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Preoperative prediction of pathological 
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Abstract 

Purpose:  To develop and validate a machine learning model based on radiomic features derived from 18F-fluoro-
deoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) images to preoperatively 
predict the pathological grade in patients with pancreatic ductal adenocarcinoma (PDAC).

Methods:  A total of 149 patients (83 men, 66 women, mean age 61 years old) with pathologically proven PDAC and 
a preoperative 18F-FDG PET/CT scan between May 2009 and January 2016 were included in this retrospective study. 
The cohort of patients was divided into two separate groups for the training (99 patients) and validation (50 patients) 
in chronological order. Radiomics features were extracted from PET/CT images using Pyradiomics implemented in 
Python, and the XGBoost algorithm was used to build a prediction model. Conventional PET parameters, including 
standardized uptake value, metabolic tumor volume, and total lesion glycolysis, were also measured. The quality of 
the proposed model was appraised by means of receiver operating characteristics (ROC) and areas under the ROC 
curve (AUC).

Results:  The prediction model based on a twelve-feature-combined radiomics signature could stratify PDAC patients 
into grade 1 and grade 2/3 groups with AUC of 0.994 in the training set and 0.921 in the validation set.

Conclusion:  The model developed is capable of predicting pathological differentiation grade of PDAC based on 
preoperative 18F-FDG PET/CT radiomics features.
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Introduction
Pancreatic ductal adenocarcinoma (PDAC) is the fourth 
leading cause of cancer-related death worldwide, which 
accounts for about 85% of all pancreatic tumors [1, 2]. 
Surgical resection is the only curative treatment for 
PDAC, and the addition of chemotherapy in the adju-
vant setting has been shown to improve survival rates 
[3]. Despite the advances in diagnostic and therapeutic 
modalities, the prognosis of PDAC remains poor, with a 

reported 5-year survival rate of 7.2% [4]. Therefore, it is 
crucial to identify the prognostic factors that may pre-
dict the prognosis of patients with PDAC, which can help 
clinical physicians select patients for the available treat-
ment options.

Pathological subtype is considered to be a crucial fac-
tor in PDAC prognosis, and the presence of poor differ-
entiation portends a poor prognosis [5–7]. Intraoperative 
frozen sections are used for the patients undergoing pan-
createctomy; however, this method is time-consuming 
and expensive relatively. For the patients with non-resect-
able tumor, endoscopic ultrasound-guided fine-needle 
aspiration (EUS-FNA) is a common approach to get the 
specimen of the tumor for pathological examination 
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before making a treatment plan [8]. Nevertheless, this 
technique is highly invasive, which has the inherent risk 
of interventional complications, and the achievable sam-
ples are too limited to give a reliable histological grading 
[9]. The accuracy of EUS-FNA to determine the grade 
of tumor is still challenging in clinical practice [10, 11]. 
There is a need for a reliable technique to evaluate the 
differentiation of tumor before treatment.

Noninvasive imaging tools are playing a vital role in the 
preoperative evaluation of PDAC. Triphasic computed 
tomography (CT) is the best initial diagnostic method for 
PDAC, and magnetic resonance imaging (MRI) can be 
used in patients who cannot tolerate the intravenous con-
trast for CT [7]. Compared to traditional imaging meth-
ods, 18F-fluorodeoxyglucose (18F-FDG) positron emission 
tomography/computed tomography (PET/CT) can com-
bine functional information and anatomic information. 
Over the past 20  years, studies have shown the poten-
tial of 18F-FDG PET/CT in the diagnosis, staging, and 
recurrence of PDAC [12]. 18F-FDG PET/CT parameters, 
including standardized uptake value (SUV), metabolic 
tumor volume (MTV), and total lesion glycolysis (TLG), 
have been reported as prognostic factors for pancreatic 
cancer [13–15]. However, established 18F-FDG PET/CT 
parameters are difficult to assess the histopathological 
differentiation of tumor [16]. The ability of PET/CT to 
noninvasively evaluate the differentiation of tumor has 
not been fully explored.

