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Abstract
Damage to bones resulting from trauma and tumors poses a significant challenge to human health. Consequently, 
current research in bone damage healing centers on developing three-dimensional (3D) scaffolding materials that 
facilitate and enhance the regeneration of fractured bone tissues. In this context, the careful selection of materials 
and preparation processes is essential for creating demanding scaffolds for bone tissue engineering. This is done to 
optimize the regeneration of fractured bones. This study comprehensively analyses the latest scientific advancements 
and difficulties in developing scaffolds for bone tissue creation. Initially, we clarified the composition and process by 
which bone tissue repairs itself. The review summarizes the primary uses of materials, both inorganic and organic, in 
scaffolds for bone tissue engineering. In addition, we present a comprehensive study of the most recent advancements 
in the mainstream techniques used to prepare scaffolds for bone tissue engineering. We also examine the distinct 
advantages of each method in great detail. This article thoroughly examines potential paths and obstacles in bone 
tissue engineering scaffolds for clinical applications.
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Graphical Abstract 

Introduction

Three-dimensional (3D) printing, or additive manufacturing, is 
a cutting-edge technique that enables the production of 3D 
items by building them layer by layer, using a digital design as 
a blueprint1–4. The process commences with a digital file, such 
as a computer-aided design (CAD) model, serves as a blueprint 
for the desired object5,6. The computerized model is segmented 
into thin, cross-sectional layers, then printed or deposited using 
various materials and techniques7,8. Multiple 3D printing tech-
niques are available, each with unique features and materials 
that can be used9,10. Widely used methods include fused deposi-
tion modeling (FDM), stereolithography (SLA), selective laser 
sintering (SLS), and binder jetting. In addition, ceramics are 
utilized in 3D printing, which has significantly progressed in 
various industries, such as electronics and healthcare. Ceramic 
powders are employed in ceramic 3D printing11,12.

Hybrid materials (HMs) denote one of the most emer-
gent material classes at the edge of technological advance-
ments13. Material properties achieved via a synergetic 
combination of more than one component on the molecular 
scale make HMs attractive for several applications14. There 
are several approaches to the classification of HM. They 
can be based on the source of origin, bonding, properties, 

and formation route, and highly favored materials in 3D 
printing15. Commonly utilized materials include PCL, 
PLA/HA, PCL/GelMA, Silk Fibroin/Bioactive Glass, 
Chitosan/β-TCP, and PLGA/Collagen. Every hybrid vari-
ety has unique attributes, such as its durability, flexibility, 
resistance to temperature changes, and ease of printing16,17. 
3D printing utilizes metal as a substitute material18.

Metals such as cobalt-chrome, titanium, stainless steel, 
and aluminum are usually cast-off in additive manufactur-
ing19,20. Durable metal components are produced through the 
layer-by-layer fusion of metal powders utilizing selective 
laser melting (SLM) or electron beam melting (EBM) tech-
niques in metal 3D printing21. In addition, ceramics are used 
in 3D printing, which has advanced uses in industries includ-
ing electronics and healthcare. Ceramic powders are used in 
ceramic 3D printing22.

The human skeletal system functions as a fundamental 
framework, offering structural support and safeguarding the 
organism23,24. Nevertheless, various causes, such as the natu-
ral process of aging, physical injuries, or medical conditions, 
can contribute to the diminished strength or impairment of 
bones, ultimately resulting in substantial health complica-
tions25,26. Lately, there has been an increasing fascination 
with advancing novel techniques for identifying, measuring, 
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and identifying diseases through various means27. To prop-
erly treat bone illnesses and injuries, it is necessary to utilize 
tissue engineering and regenerative medicine procedures28. 
One practical approach in biomedical applications is the uti-
lization of bone scaffolds. These scaffolds are like a 3D 
framework for tissue regeneration and promote the develop-
ment of new tissues and bones29. Because bone tissue is self-
repairing and regenerating, minor flaws typically disappear 
independently. However, when bone abnormalities grow 
more significant than a critical size barrier (about >2 cm), 
the healing process is inadequate and frequently fails to 
mend30–32. Every year, 4 million people worldwide need 
bone replacement surgery or grafts33,34. As a result, treating 
bone abnormalities effectively is crucial from a clinical 
standpoint35,36. In clinics, bone grafting is a mainstay. 
Depending on the circumstances, the defect site can heal suc-
cessfully using different grafts37,38.

