶̂ = argmax𝜶ML(𝜶), with ML(𝜶) = ∫𝜽

(Y;𝜽)𝜋𝜶(𝜽)d𝜽, (4)

with prior 𝜋𝜶(𝜽). Often, the prior is assumed to have a product form: 𝜋𝜶(𝜽) =
∏𝑝

𝑗=1 𝜋𝜶(𝜃𝑗). While
marginal likelihood is a Bayesian concept, (4) may also be used in penalized regression settings
because of the correspondence between 𝜶 and the penalty parameter(s), say 𝝀, in the penalized
likelihood. A well-known example is the elastic net, with ridge and lasso as special cases (Zou &
Hastie, 2005). Below, we discuss several methods to solve (4).

2.2.1 Direct EB
If the prior is conjugate to the likelihood in (4), computations highly simplify because this enables
the direct maximization of the marginal likelihood. For example, for the linear regression model
with a shared Gaussian prior 𝜃j ∼ N(0, 𝜏2) and Gaussian error variance𝜎2, that is, ridge regression,
we have

ML(𝜶) = ML
(
(𝜏2, 𝜎2)

)
=  (

Y;𝝁 = 0,Σ = XXT𝜏2 + In×n𝜎
2) ,

which allows for straightforward likelihood maximization. This directly renders an estimator of
the ridge penalty: 𝜆̂ = 𝜎̂2∕𝜏2, which is computationally more efficient than cross-validation. Ridge
regression is basically a random effects model and hence fits in the setting of mixed models. Such
models may include fixed effects as well, useful for accommodating covariates like age or known
biomarkers in a clinical prediction model. Jiang, Li, Debashis, Yang, and Zhao (2016a) discuss the
well-known restricted maximum likelihood (REML) estimator of (𝜏2, 𝜎2). They prove the consis-
tency of the REML estimator in the high-dimensional setting, even when the prior is misspecified,
in the sense that only a fraction of regression parameters are nonzero in reality.

Karabatsos (2017) extends the direct MML estimation to a Bayesian generalized ridge model
(using a flat gamma prior on 𝜎−2), which allows differential penalization of the principal com-
ponents of X. This setting includes the power ridge as a special case, implying a multivariate
Gaussian prior with covariance matrix 𝜏2(XTX)𝛿 , where 𝛿 is an additional hyperparameter and
𝜏2 = 𝜎2∕𝜆. Karabatsos (2017) presents a two-stage algorithm to maximize the ML with respect to
𝛿 and 𝜆.
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In many prediction problems, conjugacy is not achieved either because of the nature of the
response Y (e.g., binary or survival) or the nature of the (preferred) prior (e.g., a sparse prior).
Then, alternative solutions are needed. Below, we present two of these, both of which are more
generic than MMLU EB and direct EB.

2.2.2 Laplace EB
In nonconjugate settings, the high-dimensional integral in (4) poses a major difficulty, preventing
a direct analytical solution. Hence, approximations have been developed for ML(𝜶) for vari-
ous choices of the likelihood and the prior, particularly for penalized regression with regression
parameters 𝜽. The integrand of (4) can often be reformulated in an exponential form, motivating
the use of Laplace approximations:

∫𝜽

e−nh𝜶(𝜽)d𝜽 ≈ e−nh𝜶(𝜽̂)(2𝜋)𝑝∕2 det
(
H−1

𝜶

)1∕2n−𝑝∕2, (5)

where H𝜶 is the Hessian of h𝜶(𝜽), evaluated at 𝜽̂. Usually, 𝜽̂ = argmax𝜽 h𝜶(𝜽) is used. This max-
imum depends on the unknown 𝜶. For many priors efficient maximizers of the integrand of (4)
and hence h𝜶(𝜽) exist. This suggests numerical optimization or EM-type algorithms alternating
between maximization with respect to 𝜽 given 𝜶 and Laplace approximation plus maximization
in terms of 𝜶. An example is given in Heisterkamp, van Houwelingen, and Downs (1999) for a
Poisson model with Gaussian priors.

Concerns have been raised about the accuracy of (5) in high-dimensional settings. For
example, Shun and McCullagh (1995) suggest that when p > O(n1/3), the standard Laplace
approximation may be unreliable. Sparse priors, which effectuate variable selection, may render
approximation (5) to be accurate but only when the prior is “sparse enough”. Intuitively, a sparse
prior may render the effective dimension of the integral of (5) much smaller than p, because 𝜽̂

contains many zeros. Barber, Drton, and Tan (2016) consider the Laplace approximation to the
marginal likelihood of Bayesian generalized linear models with sparse selection priors of the form

P𝜈( J) ∝
(
𝑝|J|
)−𝜈

1{|J|≤q}, J ⊂ {1, … , 𝑝},

where J is the set of selected variables (i.e., nonzero 𝜃j's), q is a maximum of selected variables, and
𝜈 is a tuning parameter. Here, 𝜈 determines whether the prior distribution of the models (𝜈 = 0),
or the prior distribution of the model cardinalities (𝜈 = 1) is uniform. They show that with q
relatively small (sparse setting) and sample size sufficiently large, the Laplace approximation to
the marginal likelihood can be accurate for a potentially large number of models, implying that
it may be employed for the estimation of hyperparameters in strongly sparse settings.

Apart from the accuracy of the Laplace approximation, another issue is that h𝜶(𝜽) in (5) may
not have a second derivative, rendering the Hessian undefined. An example is regression with
a Laplace prior, known as the Bayesian lasso. The L1-norm on 𝜽 is not differentiable at zero
with respect to the 𝜃j and can therefore not be approximated by the Laplace method without
modifications.

