

open 👌 Access

Crystal structure of 2-aminopyridinium 6-chloronicotinate

N. Jeeva Jasmine,^a A. Rajam,^a P. Thomas Muthiah,^a* N. Stanley,^a I. Abdul Razak^b and M. Mustaqim Rosli^b

^aSchool of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India, and ^bSchool of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia. *Correspondence e-mail: tommtrichy@yahoo.co.in

Received 29 July 2015; accepted 6 August 2015

Edited by A. J. Lough, University of Toronto, Canada

In the title salt, $C_5H_7N^+ \cdot C_6H_3CINO^-$, the 2-aminopyridinium cation interacts with the carboxylate group of the 6-chloronicotinate anion through a pair of independent $N-H\cdots O$ hydrogen bonds, forming an $R_2^2(8)$ ring motif. In the crystal, these dimeric units are connected further *via* $N-H\cdots O$ hydrogen bonds, forming chains along [001]. In addition, weak $C-H\cdots N$ and $C-H\cdots O$ hydrogen bonds, together with weak $\pi-\pi$ interactions, with centroid–centroid distances of 3.6560 (5) and 3.6295 (5) Å, connect the chains, forming a two-dimensional network parallel to (100).

Keywords: crystal structure; 2-aminopyridinium; 6-chloronicotinate; 6-chloropyridine-3-carboxylate; noncovalent interactions; π – π stacking interactions.

CCDC reference: 1417413

1. Related literature

For a background to noncovalent interactions, see: García-Raso *et al.* (2009). For the applications of pyridine compounds, see: Schwid *et al.* (1997); Rajkumar *et al.* (2015). For related structures, see: Xie (2007); Jennifer & Muthiah (2014); Chao *et al.* (1975); Bis & Zaworotko (2005); Jebas & Balasubramanian (2006). For information on π - π stacking interactions, see: Hunter (1994). For hydrogen-bond graph-set motifs, see: Bernstein *et al.* (1995);

2. Experimental

2.1. Crystal data

 $C_5H_7N_2^+ C_6H_3CINO_2^ M_r = 251.67$ Monoclinic, $P2_1/c$ a = 8.6844 (4) Å b = 10.8112 (5) Å c = 11.9235 (6) Å $\beta = 95.2046$ (9)°

2.2. Data collection

Bruker SMART APEXII DUO
CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
$T_{\rm min} = 0.993, T_{\rm max} = 0.994$

2.3. Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.092$ S = 1.074073 reflections 166 parameters $V = 1114.87 (9) Å^{3}$ Z = 4 Mo K\alpha radiation $\mu = 0.34 \text{ mm}^{-1}$ T = 100 K 0.51 × 0.40 × 0.17 mm

```
15546 measured reflections
4073 independent reflections
3771 reflections with I > 2\sigma(I)
R_{\text{int}} = 0.019
```

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.50 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, $^\circ).$

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H1N2\cdots O2^{i}$	0.923 (17)	1.781 (17)	2.7000 (9)	173.5 (15)
$N3-H2N3\cdotsO1^{i}$	0.844 (16)	1.942 (17)	2.7830 (10)	174.1 (15)
$N3-H1N3\cdots O2^{ii}$	0.890 (15)	1.962 (15)	2.8490 (9)	174.0 (13)
$C7-H7A\cdots N1^{iii}$	0.95	2.44	3.2808 (11)	147
$C10-H10A\cdotsO1^{iv}$	0.95	2.25	3.1574 (10)	160

Symmetry codes: (i) -x, -y + 1, -z; (ii) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$; (iii) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (iv) $x, -y + \frac{1}{2}, z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *PLATON*.

Acknowledgements

NJJ thanks the UGC–SAP, India, for the award of an RFSMS. PTM is thankful to the UGC, New Delhi, for a UGC–BSR one-time grant to Faculty. IAR and MMR thank the Malaysian Government and Universiti Sains Malaysia (USM) for the research facilities to conduct this work.

Supporting information for this paper is available from the IUCr electronic archives (Reference: LH5778).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bis, J. A. & Zaworotko, M. J. (2005). Cryst. Growth Des. 5, 1169-1179.
- Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Chao, M., Schemp, E. & Rosenstein, R. D. (1975). Acta Cryst. B31, 2922-2924.