Customized solutions for individual patients: 3D printing 
produces bone scaffolds tailored to each patient’s needs39. 
This individualized strategy optimizes the efficacy of the 
treatment, enhancing bone rejuvenation consequences and 
minimizing the likelihood of problems40. Biocompatibility: 
3D-printed bone scaffolds can be fabricated using biocompat-
ible materials, such as bioceramics or biodegradable poly-
mers, which are highly compatible with the human body41. 
These compounds enhance cell attachment, proliferation, and 
differentiation, aiding the regeneration of new bone tissue42. 
This article concisely summarizes the recent advancements in 
the research and enhancement of 3D printing methods for 
producing scaffolds utilized in bone tissue engineering43.

Critical Requirements for 3D Printed 
Scaffolds

3D printing has significantly transformed the field of tissue 
engineering and regenerative medicine, specifically in the 
field of bone scaffolds44,45. Researchers can develop scaf-
folds that imitate the form and function of genuine bone by 
using biomaterials, advanced 3D printing technology, and 
detailed design procedures46,47. Scaffolds provide custom-
ized mechanical characteristics, such as rigidity, durability, 
and adaptability, together with interconnected porous struc-
tures that improve the infiltration of cells and the exchange 
of nutrients48,49. 3D-printed bone scaffolds are an excellent 
choice for patients requiring bone regeneration as long as 
they fulfill the criteria of biocompatibility, scaffold structure, 
sterilization, and regulatory compliance19,50. These scaffolds 
offer individualized bone repair, tissue regeneration, and 
enhanced quality of life. To achieve this objective, the initial 
and most crucial stage is thoroughly comprehending the 
requirements51,52. They are given in Table 1.

While there have been thorough examinations of scaf-
folds made from metal, ceramic, and polymers, more research 
is needed on hybrid scaffolds for advanced therapeutic 

purposes62,63. It is imperative to thoroughly investigate how 
hybrid scaffolds might effectively address crucial therapeu-
tic requirements64,65. This encompasses a brief comprehen-
sion of their function in biomimetics, accurate bone 
regeneration, focused drug administration, tumor therapy, 
and infection treatment66,67. Exploring the incorporation of 
biomimetic characteristics into these scaffolds remains an 
unexplored domain, and conducting research is crucial to 
enhance compositions for more efficient bone regenera-
tion68,69. Furthermore, there are unexplored possibilities in 
regulated drug administration, targeted treatments, and infec-
tion control70,71.

The Mechanism for Repairing Bone 
Tissue

The bone tissue repair and healing process is intricate and 
consists of several phases72,73. These stages primarily 
include inflammation and the formation of a blood clot, the 
recruitment and multiplication of stem cells, the develop-
ment of blood vessels, the specialization of mesenchymal 
stem cells (MSCs), and the final phase of tissue remodel-
ing74,75. Fractures disrupt a specific area of the blood ves-
sels and nearby tissue, creating a hematoma and the 
following inflammatory phase. Within 24 hours following 
the fracture, the soft matrix at the hematoma site attracts 
immune cells to facilitate an inflammatory response76,77. 
After some time (week), the hematoma and inflammatory 
response are resolved, and the hematoma site is replaced by 
granulation tissue78,79. Following the inflammatory and 
hematoma phase, many cells, including osteoblasts and 
endothelial cells, become active at the location of the 
defect. In addition to the proliferation of stem cells, angio-
genesis occurs throughout the bone tissue healing pro-
cess80,81. Many blood vessels in bone are crucial for bone 
regeneration Fig. 1. The process of ultimate bone remodel-
ing is a physiological phenomenon significantly influenced 
by the interaction between osteoblasts and osteoclasts82,83. 
An essential objective is to integrate the attributes and prin-
ciples of each step in bone tissue restoration with scaffolds, 
enhancing the performance of the scaffold materials 
through targeted alterations to attain superior and more 
effective outcomes in treating bone abnormalities84.