2.2.3 Markov chain Monte Carlo EB
If Laplace approximation to the integral in the right-hand side of (4) is not possible or feasible, we
may circumvent explicit calculation by an MCMC sampler. Desired quantities are easily calcu-
lated from these samples. Casella (2001) proves that one may employ an EM algorithm to estimate
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the hyperparameters from Gibbs samples. The algorithm was extended to general MCMC sam-
pling by Levine and Casella (2001) who also provide an approximation of the Monte Carlo error.
The algorithm is an MCEM-type algorithm (Wei & Tanner, 1990) based on posterior samples
of 𝜽 instead of point estimates. Here, we shortly describe the method. First, write the marginal
likelihood as

ML(𝜶) = (Y,𝜽;𝜶)
𝑝(𝜽 |Y;𝜶)

, (6)

where (Y,𝜽;𝜶) and p(𝜽 |Y;𝜶) denote the conditional likelihood of 𝜶 (i.e., the joint distribution
of Y and 𝜽 for fixed 𝜶) and posterior distribution of the model parameters, respectively. We take
the expectation of both sides with respect to p(𝜽 |Y;𝜶′) and switch to the log scale to arrive at

E𝜶′ [log ML(𝜶)] = E𝜶′ [𝓁(Y,𝜽;𝜶)] − E𝜶′ [log 𝑝(𝜽 |Y;𝜶)] (7)

for some (current value) 𝜶′. Expand the last term of (7):

E𝜶′ [log 𝑝(𝜽 |Y;𝜶)] = ∫ log 𝑝(𝜽 |Y;𝜶)𝑝(𝜽 |Y;𝜶′)d𝜽

and note that by Gibbs' inequality this integral is maximized at 𝜶 = 𝜶′. Consequently, for every
𝜶 ≠ 𝜶′, −E𝜶′ [log 𝑝(𝜽 |Y;𝜶′)] < −E𝜶′ [log 𝑝(𝜽 |Y;𝜶)], such that the sequence, which iteratively
maximizes the first term in the right-hand side of (7)

𝜶(k+1) = argmax𝜶E𝜶(k) [𝓁(Y,𝜽;𝜶)], (8)

is nondecreasing and converges. The expectation in (8) will generally not be available in closed
form. However, one may approximate it by its Monte Carlo estimate:

argmax𝜶E𝜶(k) [𝓁(Y,𝜽;𝜶)] ≈ argmax𝜶
1
M

M∑
m=1

𝓁(Y,𝜽m,(k);𝜶), (9)

where𝜽m,(k) denotes the mth MCMC sample from the posterior distribution with hyperparameters
𝜶(k) and 𝓁(Y,𝜽m,(k);𝜶) is the conditional log-likelihood of 𝜶 evaluated at the mth MCMC sample.
Often, 𝓁(Y,𝜽m,(k)(m);𝜶) has a fairly simple tractable form as exemplified in Section 6.1. Applica-
tions of this method are the estimation of the penalty parameter(s) for the Bayesian lasso in Park
and Casella (2008) and for the Bayesian elastic net in Li and Lin (2010). In a penalized logistic
regression setting, the efficient Gibbs sampler described in Polson, Scott, and Windle (2013) may
be used.

The method above is very generic: It may be applied for hyperparameter estimation using, in
principle, any Bayesian sampling technique. It is computationally costly though: the EM iterations
require multiple MCMC updates, although the number of runs can be reduced by periodically
alternating with updates from an importance sampling approximation (Casella, 2001). To limit
Monte Carlo error of the marginal log-likelihood estimate in (9), the MCMC sample size should be
sufficiently large. Booth and Hobert (1999) propose to start with small sample sizes and increase
the sample size as long as the expected likelihood is “swamped” by Monte Carlo error. The small
initial sample size is justified with the EM algorithm's tendency to take large steps towards the
optimum in the first few iterations. Any Monte Carlo error in the log-likelihood estimate is rel-
atively small compared to the large increase in log-likelihood during these iterations. Close to
convergence, the EM algorithm tends to increment the log-likelihood in smaller steps. Then,
the Monte Carlo error is relatively larger, requiring a larger sample size to counteract this. For
some models, the MCMC sample size may be reduced by introducing stochastic approximation
in the E-step (Kuhn & Lavielle, 2004). In Section 6.1, we illustrate how to apply MCMC EB to
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high-dimensional spike-and-slab models and show that it straightforwardly allows to moderate
the inclusion prior by use of co-data.

2.2.4 Variational Bayes–EB
For some models, variational Bayes (VB) approximations (for a review, see Blei, Kucukelbir, &
McAuliffe, 2017) can be developed as a very efficient alternative to MCMC, which is also useful in
the EM algorithm above. Moreover, VB lends itself well for EB estimation because the nature of
the approximation often allows expressing the expectation in (8) analytically in terms of 𝜶. Let us
assume a simple hierarchical model: Y ← 𝜽 ← Z ← 𝜶. For example, the Bayesian lasso (Park &
Casella, 2008) has 𝜽 as p-dimensional regression parameter, Z is the p-dimensional latent mixture
parameter in a scale mixture of normals, and 𝜶 = 𝜆1 is the lasso penalty parameter. Nuisance
parameters like error variance 𝜎2 may be added w.l.o.g.

Let p(𝜽,Z |Y;𝜶) denote the full posterior. In the context of our model, VB approxima-
tion amounts to determining functions q1 and q2 such that q1(𝜽)q2(Z;𝜶) minimizes the
Kullback–Leibner distance KL(q1q2||p). Finding solutions q∗

1 and q∗
2 requires specific derivations

for the model at hand. Several are available in the literature such as for spike-and-slab regression
(Carbonetto & Stephens, 2012), the Bayesian ridge model (Leday et al., 2017), and the Bayesian
lasso (Joo, 2017). For example, in the latter model q∗

1 is a multivariate Gaussian, whereas q∗
2

conveniently factorizes with respect to Z1, … ,Zp as a product of inverse Gaussians.
The VB analogue of the MCMC EB algorithm above is then straightforward: in the EM

algorithm above, replace the Monte Carlo approximation of the posterior, required for the
expected joint likelihood (9), by the VB approximation q∗

1(𝜽)q
∗
2(Z;𝜶). In the hierarchical model

setting, maximization w.r.t. 𝜶 then amounts to computing the posterior mean of the log-prior of Z

Eq∗
2(Z;𝜶(k))[log 𝑝(Z;𝜶)], (10)

where q∗
2(Z;𝜶

(k)) denotes the approximation of q2 given current hyperparameter(s) 𝜶(k). Here, we
use that other terms of both the approximate posterior and the conditional log-likelihood dis-
appear because they do not contain 𝜶 (as exemplified for the conditional log-likelihood (20) for
the spike-and-slab model). Often, (10) can be analytically maximized as in Joo (2017) for the
Bayesian Lasso, as implemented in R-package BLasso.