Radiomics, which was initially proposed by Lambin 
et al. in 2012 and defined as high-throughput extraction 
of large amounts of features from radiographic images, 
has the ability to capture intratumoral heterogeneity 
noninvasively [17, 18]. Radiomics has the potential to 
capture information beyond what is visible to the human 
eyes in an objective and repeatable way [19]. For the last 

decade, an increasing number of studies have been con-
ducted to assess the efficacy of radiomics for the charac-
terization of tumor heterogeneity [20]. Texture analysis 
can reflect the intratumoral heterogeneity to help assess 
tumor aggressiveness, and lower tumor heterogeneity is 
likely related to lower histological differentiation [21, 22]. 
Previous studies suggested that features derived from CT, 
MRI, and PET/CT favor the tumor classification or sur-
vival prediction [10, 23–26].

To our knowledge, there have been a few published 
reports regarding the value of PET/CT-based texture 
analysis for evaluating the histopathological differentia-
tion of pancreatic tumor. Therefore, the purpose of our 
study was to develop a machine-learning model based 
on radiomic features extracted from PET/CT images 
for predicting the pathologic differentiation of PDAC 
preoperatively.

Materials and methods
An overview of the study workflow is illustrated in Fig. 1, 
and the radiomics process is divided into five steps: 
region of interest (ROI) segmentation, radiomics feature 
extraction, feature selection, radiomics-based model con-
struction, and model evaluation.

Patients
This study was approved according to the guidelines 
for retrospective studies and rules of the institutional 
review board at Peking Union Medical College Hos-
pital (PUMCH). Because of its retrospective nature, 
informed consent was waived, but all data were kept 
confidential. The inclusion criteria were as follows: (1) 
patients diagnosed with PDAC were confirmed patho-
logically, and (2) patients underwent preoperative 18F-
FDG PET/CT scan within one month before surgery. 

Fig. 1  Analysis flowchart. a Study workflow. b Radiomics process
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And the exclusion criteria included: (1) patients had 
PDAC lesions which were too small to display clearly 
on PET/CT scan, or (2) patients had incomplete clini-
cal and imaging data.

Based on the criteria of patient selection, a total 
of 149 patients diagnosed with PDAC between May 
2009 and January 2016 at PUMCH comprised our 
study population. The patients were divided into two 
independent sets in the ratio of 2 to 1:99 patients 
performed PET/CT scan between March 2013 and 
January 2016 were taken as the training set, whereas 
the other 50 patients treated between May 2009 and 
February 2013 constituted the validation set.

Clinical characters (gender, age, and pathological 
grade of the tumor) were obtained from the hospital 
database. The lymphatic metastasis results on PET/
CT images were interpreted by two nuclear medicine 
physicians who have 5–10 years of clinical experience 
in the diagnosis of abdominal diseases. The pathologi-
cal grade (well-differentiated/grade 1, moderately dif-
ferentiated/grade 2, and poorly differentiated/grade 3) 
of PDAC was classified according to the 2010 World 
Health Organization classification system [27]. Well-
differentiated/grade 1 cases were classified as grade 1 
group, whereas moderately differentiated/grade 2 and 
poorly differentiated/grade 3 cases were combined and 
classified as a single-grade 2/3 group since moderately 
to poorly differentiated tumor has overt and similar 
features of malignancy in pathology [28].