- García-Raso, A., Albertí, F. M., Fiol, J. J., Tasada, A., Barceló-Oliver, M., Molins, E., Estarellas, C., Frontera, A., Quiñonero, D. & Deyà, P. M. (2009). *Cryst. Growth Des.* 9, 2363–2376.
- Hunter, C. A. (1994). Chem. Soc. Rev. 23, 101-109.
- Jebas, S. R. & Balasubramanian, T. (2006). Acta Cryst. E62, 02209-02211.
- Jennifer, S. J. & Muthiah, P. T. (2014). Chem. Cent. J. 8, 20.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Rajkumar, M. A., NizamMohideen, M., Xavier, S. S. J., Anbarasu, S. & Devarajan, D. P. A. (2015). Acta Cryst. E71, 231–233.
- Schwid, S. R., Petrie, M. D., McDermott, M. P., Tierney, D. S., Mason, D. H. & Goodman, A. D. (1997). *Neurology*, 48, 817–820.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Xie, Z.-Y. (2007). Acta Cryst. E63, o2192-o2193.

supporting information

Acta Cryst. (2015). E71, o655-o656 [doi:10.1107/S2056989015014796]

Crystal structure of 2-aminopyridinium 6-chloronicotinate

N. Jeeva Jasmine, A. Rajam, P. Thomas Muthiah, N. Stanley, I. Abdul Razak and M. Mustaqim Rosli

S1. Comment

Noncovalent interactions such as hydrogen bonding, anion- π , cation- π , and π - π interactions, and other weak forces play a central role in many areas. They are very important in deciding the conformation of molecules, chemical reactions, molecular recognition, regulating biochemical processes and governing the organization of multicomponent supramolecular assemblies (García-Raso *et al.*, 2009). 2-Aminopyridines are used in the manufacture of pharmaceutical drugs, especially for the treatment of neurological ailments (Schwid *et al.*, 1997). Pyridine heterocycles and their derivatives have large applications in the field of photo-chemical, electrochemical and catalytic process. Some pyridine derivatives possess non-linear optical (NLO) properties (Rajkumar *et al.*, 2015). The crystal structure of 2-amino-pyridinium isonicotinate 2-aminopyridine has already been reported (Xie, 2007). The salts of aminopyridine-thiophene-carboxylic acid (Jennifer & Muthiah, 2014) have been recently reported from our laboratory. We report herein the crystal structure of the title molecular salt, obtained by the reaction of 2-aminopyridine with 6-chloronicotinic acid.

The asymmetric unit of the title salt, (I), contains one 2-aminopyridinium cation and a 6-chloronicotinate anion (Fig. 1). Protonation of the cation occurs at N2, providing a C7—N2—C11 angle of 122.45 (7)° compared with 117.7 (1)° in the unprotonated 2-aminopyridine (Chao *et al.*, 1975). A similar type of protonation is observed in various 2-aminopyridine acid complexes (Bis & Zaworotko, 2005). The bond lengths and angles in complex (I) are within normal ranges and comparable to those in other 2-aminopyridinium complexes (Jebas & Balasubramanian, 2006). The carboxylate group of the 6-chloronicotinate anion interacts with the protonated atom N2 and the amino group of the pyridine moiety through a pair of N—H···O hydrogen bonds, forming an eight membered $R_2^2(8)$ ring motif (Bernstein *et al.*, 1995). Furthermore, these motifs are connected *via* N3—H1···O2ⁱⁱ, C7—H7A···N1ⁱⁱⁱ and C10—H10A···O1^{iv} hydrogen bonds (see Table 1 for symmetry codes), forming a two-dimensional network parallel to (100) (Fig 2). The crystal structure is further stabilized by two distinct π - π stacking interactions involving the 6-chloronicotinate and pyridinium ions. A *Cg*1-*Cg*2 distance of 3.6560 (5) Å and *Cg*2—*Cg*2 distance of 3.6295 (5) Å is observed (where *Cg*1 is the centroid of the N1/C1-C5 ring and *Cg*2 is the centroid of the N2/C7-C11 ring). The perpendicular distances of 3.2545 (3) and 3.5411 (3)Å together with the slip angles of 22.3 & 12.7°, respectively are typical for aromatic stacking values (Hunter, 1994).