A general concern with VB approximations is the potential underestimation of posterior vari-
ances (Blei et al., 2017). However, for EB estimation of the hyperparameters, the variation across
high-dimensional parameters, which is modeled by the prior with parameter(s)𝜶, is deemed more
relevant than the posterior variances themselves. This suggests combining VB EB with MCMC:
use VB for computational efficiency to iteratively estimate 𝜶, followed by one MCMC run with
fixed 𝜶 to obtain more accurate posteriors. For the latter, the VB posterior mode estimates pro-
vide a warm start for the sampling. Because of the connection between VB and Gibbs sampling
(Gelfand & Smith, 1990), it is usually fairly straightforward to develop a Gibbs sampler once a VB
approximation is available.

2.3 Moment EB
An alternative to MML (4) is moment estimation, which is discussed below. In case p (univariate),
models share a prior (as discussed above), equating theoretical moments to empirical moments is
a textbook example on EB. In prediction, however, we often have only one model. Now, assume
that we have an initial estimate 𝜽̂ = 𝜽̂(Y). Moreover, (𝜃𝑗)𝑝𝑗=1 share prior 𝜋𝜶 , with, say, 𝜶 = (𝛼1, 𝛼2).
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Then, 𝛼1 and 𝛼2 can be estimated by solving moment equations if the conditional moments
E[𝜃̂𝑗(Y) |𝜽] and E[𝜃̂2

𝑗
(Y) |𝜽] are analytically tractable as functions f1 and f2 of 𝜽:

1
𝑝

∑
𝑗

𝜃̂𝑗 ≈
1
𝑝

∑
𝑗

E
[
𝜃̂𝑗(Y)

]
= 1
𝑝

∑
𝑗

E𝜋𝜶

[
E
[
𝜃̂𝑗(Y) |𝜽]] = 1

𝑝

∑
𝑗

E𝜋𝜶
[𝑓1(𝜽)] ∶= h1(𝛼1, 𝛼2)

1
𝑝

∑
𝑗

𝜃̂2
𝑗 ≈

1
𝑝

∑
𝑗

E
[
𝜃̂2
𝑗 (Y)

]
= 1
𝑝

∑
𝑗

E𝜋𝜶

[
E
[
𝜃̂2
𝑗 (Y) |𝜽]] = 1

𝑝

∑
𝑗

E𝜋𝜶
[𝑓2(𝜽)] ∶= h2(𝛼1, 𝛼2),

(11)

where h1 and h2 are known functions. In a group-regularized logistic ridge regression setting,
van de Wiel, Lien, Verlaat, van Wieringen, and Wilting (2016) use a similar idea. Here, groups of
variables are given (g; e.g., gene sets), corresponding to priors 𝜃j ∼ N(0, 𝛼g) if 𝑗 ∈ g. They first
use a standard ridge estimator for 𝜽̂(Y) and then derive and solve G estimating equations with G
unknowns to estimate 𝜶 = (𝛼g)G

g=1:

1
𝑝

∑
𝑗∈g

𝜃̂2
𝑗 ≈

1
𝑝

∑
𝑗∈g

E𝜋𝜶(𝜽)
[
E[𝜃̂2

𝑗 (Y) |𝜽]] = 1
𝑝

∑
𝑗∈g

E𝜋𝜶

[
𝑓g(𝜽)

]
∶= hg(𝜶) ∀g = 1, … ,G. (12)

Le Cessie and van Houwelingen (1992) provide expressions for the mean and variance of the
logistic ridge estimator, rendering 𝑓g(𝜽) = E[𝜃̂2

𝑗
(Y) |𝜽] = (E[𝜃̂𝑗(Y) |𝜽])2 + V[𝜃̂2

𝑗
(Y) |𝜽]. Because

of the bias introduced by penalization, the mean term and hence 𝑓g depends on all 𝜃j's (not just
those for which 𝑗 ∈ g), so hg depends on all 𝛼g's. This leads to a system of G linear equations with
G unknowns. For several cancer genomics applications, van de Wiel et al. (2016) and Novianti,
Snoek, Wilting, and van de Wiel (2017) show that using group penalty parameters that are inverse
proportional to solution 𝛼̂g improves predictive performance.

Note that the comparison between likelihood-based (Section 2.2) and moment-based estima-
tion is on a somewhat different footing here than for ordinary parameter estimation. In the latter
case, likelihood-based estimation is usually preferred because the estimator has several optimal-
ity properties when the likelihood is correctly specified. For many types of data and models, the
appropriateness of the likelihood can be verified with a variety of techniques. The latter, how-
ever, is much harder for the prior, which contains the hyperparameters. The moment estimator
depends less on the parametric form of the prior than the marginal likelihood-based one, so it
may be more robust against misspecification of the prior.

3 EB AND CROSS-VALIDATION FOR MULTIPLE
HYPERPARAMETERS

Cross-validation (CV) is a powerful, alternative principle to obtain hyperparameters, usually
referred to as tuning parameters in this context. A practical asset of CV is that it is easy to imple-
ment when the number of tuning parameters is low. Moreover, it allows to directly optimize
the tuning parameter with respect to the out-of-bag predictive performance, thereby matching
directly with the main goal of most prediction problems. However, CV can be computationally
unattractive when a) model fitting takes considerable time, like for most MCMC-based solutions,
or when b) multiple tuning parameters are required, because the search grid grows exponentially
with the number of tuning parameters. In the latter case, sequential tuning approaches could alle-
viate the computational burden, but because of local optima of the utility function, these may be
far from globally optimal as shown for the elastic net (Waldron et al., 2011).