The Scaffold Structure Design Ensures Safety and 
Efficiency on Construction Sites

A 3D model of the scaffold can be created and transformed 
into a printable setup like Stereolithography (STL)85,86. 
Customized scaffold shapes could be generated via CAD 
software based on specific patient structural anatomical data 
about the lesion87,88. A 3D model is created by analyzing the 
anatomical data of the affected area, which is collected using 
computed tomography (CT) or magnetic resonance imaging 
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Figure 1. Schematic illustration of bioactive response of 3D-printed scaffolds during physiological immersion.

Figure 2. Multifaceted evaluation parameters, including design, functionality, manufacturing, mechanical integrity, and microstructure, 
are required for the development of an ideal scaffold.
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(MRI)89. Med CAD design and interfaces, inverse engineer-
ing surfaces, and STL-triangle shape model converting pro-
cedures are various approaches to creating CAD models 
from therapeutic pictures90. Scaffolds and porous architec-
ture are essential in tissue regeneration as they maintain tis-
sue volume, fulfill temporary mechanical roles, and transport 
biofactors91. An effective scaffold will integrate mechanical 
functionality with the delivery of biofactors, facilitating a 
gradual transformation from scaffold to regenerated tissue as 
the previous scaffold breaks down92.

Consequently, the scaffold structure should imitate the 
inherent properties of genuine bone, including intercon-
necting pores93,94. The scaffold’s porosity is crucial for cell 
intrusion, nutrition exchange, and tissue amalgamation. 
Researchers can use 3D printing to design and fabricate 
pores of varying sizes and forms95–97. Fig. 2 explains the 
different properties required to construct the 3D scaffolds 
including their design, (shape, pore size, morphology) bio-
functionality, (hemocompatibility, bioactivity, angiogene-
sis and osteointegration) manufacturing (electrospinning, 
SLA and 3D printing) strength (mechanical integrity, poor 
strength, stiffness, load bearing capacity and toughness) 
microstructures (degradation rate, chemical stability, pro-
cessibility and crystallinity).

Tissue Engineering

Tissue engineering is a promising therapy option that uses 
engineering concepts to alleviate tissue damage98,99. The 
field consists of three essential elements: scaffolds, cells, 
and growth factors. Bioreactors play a vital role in tissue 
engineering3,100. The ideal scaffolds function as structural 
reinforcement for damaged tissue, transforming the 
growth factors produced by cancer cells into stimuli that 
promote tissue regeneration. Conventional approaches to 
treating tissue injury have faced substantial challenges 
throughout the years101.

Recent progress in bone tissue engineering has inte-
grated growth factors and other biomolecules into scaf-
folds to direct cell behavior during the regeneration of 
organs and tissues102,103. In the past 20 years, advances 
have been achieved in developing and applying biological 
scaffold materials46,104. The three primary components of 
bone tissue engineering are bone progenitor cells, bone 
growth factors, and scaffolds90,105. These elements work 
together to promote cell adhesion, maintain cell function, 
and imitate the natural process of bone tissue regenera-
tion106,107. The scaffold must serve as a transient template 
for cell regeneration of new bone tissue while also being 
capable of degradation to allow for replacement by the 
newly formed bone tissue108,109. The scaffold’s primary 
function is to create an ideal microenvironment for cells, 
facilitating new tissue production and distribution of nutri-
ents between the cells and their surroundings110.

Bone Scaffold Formation

Temporary constructs known as porous scaffolds facilitate the 
regeneration of bone tissue by providing an appropriate envi-
ronment. They promote cell attachment, growth, specialization, 
and migration to the injury site111,112. Scaffolds are essential to 
tissue engineering because they offer the best extracellular 
matrix (ECM) for progenitor cell proliferation and differentia-
tion113. These cells can enter the scaffold and start the develop-
ment, differentiation, multiplication, and migration processes 
because they react to biochemical and physical cues in their 
environment114,115. When the environment is favorable, the cells 
secrete ECM and produce new tissues116. The best scaffolds 
have strong adhesion to bone-forming cells, biodegradability, 
robustness, and consistency in their mechanical properties117. 
The cells must be able to move toward the scaffold, stick to it, 
and multiply. Another essential feature is the scaffold’s con-
nected porosity, which permits precise cell development and 
spreading inside the porous structure118.