S2. Experimental

A hot ethanolic solution of 2-aminopyridine (23 mg, Aldrich) and 6-chloronicotinic acid (39 mg, Alfa Aesar) was warmed for half an hour over a water bath. The mixture was cooled slowly and kept at room temperature. After a few days colourless plate like crystals were obtained.

S3. Refinement

Hydrogen atoms boned to C atoms were place in calculated postions with with C—H = 0.95Å and included with $U_{iso}(H) = 1.2U_{eq}(C)$. H atoms boned to N atoms were refined independently with isotropic displacement parameters.

Figure 1

The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids.

Figure 2

Part of the crystal structure with hydrogen bonds shown as dashed lines. Hydrogen atoms not involved hydrogen bonding have been removed for clarity.

2-Aminopyridinium 6-chloropyridine-3-carboxylate

Crystal data

C₃H₇N₂^{+·}C₆H₃ClNO₂⁻⁻ $M_r = 251.67$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 8.6844 (4) Å b = 10.8112 (5) Å c = 11.9235 (6) Å $\beta = 95.2046$ (9)° V = 1114.87 (9) Å³

Data collection

Bruker SMART APEXII DUO CCD area- detector	15546 measured reflections 4073 independent reflections
diffractometer	3771 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.019$
Graphite monochromator	$\theta_{\rm max} = 32.7^\circ, \theta_{\rm min} = 2.4^\circ$
φ and ω scans	$h = -13 \rightarrow 13$
Absorption correction: multi-scan	$k = -16 \rightarrow 16$
(SADABS; Bruker, 2009)	$l = -18 \rightarrow 18$
$T_{\min} = 0.993, \ T_{\max} = 0.994$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.031$	Hydrogen site location: inferred from
$wR(F^2) = 0.092$	neighbouring sites
S = 1.07	H atoms treated by a mixture of independent
4073 reflections	and constrained refinement
166 parameters	$W = 1/[\Sigma^2(FO^2) + (0.0539P)^2 + 0.2679P]$
0 restraints	where $P = (FO^2 + 2FC^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta ho_{ m max} = 0.50 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$

Z = 4

F(000) = 520

 $\theta = 2.4 - 32.7^{\circ}$ $\mu = 0.34 \text{ mm}^{-1}$

Plate. colourless

 $0.51 \times 0.40 \times 0.17 \text{ mm}$

T = 100 K

 $D_{\rm x} = 1.499 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N2	0.08234 (8)	0.17345 (6)	0.03387 (6)	0.0142 (2)	
N3	-0.02920 (9)	0.19691 (7)	0.20096 (6)	0.0184 (2)	
C7	0.17904 (9)	0.11677 (8)	-0.03367 (7)	0.0177 (2)	