When hyperparameters are “competitive”, for example, when they shrink the same parame-
ters, EB approaches may, like CV, struggle to find the optimal ones because of a flat or multimodal
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marginal likelihood (4). Figure 1 shows this for the Bayesian elastic net (Li & Lin, 2010). This
figure is obtained by estimating the marginal likelihood for varying values of the two hyperpa-
rameters in the elastic net. The model and estimation procedure are given in the Supporting
Information. The data was simulated by first sampling X with independent entries: Xi j ∼
N(0, 1), i = 1, … ,n = 200, j = 1, … , p = 200. Next, we generated model parameters 𝛽 j for
j = 1, … 200 from the elastic net prior with 𝜆1, 𝜆2 = 2 and set the response Yi = Xi𝜷 + 𝜖i, with
𝜖i ∼ N(0, 1). A Gibbs sampler was run for every combination of 𝜆1, 𝜆2 ∈ {0.5, 0.8, 1.1, … , 3.8},
and the marginal likelihood was calculated for every combination. Figure 1a shows that the
marginal likelihood estimation indeed renders a high value for the true (𝜆1, 𝜆2) combination,
(2, 2), but many other combinations of one higher and one lower penalty render very similar val-
ues. Figure 1b shows that, when we extend the simulation to n = 100, p = 1000, the marginal
likelihood is less flat likely because of the larger p. However, while the true value, (2, 2), still
corresponds to a high marginal likelihood, a bias towards a smaller L1 penalty is observed.
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Practical solutions for the competition between hyperparameters depend on the data, the clas-
sifier, and the EB approach employed. For prediction, local optima are not necessarily a problem:
the corresponding models likely predict almost equally well. If one desires a sparse solution, one
could consider a grid for the sparsity parameter and employ EB to find the other parameter(s)
conditional on the sparsity one. Then, one may opt for the smallest model within a prespeci-
fied margin of the best performing model, in terms of marginal likelihood or any other criterion.
Alternatively, one fixes the a priori expected (or desired) number of included variables, which is
feasible for spike-and-slab models, and uses EB for other parameters.

Sometimes, it may be worthwhile to combine EB with CV. For example, if one wishes to apply
different penalties 𝜆g for groups of variables (Boulesteix, De Bin, Jiang, & Fuchs, 2017; van de Wiel
et al., 2016), one may reparameterize 𝜆g = 𝜆𝜆′g and optimize the global parameter 𝜆 by CV with
respect to predictive performance while estimating the multipliers 𝜆′g by EB. Alternatively, CV or
similar out-of-bag approaches may be used to tune the initial EB estimates to improve predictive
performance or to implement parameter thresholding.

4 CRITICISMS AND THEORY ON EB

Empirical Bayes comes with assumptions and hence with criticism. Of course, such criticism
should be balanced against potential assets of EB, such as computational efficiency and its ability
to account for prior information to improve predictions. We discuss three major criticisms and
cast these in the high-dimensional perspective. First, uncertainty of the hyperparameter 𝜶 is not
propagated as it would be for a fully Bayesian approach. In a high-dimensional setting, the prior
parameters are estimated from a large number of variables. Hence, depending on the correla-
tion strength, the uncertainty may be relatively small. In fact, in a regression variable selection
context, Scott and Berger (2010) argue that the uncertainty of the selected model is potentially a
larger problem, because the marginal likelihood maximization EB may lead to a degenerate solu-
tion, which may be undesirable when alternative values of the hyperparameter(s) render marginal
likelihoods that are very close to the optimal one. A hybrid FB–EB approach, as discussed in
Section 6.2, may provide the best of both worlds. A second criticism is that EB accommodates the
“average ones” not the (possibly more interesting) extremes. In many high-dimensional applica-
tions, however, the use of more complex priors is feasible, for example, mixtures or heavy-tailed
ones. Such priors can better accommodate nonaverage behavior.

A third criticism is the lack of theoretical guarantees on EB, particularly on how and whether
an EB estimator improves when p (instead of n) increases. This is likely because of the complex
dependency of the hyperparameters on all variables. In addition, the complex (algorithmic) con-
struction of some EB estimators hampers analytical analysis of their properties. Most theoretical
results are available for the simple normal means model (so p = n and X = Ip), which allows
a factorization of the likelihood as in (3). For example, Johnstone and Silverman (2004) provide
asymptotic optimality results for a spike-and-slab–type prior. In addition, Belitser and Nuru-
shev (2015) present theoretical evidence that, in a sparse spike-and-slab setting, EB allows the use
of a Gaussian slab to obtain good contraction rates of the posteriors, which is a prerequisite for
obtaining correct coverage of credibility intervals. Such a Gaussian slab prior is not recommended
for the ordinary sparse Bayes setting because it shows suboptimal contraction rates as compared
with more heavy-tailed slab distributions (Castillo & van der Vaart, 2012). For a wider class of
models, Rousseau and Szabo (2017) recently showed that full (hierarchical) Bayes and MML EB
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have the same oracle posterior contraction rates (n → ∞) under weak conditions on the hyper-
prior. Below, we provide some analytical results for an EB estimator of the prior variance of linear
regression parameters. Even for this fairly simple model, calculations are fairly tedious.

5 EXPECTED MSE FOR A SIMPLE EB ESTIMATOR

We study a very simple EB estimator for linear (ridge) regression to gain insight on how the
quality of the estimator, as quantified by the expected mean squared error (EMSE), changes
with p. We start with the case p < n, which allows analytical results. This includes the
“medium-dimensional” case with p relatively close to n, for which regularization is often desir-
able. Then, the results for p ≥ n are obtained by simulation.

5.1 Setting 1: Initial ordinary least squares (OLS) estimator
Suppose that 𝛽 j ∼iid N(0, 𝜏2). Let 𝜷̂ be the OLS estimator of 𝜷 in a linear regression model without
intercept. For the sake of simplicity, we assume the error variance 𝜎2 = 1 to be known. Then,

(𝜷̂ ∣ X, 𝜷) ∼ N(𝜷,V),

with V = (XTX)−1 and vj = Vj j. Hoerl, Kennard, and Baldwin (1975) propose the following simple
estimator of 𝜏2 for p < n:

(𝜏′)2 =
∑𝑝

𝑗=1 𝛽
2
𝑗

𝑝
. (13)

Since EY(𝛽𝑗) = 𝛽𝑗 and VY(𝛽𝑗) = v𝑗 , we have

E𝜷(EY[(𝜏′)2]) =

∑𝑝

𝑗=1

(
v𝑗 + E𝜷

(
𝛽2
𝑗

))
𝑝

=
∑𝑝

𝑗=1 v𝑗
𝑝

+ 𝜏2.