PET/CT acquisition
The 18F-FDG PET/CT examination was performed 
from head to thigh using a Biograph 64 Truepoint 
TrueV scanner (Siemens Medical Solutions). All 
patients were instructed to avoid strenuous work 
or exercise for at least one day and fast for at least 
4  h, and 0.15  mCi/kg of 18F-FDG was intravenously 
injected when blood glucose < 11.1  mmol/L. After 
injection, patients rested in a warm, dark room for 
40–60  min. Then, a low-dose CT scan (CT scanning 
parameters: tube voltage 120 kV, slice thickness 3 mm, 
matrix size 512 × 512, and tube current adjusted 
through automatic modulation) for anatomical refer-
ence and attenuation correction was performed. The 
PET scan covering 5–6 bed positions (2 min per bed) 
immediately followed. PET images were reconstructed 
using iterative reconstruction (ordered subset expecta-
tion maximum, OSEM) and attenuation correction. A 
Gaussian smooth filter of 5  mm in full width at half-
maximum was applied to the PET image (PET image 
parameters: resolution 4.07 × 4.07  mm, thickness 
3 mm, and matrix size 200 × 200).

ROI segmentation and radiomic features extraction
The primary tumors were segmented by two nuclear 
medicine physicians using MIM software (version 6.6, 
MIM Software Inc.). The lesions were delineated auto-
matically to include voxels presenting SUV values greater 
than 50% maximum SUV (SUVmax) thresholds in the 
primary tumor. The MTV, TLG, mean SUV (SUVmean) 
of the primary tumor were calculated as the traditional 
quantitative volumetric parameters for PET imaging. The 
TLG was calculated as MTV multiplied by the SUVmean. 
For radiomics feature extraction, ROIs were delineated 
manually along the edge of primary tumor on CT images. 
All ROIs were then mapped to PET images. In order to 
map to the PET image, the ROI was resampled based on 
B-spline interpolation to ensure that it had the same pixel 
spacing as the PET image. Examples of ROI segmentation 
are shown in Fig. 2.

The radiomic features were extracted from both 
masked PET images and CT images using Pyradiomics 
implemented in Python [29]. Twenty-six shape-based 
features were obtained from the segmentation mask of 
CT images. About 3000 features, which consist of the 
features extracted from original and derived images 
(LoG with 5 sigma levels, 1 level of wavelet decomposi-
tions yielding 8 derived images, and images derived using 
square, square root, logarithm, and exponential filters), 
were obtained from PET and CT image. The fixed bin 
width (0.3 in SUV for PET images, 25 HU for CT images) 
was used to discretize the images.

Machine learning and radiomics features selection
In this study, an extreme gradient boosting algorithm was 
used to build a robust machine learning-based classifica-
tion. The classifier was constructed using XGBoost (ver-
sion 0.81) in Python. XGBoost is a scalable end-to-end 
tree boosting system that is used widely by data scien-
tists to achieve state-of-the-art results on many machine 
learning challenges [30]. It belongs to assembly algo-
rithms that create and combine a set of individually weak 
classifiers to produce a robust estimator.

A model-based feature selection method was applied. 
The features were ranked based on the importance 
across all of the decision trees within the model. The 
importance is calculated for a single decision tree by the 
amount that each attribute split point improves the per-
formance measure, weighted by the number of observa-
tions the node is responsible for. The average importance 
of which subsets split from the training set randomly was 
computed as the selection standard.

With the selected features, the machine learn-
ing-based classification was constructed by the 
training set. The area under the receiver-operator 
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characteristic (ROC) curve (AUC) using the validation 
sets was calculated to assess the prediction accuracy of 
the classifier model. The radiomics signature of each 
patient was obtained from the score of the machine-
learning classification algorithm before sigmoid 
transformation.

Statistical analysis
Calculations were performed using SPSS software 
(version 26.0). Categorical variables are expressed as 
frequencies and percentages; continuous variables are 
expressed as mean ± standard deviation or median 
with interquartile range. The differences of patients’ 
characteristics between the training set and validation 
set as well as between the grade 1 group and grade 2/3 
group were assessed using independent-sample t test, 
Mann–Whitney U test, and χ2 test. A p value of less 
than 0.001 was considered to indicate a statistically 
significant difference. The predictive accuracy of the 
machine learning model for predicting the histologi-
cal differentiation of PDAC was evaluated using ROC 
analysis; the AUC was used as an index of accuracy.