C8	0.26497 (11)	0.01655 (9)	0.00290 (8)	0.0228 (2)
C9	0.25206 (11)	-0.02551 (8)	0.11385 (8)	0.0238 (2)
C10	0.15609 (10)	0.03247 (8)	0.18212 (7)	0.0197 (2)
C11	0.06759 (9)	0.13562 (7)	0.14076 (6)	0.0146 (2)
C11	0.54962 (2)	0.18137 (2)	0.23646 (2)	0.0203 (1)
01	0.18876 (7)	0.61122 (6)	-0.08641 (5)	0.0192 (2)
O2	0.07082 (7)	0.63585 (6)	0.07132 (5)	0.0171 (2)
N1	0.33406 (8)	0.35025 (7)	0.22723 (6)	0.0166 (2)
C1	0.43180 (9)	0.29272 (7)	0.16629 (7)	0.0150 (2)
C2	0.44779 (9)	0.31497 (8)	0.05297 (7)	0.0168 (2)
C3	0.35703 (9)	0.40792 (8)	0.00135 (6)	0.0158 (2)
C4	0.25507 (8)	0.47360 (7)	0.06340 (6)	0.0129 (2)
C5	0.24641 (9)	0.43930 (7)	0.17505 (6)	0.0152 (2)
C6	0.16403 (8)	0.58120 (7)	0.01150 (6)	0.0135 (2)
H1N2	0.0255 (18)	0.2389 (16)	0.0024 (14)	0.038 (4)*
H2N3	-0.0831 (18)	0.2538 (16)	0.1688 (13)	0.032 (4)*
H1N3	-0.0454 (17)	0.1728 (14)	0.2703 (13)	0.031 (4)*
H7A	0.18690	0.14750	-0.10760	0.0210*
H8A	0.33130	-0.02370	-0.04470	0.0270*
H9A	0.31080	-0.09500	0.14140	0.0290*
H10A	0.14880	0.00380	0.25680	0.0240*
H2A	0.51770	0.26860	0.01280	0.0200*
H3A	0.36410	0.42690	-0.07580	0.0190*
H5A	0.17440	0.48120	0.21690	0.0180*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N2	0.0166 (3)	0.0150 (3)	0.0112 (3)	-0.0003 (2)	0.0027 (2)	0.0014 (2)
N3	0.0217 (3)	0.0218 (3)	0.0125 (3)	0.0003 (3)	0.0053 (2)	0.0033 (2)
C7	0.0201 (3)	0.0187 (3)	0.0148 (3)	-0.0004 (3)	0.0040 (3)	-0.0023 (3)
C8	0.0229 (4)	0.0206 (4)	0.0249 (4)	0.0039 (3)	0.0024 (3)	-0.0044 (3)
C9	0.0256 (4)	0.0174 (4)	0.0274 (4)	0.0034 (3)	-0.0034 (3)	0.0010 (3)
C10	0.0234 (3)	0.0170 (3)	0.0180 (3)	-0.0014 (3)	-0.0024 (3)	0.0050 (3)
C11	0.0166 (3)	0.0150 (3)	0.0121 (3)	-0.0037(2)	0.0007 (2)	0.0017 (2)
Cl1	0.0195 (1)	0.0189(1)	0.0224 (1)	0.0050(1)	0.0020(1)	0.0033 (1)
O1	0.0249 (3)	0.0212 (3)	0.0123 (2)	0.0042 (2)	0.0063 (2)	0.0025 (2)
O2	0.0212 (3)	0.0187 (3)	0.0119 (2)	0.0056 (2)	0.0047 (2)	0.0000 (2)
N1	0.0196 (3)	0.0161 (3)	0.0145 (3)	0.0028 (2)	0.0036(2)	0.0008 (2)
C1	0.0144 (3)	0.0138 (3)	0.0167 (3)	0.0005 (2)	0.0016 (2)	0.0004 (2)
C2	0.0164 (3)	0.0175 (3)	0.0173 (3)	0.0017 (2)	0.0060 (3)	-0.0007(2)
C3	0.0172 (3)	0.0171 (3)	0.0136 (3)	0.0004 (3)	0.0050(2)	-0.0005(2)
C4	0.0140 (3)	0.0130 (3)	0.0119 (3)	-0.0008(2)	0.0025 (2)	-0.0007(2)
C5	0.0182 (3)	0.0150 (3)	0.0129 (3)	0.0021 (3)	0.0043 (2)	0.0000 (2)
C6	0.0151 (3)	0.0142 (3)	0.0112 (3)	-0.0008(2)	0.0019 (2)	-0.0008(2)

Geometric parameters (Å, °)