Hence, the estimator can be corrected for this expected bias without inflating the variance:

𝜏2 =

∑𝑝

𝑗=1

(
𝛽2
𝑗
− v𝑗

)
𝑝

. (14)

We wish to study the properties of 𝜏2 in terms of p and n. For that, we consider the EMSE, where
the mean squared error is computed w.r.t. Y, which is then averaged over samples of both𝜷 (drawn
from the Gaussian prior) and X. While the latter is often considered as fixed, it is more realistic
to assume it random, particularly when X denotes (genomic) measurements. This also allows to
establish the quality of the estimator across instances of X. We assume that, after standardization,
Xi ∼ N(0,Σ = Σp×p), i = 1, … ,n, with Σj j = 1. Then, we study

EMSE(𝜏2) = EX
[
E𝜷

[
MSEY(𝜏2 |𝜷,X)

]]
= EX

[
E𝜷

[(
EY(𝜏2 |𝜷,X) − 𝜏2)2 + VY(𝜏2 |𝜷,X)

]]
. (15)
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Theorem 1. Let EMSE(𝜏2) be as in (15). Then, we have, with Ψ = Σ−1, for p < n − 3,

EMSE(𝜏2) = 2
(n − 𝑝 − 1)𝑝2

[
𝑝∑
𝑗=1

(
2𝜓2

𝑗𝑗

(n − 𝑝 − 1)(n − 𝑝 − 3)
+

𝜓2
𝑗𝑗

(n − 𝑝 − 1)

)
+ 2𝜏2

𝑝∑
𝑗=1
𝜓𝑗𝑗

+
𝑝∑

𝑗,k≠𝑗

(
(n − 𝑝 + 1)𝜓2

𝑗k + (n − 𝑝 − 1)𝜓𝑗𝑗𝜓kk

(n − 𝑝)(n − 𝑝 − 1)(n − 𝑝 − 3)
+

𝜓2
𝑗k

(n − 𝑝 − 1)

)]
+ 2𝜏4

𝑝
.

(16)

Proof. See Supporting Information.

Corollary 1. Let EMSE⟂(𝜏2) be EMSE(𝜏2) for independent Xi: 𝜓 j j = 1 and 𝜓 jk = 0. Then, for
p < n − 3,

EMSE⟂(𝜏2) = 2
(n − 𝑝 − 1)𝑝

[
2

(n − 𝑝 − 1)(n − 𝑝 − 3)
+ 1

n − 𝑝 − 1
+ 2𝜏2

+ 𝑝 − 1
(n − 𝑝)(n − 𝑝 − 3)

]
+ 2𝜏4

𝑝
.

(17)

Equations (16) and (17) clearly show the balance for increasing p, causing n−p to decrease. From
(16), we observe that the effect of collinearity in X may be large when the number of nonzero
𝜓 jk's (i.e., partial correlations) is large because of the double summation and the relatively small
(n− 𝑝) denominator of 𝜓2

𝑗k. In addition, we observe that, for large 𝜏2, a large p is relatively more
beneficial than for small 𝜏2. Figure 2 shows the root EMSE as function of p < n for n = 1000 for
𝜏2 = (0.1)2 = 0.01; 𝜏2 = (0.2)2 = 0.04 for Σ = Ip (referred to as “independent X”); Σ = IB ⊗ A𝜌

b×b,
(block-correlation) with b as the block size and B = p∕b as the number of blocks, A𝜌

𝑗𝑗
= 1,A𝜌

i𝑗 = 𝜌,
where 𝜌 denotes the correlation between any two variables i ≠ j. We show results for b = 10 and
𝜌 = 0.3, 0.8; results for b = 50 were fairly similar. The figures support the conclusions drawn from
studying the equations.
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FIGURE 2 Y-axis: root expected mean squared error ((16),(17)), X-axis: p. Settings: n = 1000; independent
X(𝜌 = 0), 𝜌 = 0.3, 0.8; b = 10. (a) 𝜏2 = 0.01. (b) 𝜏2 = 0.04. Vertical line denotes the minimum [Colour figure can
be viewed at wileyonlinelibrary.com]
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5.2 Setting 2: Initial ridge estimator
It is not straightforward to extend the formulas above to the penalized p > n setting because
i) penalization introduces bias in the estimates, so EY(𝛽𝜆𝑗 ) ≠ 𝛽𝑗 ; ii) unlike (XTX)−1, (XTX + 𝜆Ip)−1

does not follow an inverse-Wishart distribution. Hence, we approximate the EMSE by simula-
tions. In the penalized setting, estimators of 𝜏2 more advanced than (14) are available (Cule &
De Iorio, 2013). We proposed an alternative that accounts for the bias of 𝛽𝜆

𝑗
because of penalization

(van de Wiel et al., 2016):

𝜏2
2 =

∑𝑝

𝑗=1

((
𝛽
𝜆0
𝑗

)2
∕v𝑗 − 1

)
∑𝑝

𝑗,k=1 v−1
𝑗

c2
𝑗k

, (18)

where cjk is the known coefficient of the bias EY(𝛽𝜆𝑗 ) =
∑𝑝

k=1 c𝑗k𝛽k (van de Wiel et al., 2016),
and 𝜆0 is an initial value of 𝜆. We used 𝜆0 = 1, corresponding to a fairly noninformative initial
N(0, 𝜏2

0 = 1) prior for 𝛽 j. Results were rather insensitive to the exact value of 𝜆0. Figure 3 shows
the root EMSE, estimated from 500 generations of X, 𝜷, and Y per setting, using the settings as
above except for n = 100, where p ≤ 20, 000 and b = 50.
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FIGURE 3 Subfigures (a) and (c): root EMSE (y-axis) versus p (x-axis; square-root scale) for 𝜏2 = 0.01, 0.04 and
n = 100. Red triangles: estimator 𝜏2 (14), black circles: bias-adjusted estimator 𝜏2

2 (18). Solid lines: independent
X, dotted line: block-correlation, b = 50, 𝜌 = 0.8. Vertical line denotes p = n = 100. Subfigures (b) and (d):
corresponding box-plots of 𝜏2

2 for 500 simulations in the independent X setting [Colour figure can be viewed at
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FIGURE 4 Y-axis: root expected mean squared error of 𝜏2
2 (18); X-axis: p (square-root scale). Settings: 𝜏2 = 0.01;

independent X. (a) n = 200. (b) n = 500. Vertical line denotes p = n. Results are based on 200 simulations