Results
Clinical and biological characteristics of PDAC patients
In our study population, the training set and validation 
set had an even distribution in patients’ characteristics 
(Table 1). In the training set, 70 patients (70.7%) quali-
fied as grade 2/3, and 29 (29.3%) as grade 1. The valida-
tion set proved insignificant distribution (p = 0.673), 37 
patients (74.0%) qualified as grade 2/3, and 13 (26.0%) 
as grade 1. There were no significant differences regard-
ing the other characteristics (gender, age, localization 
of tumor, PET/CT findings, and lymphatic metastasis) 
between the training set and validation set. The detailed 
distribution of patients’ characteristics in grade 1 and 
grade 2/3 group was summarized in Table  2. No sig-
nificant group differences were observed between the 
grade 1 and grade 2/3 group both in the training set 
and validation set. This suggested that grade 1 and 
grade 2/3 PDAC could not be differentiated simply by 
PET/CT images and metabolic paraments.

Fig. 2  Examples of ROI segmentation in pancreatic ductal adenocarcinoma (PDAC) using 18F-FDG PET/CT images. One physician segmented tumor 
in blue along the edge of tumor (above), and the other physician segmented tumor in green to include voxels presenting SUV values greater than 
50% of SUVmax (below). a The axial CT (above) and fusion (below) images of grade 3 (2010 World Health Organization classification system) PDAC 
in a 69-year-old man. The images showed a mass measuring about 3.7 × 3.4 × 2.8 cm with SUVmax of 3.7 in pancreatic head. b The axial images of 
grade 2 PDAC in a 57-year-old man. The image showed a mass with necrotic lesion in tail of pancreas, and SUVmax was 4.1. c The axial images of 
grade 1 PDAC in a 56-year-old man. The images showed a mass measuring about 2.7 × 2.7 × 2.8 cm with SUVmax of 3.0 in pancreatic body
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Radiomics features selection and prediction model 
construction
The features were ranked by the score of 

boosted decision tree model. Finally, 6 PET 
predictive radiomics features (pet_wavelet-
LLH_firstorder_Kurtosis, pet_wavelet-LLH_first-
order_Kurtosis, pet_wavelet-HHH_firstorder_Median, 
pet_lbp-2D_firstorder_Skewness, pet_gradient_glcm_
Idmn, pet_wavelet-HLL_glcm_ClusterShade) and 6 
CT features (ct_wavelet-HHH_glrlm_HighGrayLevel-
RunEmphasis, ct_wavelet-HLL_glcm_Imc1, ct_square_
firstorder_Kurtosis, ct_lbp-3D-k_glcm_Correlation, 
ct_wavelet-LLL_glszm_LowGrayLevelZoneEmphasis, 
ct_wavelet-LLL_glszm_SizeZoneNonUniformity) were 
chosen to generate the radiomic signature. The naming 
convention of radiomics features is shown in Table 3. A 
model of XGBoost was constructed with the selected fea-
tures using the training sets. The best parameters of the 
model were determined using grid search.

Performance of prediction model
Grade 2/3 patients generally displayed a higher radiomics 
score than grade 1 patients. There was a significant dif-
ference between the radiomics scores (median ± standard 
deviation) of the grade 2/3 and grade 1 patient groups in 
the training set [− 1.312 ± 1.128 vs. 2.784 ± 1.477, respec-
tively, p < 0.001]; this difference was confirmed in the vali-
dation set [− 1.627 ± 1.684 vs. 1.599 ± 1.748, respectively, 
p < 0.001]. The radiomics score for each patient is shown 
in Fig.  3. The radiomics-based model achieved an AUC 
of 92.1% (95% CI 84.6–99.6%) in the validation set and 
99.4% (95% CI 98.4–100%) in the training set (Fig. 4).