Cl1—C1	1.7438 (8)	C10—C11	1.4173 (12)
O1—C6	1.2489 (9)	С7—Н7А	0.9500
O2—C6	1.2719 (9)	C8—H8A	0.9500
N2-C11	1.3556 (10)	С9—Н9А	0.9500
N2—C7	1.3609 (11)	C10—H10A	0.9500
N3—C11	1.3305 (11)	C1—C2	1.3917 (12)
N2—H1N2	0.923 (17)	C2—C3	1.3863 (12)
N3—H2N3	0.844 (16)	C3—C4	1.3980 (11)
N3—H1N3	0.890 (15)	C4—C5	1.3905 (10)
N1-C5	1.3444 (11)	C4—C6	1.5075 (10)
N1-C1	1.3218 (11)	C2—H2A	0.9500
С7—С8	1.3645 (13)	С3—НЗА	0.9500
С8—С9	1.4129 (13)	С5—Н5А	0.9500
C9—C10	1.3687 (13)		
$Cl1 \cdots C4^i$	3.5893 (8)	C6…N2 ^v	3.4200 (10)
$Cl1 \cdots C5^i$	3.2804 (8)	C6····O2 ^v	3.2056 (10)
Cl1…C9	3.6238 (10)	C7…C3	3.5149 (12)
Cl1…H8A ⁱⁱ	3.1000	C7…C2	3.2663 (12)
Cl1…H3A ⁱⁱⁱ	3.1000	C7…N1 ^{vii}	3.2808 (11)
Cl1…H9A ^{iv}	3.0200	C9…Cl1	3.6238 (10)
O1…N3 ^v	2.7830 (10)	C10…O1 ⁱⁱⁱ	3.1574 (10)
O1…C2 ^{vi}	3.2450 (10)	C11…C1	3.5787 (11)
O1…C10 ^{vii}	3.1574 (10)	C11…N1	3.3719 (11)
O2···C6 ^v	3.2056 (10)	C3···H3A ^{vi}	3.0700
O2····C4 ^v	3.3415 (10)	C5…H7A ⁱⁱⁱ	2.8500
O2…N3 ^{viii}	2.8490 (9)	C6…H1N3 ^{viii}	3.049 (15)
O2…N2 ^v	2.7000 (9)	C6…H1N2 ^v	2.544 (17)
О1…НЗА	2.5000	C6···H2N3 ^v	2.833 (16)
O1…H1N2 ^v	2.726 (16)	H1N2…H2N3	2.28 (2)
O1…H10A ^{vii}	2.2500	H1N2…O1 ^v	2.726 (16)
O1…H2N3 ^v	1.942 (17)	H1N2····O2 ^v	1.781 (17)
O2…H5A	2.5200	H1N2····C6 ^v	2.544 (17)
O2…H1N2 ^v	1.781 (17)	H2N3····O1 ^v	1.942 (17)
O2…H1N3 ^{viii}	1.962 (15)	H2N3…C6 ^v	2.833 (16)
N1…C11	3.3719 (11)	H2N3…H1N2	2.28 (2)
N1····C7 ⁱⁱⁱ	3.2808 (11)	H1N3…C6 ^{ix}	3.049 (15)
N2····O2 ^v	2.7000 (9)	H1N3…H10A	2.5000
N2····C6 ^v	3.4200 (10)	H1N3…O2 ^{ix}	1.962 (15)
N3…O1 ^v	2.7830 (10)	H1N3…H5A ^{ix}	2.3700
N3…O2 ^{ix}	2.8490 (9)	H3A…O1	2.5000
N1…H7A ⁱⁱⁱ	2.4400	H3A····C3 ^{vi}	3.0700
N3…H5A ^{ix}	2.8700	H3A…Cl1 ^{vii}	3.1000
C1…C11	3.5787 (11)	H5A…O2	2.5200
C2···C3 ^{vi}	3.5309 (12)	H5A…N3 ^{viii}	2.8700
C2…C7	3.2663 (12)	H5A…H1N3 ^{viii}	2.3700