From Figure 3, we observe that 𝜏2 (14) and 𝜏2
2 (18) are competitive for p ≤ n, but the

bias-corrected estimator 𝜏2
2 is far superior for p ≫ n. In fact, the latter is very well on target for

p ≥ 500, supporting the notion that large p is beneficial for EB. Interestingly, even fairly strong
correlation seemed to have little impact on the performance (the dotted lines largely overlap the
solid ones). This is possibly due to the de-correlation effect of the initial ridge regression with
penalty 𝜆0 = 1. This small penalty (much smaller than the true values 𝜆true = 1∕𝜏2 = 1∕0.01 =
100; 1∕0.04 = 25) seems to suffice to initially regularize XTX, which explains why the performance
improves after p = n. A striking aspect is that across the range of p, the performance of 𝜏2

2 is the
worst for p ≈ n = 100. A smaller simulation for n = 200, 500 shows the same phenomenon visi-
ble from Figure 4. In addition, the use of an even vaguer Gaussian prior with 𝜏2

0 = 10 ⇒ 𝜆0 = 0.1
leads to a similar and even somewhat more pronounced pattern in terms of the peak of root EMSE
around p = n (data not shown). An explanation is that, for p < n, the estimation of 𝜷 is stable
and well conditioned, while the fairly weak penalty introduces little bias. Thus, even though p
is small, the information from each 𝛽𝜆0

𝑗
is solid, which benefits the estimation of 𝜏2. For p ≈ n,

the penalty necessarily introduces a larger bias in the estimation of 𝛽 j, whereas the EB estimator
does not yet profit much from a large p as is the case for p > n. Others have noted this “peak-
ing around p = n phenomenon” as well, for example, in the context of test error for (regularized)
linear discriminant analysis (Duin, 2000).

Finally, it is tempting to compare the EB estimates of 𝜏2 with CV estimates. We noticed that
both five-fold and ten-fold CV (minimizing cross-validated mean squared prediction error for
given X) rendered estimates of 𝜏2 with a root EMSE substantially larger than that of 𝜏2

2 . For
example, for 𝜏2 = 0.01, p = 1000,n = 100, and independent Xi (so Σ = Ip), root EMSE(𝜏2

CV10) =
0.0064, whereas root EMSE(𝜏2

2 ) = 0.0015. However, one should bear in mind that CV aims at
minimizing prediction error rather than at estimating 𝜏2. In fact, we noticed that the predic-
tive performances usually differed very little when using either 𝜆CV10 = 𝜏−2

CV10 or 𝜆EB = 𝜏−2
2 .
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Nevertheless, a practical advantage of the EB estimate is its computational efficiency (Cule &
De Iorio, 2013): It requires only one ridge-fit, whereas k-fold CV requires k times the number of
ridge-fits per fold (which depends on the efficiency of the search and the use of approximations).

6 APPLICATION OF EB WHEN USING CO-DATA

Tai and Pan (2007) and Novianti et al. (2017) present specific data examples on how co-data can
help improve prediction and variable selection in high-dimensional setting. Here, we present two
novel prediction examples, both of which use EB to account for co-data.

6.1 MCMC EB for spike-and-slab models
Consider a high-dimensional generalized linear model setting, where response Y is linked to X
via the linear predictor 𝜂 = X𝜷. Moreover, 𝛽 j is endowed with a spike-and-slab prior of the form

(𝛽𝑗 |𝜉𝑗 = 0) ∼ F0, (𝛽𝑗 |𝜉𝑗 = 1) ∼ F1, 𝜉𝑗 ∼ Bern(𝜈𝑗), 𝑗 = 1, … , 𝑝,

where, typically, F0 is concentrated around zero or even F0 = 𝛿0, and F1 is more dispersed, for
example, Gaussian (Newcombe et al., 2014) or Laplace (Ročková & George, 2014). The alternative
mixture prior representation is obtained by marginalization over the latent variables 𝜉j. The model
may contain additional nuisance parameters that do not depend on 𝜉j (such as error variance 𝜎),
which we omit in the notation below. Now, assume that we have (several) additional sources of
information on the p variables coded by a p × s co-data matrix C with s ≪ p. Let us model the
prior inclusion probability 𝜈j parsimoniously as a function of the co-data

𝜈𝑗,𝜶 = g−1(C𝑗𝜶), (19)

where Cj is the jth row of C, 𝜶 is an s × 1 vector of hyperparameters, and g is a link function, for
example, a logit link. The EB task is to estimate the hyperparameters 𝜶. Suppose that we have
an MCMC sampler that renders posterior samples for all parameters, including the latent ones,
given current hyperparameters 𝜶(k). Then, the conditional log-likelihood in (9) is equal to

𝓁(Y,𝜽m,(k);𝜶) = log𝜋(Y,𝜷m,(k), 𝝃m,(k);𝜶)

= log𝜋(Y |𝜷m,(k)) + log𝜋(𝜷m,(k) |𝝃m,(k)) + log𝜋(𝝃m,(k);𝜶).
(20)

Hence, only the last term depends on 𝜶, so (9) reduces to finding

argmax𝜶

{ M∑
m=1

𝑝∑
𝑗=1

log
[
Bern

(
𝜉

m,(k)
𝑗

; 𝜈𝑗,𝜶
)]}

= argmax𝜶

{
𝑝∑
𝑗=1

M∑
m=1

log
[
Bern

(
𝜉

m,(k)
𝑗

)
; 𝜈𝑗,𝜶

)]}

= argmax𝜶

{
𝑝∑
𝑗=1

log

[
Bin

( M∑
m=1

𝜉
m,(k)
𝑗

)
; M, 𝜈𝑗,𝜶

)]}
.

The latter equality holds because 𝜈j,𝜶 does not depend on m = 1, … ,M and the Bin(M, q) density
differs from the product of M Bern(q) densities only by a binomial factor that does not depend
on 𝜶. Hence, estimating 𝜶 reduces to binomial regression of “observations” Bk

𝑗
=

∑
m𝜉

m,(k)
𝑗

,
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𝑗 = 1, … , 𝑝, on the s columns of design matrix C. The previous estimate is then iteratively updated
by this one as in (8) for a new round of MCMC sampling.