Table 1  Characteristics of  patients with  PDAC 
in the training set and validation set

Continuous data were expressed as mean ± standard deviation or median, with 
first and third quartile in parentheses. Categorical variables were expressed as 
numbers, with percentages in parentheses

Characteristics Training set 
(n = 99)

Validation set 
(n = 50)

p value

Gender 0.689

Male 54 (54.5) 29 (58.0)

Female 45 (45.5) 21 (42.0)

Age (years) 60.17 ± 10.48 62.62 ± 9.13 0.163

Localization of tumor 0.013

Head-neck 70 (70.7) 25 (50.0)

Body-tail 29 (29.3) 25 (50.0)

Pathological grade 0.673

Grade 1 29 (29.3) 13 (26.0)

Grade 2/3 70 (70.7) 37 (74.0)

PET/CT findings

SUVmax 4.62 (3.40, 6.96) 5.20 (3.72, 7.20) 0.408

SUVmean 2.98 (2.28, 4.28) 3.64 (2.48, 4.19) 0.359

MTV (ml) 11.17 (4.16, 19.62) 8.86 (2.39, 18.22) 0.533

TLG 33.82 (10.55, 66.65) 30.40 (9.71, 63.90) 0.816

Lymphatic metastasis 0.092

Present 58 (58.6) 22 (44.0)

Absent 41 (41.4) 28 (56.0)

Table 2  Characteristics of patients with PDAC in grade 1 and grade 2/3 group

Continuous data were expressed as mean ± standard deviation or median, with first and third quartile in parentheses. Categorical variables were expressed as 
numbers, with percentages in parentheses

Characteristics Training set p value Validation set p value

Grade 1
(n = 29)

Grade 2/3
(n = 70)

Grade 1
(n = 13)

Grade 2/3
(n = 37)

Gender 0.936 0.764

Male 16 (55.2) 38 (54.3) 8 (61.5) 21 (56.8)

Female 13 (44.8) 32 (45.7) 5 (38.5) 16 (43.2)

Age (years) 57.45 ± 9.69 61.30 ± 10.66 0.096 61.08 ± 9.33 63.16 ± 9.13 0.485

Localization of tumor 0.090 0.107

Head-neck 24 (82.8) 46 (65.7) 4 (30.8) 16 (43.2)

Body-tail 5 (17.2) 24 (34.3) 9 (69.2) 21 (56.8)

PET/CT findings

SUVmax 3.87 (2.61, 6.40) 4.65 (3.63, 7.22) 0.084 4.65 (3.72, 7.56) 5.30 (3.74, 7.19) 0.938

SUVmean 2.60 (2.03, 4.26) 3.11 (2.40, 4.31) 0.216 3.03 (2.68, 5.00) 3.81 (2.46, 4.14) 0.782

MTV (ml) 6.34 (2.21, 13.18) 12.42 (5.12, 20.02) 0.025 10.46 (3.23, 14.94) 8.54 (2.08, 20.00) 0.868

TLG 13.69 (6.04, 47.59) 39.72 (17.08, 67.81) 0.018 31.70 (12.54, 63.96) 29.19 (9.69, 63.72) 0.748

Lymphatic metastasis 0.651 0.264

Present 18 (62.1) 40 (57.1) 4 (30.8) 18 (48.6)

Absent 11 (37.9) 30 (42.9) 9 (69.2) 19 (51.4)
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Besides, we performed feature selection based on PET 
or CT image features only, and trained the prediction 
model separately, then compared the discrimination per-
formance of them. The radiomics model based on PET 
and CT modality only achieved an AUC of 77.1% (95% CI 
62.0–92.3%) and 81.7% (95% CI 69.0–94.5%) in the vali-
dation set, respectively. Figure 5 demonstrates the ROC 

curve of the model with PET/CT, PET, and CT modality 
in the validation set.