C2…O1 ^{vi}	3.2450 (10)	H5A…H7A ⁱⁱⁱ	2.5100
C3····C3 ^{vi}	3.1853 (12)	H7A…H5A ^{vii}	2.5100
C3…C7	3.5149 (12)	H7A…N1 ^{vii}	2.4400
C3····C2 ^{vi}	3.5309 (12)	H7A…C5 ^{vii}	2.8500
C4…Cl1 ^{iv}	3.5893 (8)	H8A…Cl1 ⁱⁱ	3.1000
C4…O2 ^v	3.3415 (10)	H9A…Cl1 ⁱ	3.0200
C5…Cl1 ^{iv}	3.2804 (8)	H10A…O1 ⁱⁱⁱ	2.2500
C6…C6 ^v	3.3366 (10)	H10A…H1N3	2.5000
C7—N2—C11	122.45 (7)	C9-C10-H10A	120.00
C7—N2—H1N2	116.2 (10)	C11—C10—H10A	120.00
C11—N2—H1N2	121.4 (10)	Cl1—C1—N1	116.05 (6)
C11—N3—H2N3	118.0 (11)	Cl1—C1—C2	118.64 (6)
C11—N3—H1N3	121.1 (10)	N1—C1—C2	125.31 (7)
H2N3—N3—H1N3	120.5 (14)	C1—C2—C3	116.97 (7)
C1—N1—C5	116.58 (7)	C2—C3—C4	119.68 (7)
N2—C7—C8	121.16 (8)	C3—C4—C5	117.59 (7)
C7—C8—C9	117.85 (8)	C3—C4—C6	120.56 (6)
C8—C9—C10	120.92 (8)	C5—C4—C6	121.80 (6)
C9—C10—C11	119.58 (8)	N1—C5—C4	123.81 (7)
N3-C11-C10	123.60 (7)	O1—C6—O2	125.14 (7)
N2-C11-N3	118.37 (7)	O1—C6—C4	117.13 (6)
N2-C11-C10	118.04 (7)	O2—C6—C4	117.71 (6)
N2—C7—H7A	119.00	C1—C2—H2A	122.00
С8—С7—Н7А	119.00	C3—C2—H2A	121.00
C9—C8—H8A	121.00	С2—С3—Н3А	120.00
С7—С8—Н8А	121.00	С4—С3—Н3А	120.00
С8—С9—Н9А	120.00	N1—C5—H5A	118.00
С10—С9—Н9А	120.00	C4—C5—H5A	118.00
C11—N2—C7—C8	1.11 (12)	C11—C1—C2—C3	-177.22 (6)
C7-N2-C11-N3	179.67 (8)	N1-C1-C2-C3	2.22(13)
C7-N2-C11-C10	-0.50(11)	C1 - C2 - C3 - C4	-0.29(12)
C1—N1—C5—C4	-0.78(12)	C2-C3-C4-C5	-1.86(11)
C5—N1—C1—Cl1	177.76 (6)	C2—C3—C4—C6	175.44 (7)
C5—N1—C1—C2	-1.69(12)	C3—C4—C5—N1	2.51 (12)
N2—C7—C8—C9	-0.90(13)	C6—C4—C5—N1	-174.75 (7)
C7—C8—C9—C10	0.14 (14)	C3—C4—C6—O1	-2.82 (11)
C8—C9—C10—C11	0.44 (13)	C3—C4—C6—O2	178.64 (7)
C9—C10—C11—N2	-0.26 (12)	C5—C4—C6—O1	174.36 (7)
C9-C10-C11-N3	179.55 (8)	C5—C4—C6—O2	-4.18 (11)

Symmetry codes: (i) -x+1, y-1/2, -z+1/2; (ii) -x+1, -y, -z; (iii) x, -y+1/2, z+1/2; (iv) -x+1, y+1/2, -z+1/2; (v) -x, -y+1, -z; (vi) -x+1, -y+1, -z; (vii) x, -y+1/2, z-1/2; (viii) -x, y+1/2, -z+1/2; (ix) -x, y-1/2, -z+1/2; (ix) -x, -y+1, -z; (vii) -x, -z; (vii) -x; (

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
$N2-H1N2\cdotsO2^{v}$	0.923 (17)	1.781 (17)	2.7000 (9)	173.5 (15)

supporting information

N3—H2 N 3····O1 ^v	0.844 (16)	1.942 (17)	2.7830 (10)	174.1 (15)
N3—H1 N 3····O2 ^{ix}	0.890 (15)	1.962 (15)	2.8490 (9)	174.0 (13)
$C7$ — $H7A$ ···· $N1^{vii}$	0.95	2.44	3.2808 (11)	147
C10—H10A····O1 ⁱⁱⁱ	0.95	2.25	3.1574 (10)	160

Symmetry codes: (iii) x, -y+1/2, z+1/2; (v) -x, -y+1, -z; (vii) x, -y+1/2, z-1/2; (ix) -x, y-1/2, -z+1/2.