The reduction to simple regression is feasible because of the factorization (20) and the i.i.d.
Bernoulli prior for 𝜉j. Other Bayesian sparse regression models like the Bayesian elastic net (see
Section 3) can also be represented as (scale) mixtures but with a remaining dependency of 𝜷 on
𝜶 plus a more complex dependency of the mixture proportions on 𝜶. While conceptually sim-
ple, the algorithm above is computationally demanding, requiring efficient implementations of
spike-and-slab MCMC (such as those by Peltola, Marttinen, & Vehtari, 2012, and Newcombe et al.,
2014). Variational Bayes approximations may be an alternative (Carbonetto & Stephens, 2012) in
combination with an EM-type maximization (Beal & Ghahramani, 2003).

6.2 Simulation example: Interval estimation
6.2.1 Empirical Bayes versus full Bayes
Empirical Bayes is not “truly” Bayes because the prior parameters are fixed after estimating these
from the data. A disadvantage of many full Bayes settings, however, is the computational time:
The extra layer of priors may lead to a strong increase, for example, from seconds to minutes (see
the example of Bar and Schifano (2011) with 2,000 variables) or from minutes to several hours.
For the multivariate low-dimensional setting, Carlin and Louis (2000) show that, despite their
lack of error propagation, EB methods can be rather competitive to full Bayes ones in terms of
frequentist coverage probabilities of the parameter credible intervals. Below, we compare Bayes,
EB, and hybrid credible intervals for predictions in medium-dimensional settings with p of the
same order of magnitude as n.

6.2.2 Setting
As indicated in the introduction, the medium-dimensional case is likely to become more and
more relevant in clinical prediction. In a clinical setting, the uncertainty of each individual's pre-
diction is of importance. The Bayesian paradigm lends itself well for obtaining interval estimates
in (penalized) regression settings because it allows the uncertainty propagation of the tuning
parameter(s). In the low-dimensional Bayesian linear regression setting, Morris (1983) and Basu,
Ghosh, and Mukerjee (2003) provide theoretical guarantees for the coverage of an EB interval,
which accounts for the uncertainty of the prediction and the shrinkage factor. In a Bayesian logis-
tic regression setting, we compare three models for the priors of the coefficients 𝛽 j in terms of
coverage of the posterior predictive intervals. These models differ in the level of error propaga-
tion. We assume that the variables are grouped into G groups on the basis of co-data (Tai & Pan,
2007; van de Wiel et al., 2016).

6.2.3 Models
Denote the groups of variables by g, g = 1, … ,G. We assume that

Yi ∼ Bernoulli(expit(Xi𝜷))
𝛽𝑗 ∼ N

(
0, 𝜏2

g
)
, 𝑗 ∈ g, (21)

where expit(x) = exp(x)∕(1 + exp(x)). We consider three models for precisions 𝜏−2
g . First, the

EB model
𝜏−2
g = 𝜆𝜆2

g, (22)
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where 𝜆 and 𝜆g are fixed. Second, the (conjugate) FB model

𝜏−2
g ∼ Γ(𝛼1, 𝛼2), (23)

with 𝛼1 and 𝛼2 such that the prior is rendered uninformative. Third, the hybrid model

𝜏−2
g = 𝜏−2𝜆2

g

𝜏−2 ∼ Γ(𝛼1, 𝛼2),
(24)

with 𝛼1 and 𝛼2 such that the prior is rendered uninformative and 𝜆g fixed.
Model (22) is equivalent to the one used in (van de Wiel et al., 2016). We estimate the global

ridge tuning parameter 𝜆 by cross-validation and the group multipliers 𝜆g by moment-based EB
as in (12). This model generally renders good point predictions and is computationally very effi-
cient. It may, however, not suffice for interval estimation because the uncertainty of 𝜏−2

g is not
accounted for. Model (23) renders a classical Bayesian random effects model. It may be the pre-
ferred model when G is small and the number of features per group is large: the estimation of 𝜏−2

g
will be relatively precise, and the uncertainty of 𝜏 is propagated. However, this model is compu-
tationally cumbersome for large G because of the large number of hyperpriors, which need to be
integrated out when computing the posterior of 𝜷. Moreover, when some groups are small, the
imprecise estimation of 𝜏−2

g may render inferior predictions. Model (24) is a compromise: It con-
tains only one random hyperparameter, 𝜏. Thus, model (24) is computationally efficient while still
propagating uncertainty of 𝜏. We assume the group-specific penalty multipliers 𝜆g to be identical
to those in model (22) to ensure comparability.

6.2.4 A small simulation
In combination with (21), (22) to (24) render three Bayesian models that are implemented using
the R-package INLA (Rue, Martino, & Chopin, 2009) after substituting the estimated 𝜆 and 𝜆g's
into model (22) and 𝜆g into (24). We evaluate 95% posterior intervals for the prediction proba-
bilities on an event qi = expit(Xi𝜷). We consider equal-tailed intervals and highest probability
density (HPD) intervals (Carlin & Louis, 2000). The latter concentrates more around the posterior
mode, so it may be less vulnerable to shrinkage than the first. The following simulation settings
were used for model (21):

• # groups G = 2, 5. # variables per group: pG. Total # variables: p = pG ∗ G.
• For G = 2, all 3 models are applied; ntrain = ntest = 100, pG = 10, 20, 30, 40, 50.
• For G = 5, models (22) and (24) are applied; ntrain = 200,ntest = 100, pG = 10, 20, 40. Model

(23) was not evaluated for this computationally demanding case.
• For variable j in group g = 1, … ,G, 𝛽𝑗 ∼ N(0, 𝜏2

g), where 𝜏g = 𝜏02−(g−1), so prior standard
deviations decrease by a factor of 2 for each next group g; 𝜏0 is calibrated such that ≈ 20% of
observations render extreme probabilities qi (< 0.05 or > 0.95).

• Correlation between variables occurs in blocks of 5, with correlation 𝜌 = 0.1.
• Each simulation setting was repeated nrep = 50 times; coverage of 95% posterior intervals for

qi, i = 1, … ,ntest, is studied.