Discussion
The purpose of this retrospective study is to investigate 
the value of PET/CT radiomics for predicting the risk 
assessment of PDAC. In this work, we present a model 

Table 3  Radiomics feature naming convention

Class Abbreviation Description

Modality PET Positron emission tomography

CT Computed tomography

Image Filter Original No filter applied

Wavelet-HLH Wavelet filtering

Square Takes the square of the image

Gradient gradient magnitude

lbp-2D Calculates and returns a local binary pattern applied in 2D

Matrix firstorder Voxel intensities within the image ROI through commonly used and basic metrics

glcm Gray-level co-occurrence matrix

glrlm Gray-level run length matrix

glszm Gray-level size zone

Index Kurtosis Kurtosis is a measure of the ‘peakedness’ of the distribution of values in the image ROI

Median The median gray-level intensity within the ROI

Skewness Skewness measures the asymmetry of the distribution of values about the mean value

Idmn IDMN (inverse difference moment normalized) is a measure of the local homogeneity of an image

ClusterShade Cluster shade is a measure of the skewness and uniformity of the GLCM

Imc1 IMC1 assesses the correlation between the probability distributions of i and j in the GLCM

HighGrayLevelRunEmphasis HighGrayLevelRunEmphasis measures the distribution of the higher gray-level values in the GLRLM

Correlation Correlation is a value between 0 (uncorrelated) and 1 (perfectly correlated) showing the linear dependency 
of gray-level values to their respective voxels in the GLCM

LowGrayLevelZoneEmphasis LGLZE measures the distribution of lower gray-level size zones, with a higher value indicating a greater 
proportion of lower gray-level values and size zones in the image

SizeZoneNonUniformity SZN measures the variability of size zone volumes in the image, with a lower value indicating more homo-
geneity in size zone volumes

Fig. 3  Radiomics score of each patient. a Training set. b Validation set
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based on 12 radiomics features found to be effective for 
the classification, which could stratify PDAC patients 
into grade 1 and grade 2/3 groups with AUC of 0.994 
in the training set and 0.921 in the validation set. The 
results suggested that PET/CT radiomics with machine 

learning may contribute to the preoperative risk assess-
ment of PDAC patients.

Differentiation grade is an important biologic feature 
of malignant tumors. Although pathological examination 
is a necessary exam to determine the histological classi-
fication of the tumor, radiomics might have an increas-
ing clinical role, as it provides an atraumatic in vivo and 
simple method to characterize the lesions. Some scien-
tists have explored the value of PET-radiomics in tumor 
classification. Hyun et al. successfully identified the histo-
logical subtypes of lung cancer using a machine-learning 
algorithm with PET-based radiomic features [31]. Also, 
Han et  al. showed that machine learning/deep learning 
algorithms could help radiologists to differentiate the his-
tological subtypes of non-small cell lung cancer via PET/
CT images [32]. Zhang et al. confirmed that the quanti-
fied radiomics method could aid the noninvasive dif-
ferentiation of autoimmune pancreatitis and PDAC in 
18F-FDG PET/CT images [26]. Similar to the above-men-
tioned studies, current one also supports the conclusion 
that PET/CT texture analysis is a promising method for 
predicting the differentiation or subtype of the tumor.

Several studies have evaluated the potential value of 
radiomics for predicting pathology of pancreatic tumors. 
Attiyeh et  al. present a multivariate model of quantita-
tive imaging features and clinical variables that predicts 
low and high risk in intraductal papillary mucinous neo-
plasms [33]. Kaissis et  al. developed a machine learning 

Fig. 4  ROC curve. a Training set. b Validation set

Fig. 5  ROC curve of the difference modality radiomics-based model
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algorithm from diffusion-weighted imaging-derived radi-
omic features, which has the potential in PDAC preoper-
ative subtyping [24]. Furthermore, Liang et al. developed 
a nomogram model combing radiomics features and clin-
ical characteristics, and it showed the best performance 
in differentiating grade 1 and grade 2/3 pancreatic neu-
roendocrine tumors [10]. Recently, Qiu et al. found that 
there were significant differences between low-grade 
PDAC (well-differentiated and moderately differentiated) 
and high-grade PDAC (poorly differentiated) regard-
ing 18 CT texture features [34]. These studies are mostly 
based on CT and MRI modality. We collected PET/CT 
images as the image modality in this study. CT or MRI 
reflects mainly the anatomical structure of tumors, while 
PET/CT can be used to explore intratumoral heterogene-
ity in both anatomical and functional dimensions [35]. In 
our study, the 18F-FDG PET/CT-based texture analysis 
demonstrated excellent performance in identifying the 
pathological grade of PDAC.