We also considered 𝜌 = 0.5 and constant 𝛽 's within each group (hence not obeying the
Gaussian prior). Results were very similar and hence not shown.
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FIGURE 5 X-axis: True event probability qj; Y-axis: mean coverage of 95% posterior intervals for event
probability. Mean is estimated by moving average. Case: G = 2, 𝑝g = 30, 𝑝 = G ∗ 𝑝G = 60,ntrain = 100. Methods:
hybrid (blue), empirical Bayes (black), full Bayes (red). (a) Equal-tailed interval; (b) HPD interval [Colour figure
can be viewed at wileyonlinelibrary.com]

6.2.5 Results
We focus on the intervals here; the results on the point predictions (posterior modes) of qi are
rather similar for models (22) to (24). We compute the average coverage of the true qi by the 95%
intervals across all test samples, averaged over nrep repeats. We then plot qi versus the moving
average coverage on overlapping windows of 200 predictions. These are displayed in Figures 5
and 6 for two simulation settings; see the Supporting Information for other settings. First, from
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FIGURE 6 X-axis: True event probability qj; Y-axis: mean coverage of 95% HPD intervals for event probability.
Mean is estimated by moving average. Cases: G = 5, 𝑝g = 10, 40; 𝑝 = G ∗ 𝑝G = 50, 200;ntrain = 200. Methods:
hybrid (blue), empirical Bayes (black). (a) 𝑝g = 10,G = 5. (b) 𝑝g = 40,G = 5 [Colour figure can be viewed at
wileyonlinelibrary.com]
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Figure 5, it is clear that HPD intervals outperform their equal-tailed counterparts, particularly for
the extreme qi's. Equal-tailed intervals are more sensitive to the bias introduced by penalization,
which is stronger for the extremes. This is in line with the findings of (Carlin & Louis, 2000). Pos-
sibly more surprising is the somewhat inferior coverage for the FB model (23) in this simulation.
It may result from use of the conjugate, but possibly wrong prior in (23), or from the small value
of pG. The counterpart, the EB model, performs better but still renders too low coverage for the
extremes. This likely results from too narrow intervals caused by lack of propagation of the uncer-
tainty of the global penalization parameter, 𝜏−2 ∝ 𝜆. The hybrid model (24) seems to correctly
balance the empirical Bayes estimation of the groupwise parameters and the full Bayes handling
of 𝜏−2. Because of shrinkage, a small bias for the coverage remains for extreme qi's.

7 DISCUSSION AND EXTENSIONS

We showed that EB is a versatile and powerful approach to “learn from a lot” in two ways: first,
from the large number of variables and, second, from prior information on the variables, stored as
co-data. We reviewed several methods for EB estimation in a broad spectrum of prediction frame-
works. This illustrated that developing EB estimators of penalty, prior or other tuning parameters,
ranges from simple to challenging, depending on the prediction framework and the ambition in
terms of number of hyperparameters to estimate. While EB can be regarded as a “competitor” for
cross-validation and FB in a frequentist or Bayesian setting, respectively, we argued that hybrid
solutions may prove useful to exploit the strengths of the approaches.

In the Bayesian framework, maximization of the marginal likelihood is the default EB cri-
terion. This is often computationally intensive. Variational Bayes, which returns a lower bound
for the marginal likelihood, in combination with EM-type optimization, can strongly alleviate
the computational burden (Beal & Ghahramani, 2003). It requires careful development of the
approximations for the model at hand and verification of accuracy (e.g. by Gibbs sampling) for
numerical examples. Alternatively, in a variable selection setting, one may settle for a conditional
EB approach (George & Foster, 2000) by conditioning on the included variables, thereby avoiding
integration over the large model space.

This overview is by no means complete. Specific EB methods have been developed, particu-
larly also for model-free predictors. For example, for the random forest, Taddy, Chen, and Yun
(2015) estimate the trunk of the trees, which may stabilize results and save considerable com-
puting time compared to a fully Bayesian approach. Te Beest, Mes, Wilting, Brakenhoff, and van
de Wiel (2017) demonstrate that co-data may be used to improve random forest predictions by
moderating the sampling weights of the variables.

As illustrated, EB allows to account for co-data but is not the only way. Full Bayes alterna-
tives exist, particularly for the purpose of variable selection (Ishwaran & Rao, 2005; O'Hara &
Sillanpää, 2009; Quintana & Conti, 2013). These are generally computationally very demanding
for typical high-dimensional settings with a large number of variables. Moreover, frequentist solu-
tions have been proposed, which usually require additional tuning parameter(s) to cross-validate
(Bergersen, Glad, & Lyng, 2011; Jiang, He, & Zhang, 2016b) or a group penalty (Meier,
van de Geer, & Bühlmann, 2008; Simon, Friedman, Hastie, & Tibshirani, 2013). The latter may
perform less well than EB-based regularization per group when the number of groups is small
(Novianti et al., 2017). However, a group penalty may be particulary powerful when the number
of groups is large given its much more parsimonious representation of the group structure.
Combination of the two principles is an interesting future research direction.
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“Empirical Bayes is still in its adolescence” (Efron, 2010), which is particularly true for
high-dimensional prediction and variable selection. More theory on the quality of the estimators
as a function of n and p for a variety of prediction models will be welcomed by the community.
Moreover, EB theory for large p settings is an active field of research, which will likely lead to
more general results. From a practical perspective, prediction accuracy can always be estimated
by (repetitive) training/test splits, which allows the evaluation of the EB prediction versus alter-
natives for the data at hand. The evaluation of variable selection is more difficult. We find it
useful to compare indirectly by evaluating the predictive accuracies of models of the same size.
This enabled us to show that co-data-based EB may improve the predictive performance of small
models (Novianti et al., 2017). New prediction methods with various types of penalties, priors, or
other tuning parameters are frequently introduced. These may benefit from dedicated EB estima-
tors, particularly when multiple tuning parameters are involved. Extension of EB methods toward
estimation of multivariate priors should allow to better accommodate network-type information
(Ročková & George, 2014; Stingo, Chen, Tadesse, & Vannucci, 2011). Finally, priors that are mod-
eled as a function of various sources of co-data are increasingly relevant in this “Big Data era”.
Developing EB estimators of hyperparameters of such priors will require either a parsimonious
representation or regularization on the level of hyperparameters to avoid overfitting.
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