The current study showed that CT radiomics features 
are better in predicting the pathologic grade of PDAC 
than PET features. This finding is as expected since 
PET images has lower resolution than CT images, and 
previous studies have indicated that the performance of 
texture analysis is better in the analysis of CT images 
than PET images [36]. Kirienko et  al. found that the 
added value of PET appears limited when comparing 
the AUC of radiomic signature among CT, PET, and 
PET + CT in the prediction of disease-free survival 
of non-small cell lung cancer [37]. However, there are 
very limited literatures on the role of radiomics of both 
PET and CT images in pancreatic tumor. Our study 
shows that the model using both the PET and CT fea-
tures has an advantage compared to using either PET 
or CT features alone in predicting the pathologic grade 
of PDAC. Also it is worth noting that texture analysis 
of CT images was performed using the CT component 
of the PET/CT instead of diagnostic CT images, so 
evaluating the predictive performance of PET/CT and 
diagnostic CT is an interesting and valuable research 
direction. Besides, we attempted to divide patients into 
training and validation set in another chronological 
order in the ratio of 2 to 1, but the distribution between 
two sets was not even (Additional file  1:  Fig.  1 and 
Table  1), with the lymphatic metastasis demonstrated 
significant difference between the training and valida-
tion set (p < 0.001). Thus, we did not adopt this group-
ing method. In the studies of radiomics, validation is an 
important part in assessing the performance model. It 
is necessary to fully consider the influence of training 
data and validation data. Valid models should exhibit 
statistical consistency between the training and valida-
tion sets [21]. Furthermore, externally validated model 

has more credibility than internally validated model, 
because data obtained with the former approach are 
considered more independent [38].

It is interesting to note that in this study, features 
extracted from wavelet filtered images played a signifi-
cant role in the prediction model. Wavelet transform 
can decompose images into low- and/or high-frequency 
components at different scales, and the intensity and 
textural features exacted from wavelet decompositions 
of the original image can represent different frequency 
ranges within the tumor volume. Previous studies have 
shown that wavelet transform-based radiomic features 
can serve as independent predictive or prognostic fac-
tors [39, 40], and are correlated with histological clas-
sification results and/or genes mutation status [41, 42]. 
Our study also suggests the value of wavelet features in 
identifying the pathological grade of PDAC.

As a retrospective study, a limitation of our study 
is that the number of enrolled patients was relatively 
small. Because of the sample number of poorly differen-
tiated cases was small, grade 2/3 PDAC group was not 
further separated into moderately and poorly differ-
entiated cases. Also, the present study depends on the 
pathological diagnosis; thus, our cohort was restricted 
to resected patients, and selection bias may exist 
implicitly. In the future, we will expand our patient 
cohort and validate the ability of this prediction model 
to separate well, moderately, and poorly differentiated 
patients in a prospective study.

In conclusion, this model based on PET/CT radiom-
ics and machine learning can predict the histological 
differentiation of PDAC effectively and preoperatively. 
Before it can be used in clinical practice, prospec-
tive studies on larger patient cohorts are required to 
validate its utility further. As the development and 
standardization of PET/CT radiomics, it could be a 
promising preoperative, noninvasive, precise, and sim-
ple approach that can assist physicians in evaluating 
the risk of patients with PDAC individually, and thus 
achieving a personalized treatment and a better clinical 
outcome.
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