This facilitates efficient angiogenesis in the surrounding 
tissue. The objective of constructing bone scaffolds is to pro-
duce an environment demonstrating biophysical, biomechani-
cal, and biochemical features responsible for cell growth, 
specialization, and viability. Polymers, ceramics, and metals 
are the primary categories of biodegradable materials that 
have lately been examined in clinical and research set-
tings119,120. Therefore, a scaffold is a crucial element in tissue 
engineering, and to fulfill its essential function, it must possess 
the features mentioned above121.

Clinical Applications of 3D-printed 
Scaffolds

Wound and Infection Healing

A wound is a disruption or break in the skin caused by physi-
cal or thermal damage or a pathological cause122. The nature 
and severity of wounds vary depending on their underlying 
etiology, clinical manifestations, healing processes, or ana-
tomical location123. Regardless of their characteristics, 
wounds pose a significant healthcare challenge in the devel-
opment of chronic diseases as they can raise healthcare 
expenses and complicate both internal and external health124. 
Wound healing involves a range of well-coordinated molecu-
lar processes, including hemostasis, inflammation, prolifera-
tion, and remodeling125.

Using 3D scaffolds with stem cell delivery has shown great 
potential in regenerative medicine. Wang et al. explained the 
examples of cell types include bone marrow mesenchymal stem 
cells, human umbilical cord perivascular cells (HUCPVC), and 
amniotic fluid-derived cells126. Stem, endothelial progenitor, and 
circulating angiogenic cells (CACs) are frequently studied. Haki 
et al. utilize early endothelial progenitor cells (EPCs), also known 
as CACs, derived from peripheral blood mononuclear cell fraction 
and can be used locally to address nonhealing diabetic foot 
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ulcers127,128. Lv et al. does the augmentation in the formation of 
new blood vessels and a higher proportion of wound healing was 
noted when a scaffold made of collagen was used to transfer CACs 
to a diabetic rabbit ear wound (specifically, an ulcer produced by 
alloxan)129. A 3D membrane scaffold, derived from a freeze-dried 
conditioned medium of bone marrow mesenchymal stem cells 
(FBMSC-CM), effectively expedited wound healing and 
improved the formation of new blood vessels (neovascularization) 
and the growth of epithelial tissue (epithelialization) by enhancing 
the presence of nourishing elements in the wound area130,131. Fig. 3 
explains the phenomena of wound healing for a long time and how 
hemostasis occurs due to 3D implant scaffolds, the formation of 
new cells, and epithelisation leading toward the remodeling of skin 
or wound repair.

Tumor Therapy

3D scaffolds represent a promising solution in tumor therapy 
by providing a controlled and replicable microenvironment 
for studying cancer progression and testing treatments 111. 
Many 3D scaffolds are used to treat tumors like novel bioc-
eramic scaffolds. These scaffolds can be engineered to mimic 
the ECM of tumors, allowing for more accurate modeling of 
tumor growth, invasion, and metastasis 115. By incorporating 
bioactive molecules, such as drugs, growth factors, or genetic 
material, 3D scaffolds can deliver targeted therapies directly 
to the tumor site, potentially enhancing the efficacy and 
reducing the side effects of conventional treatments 129. 
Moreover, Fig. 4 explains the mechanism of how local sites 
of proteins and membranes are being damaged by the heat-
generated functional scaffolds, leading to apoptosis and cell 
death. As a result, scaffolds exhibiting superior photothermal 
or magnetothermal properties are highly effective as local-
ized treatment agents. The ability to personalize these scaf-
folds based on patient-specific tumor characteristics 
facilitates the development of tailored therapeutic strategies, 
paving the way for more effective and individualized cancer 
treatments125,129.

Cartilage and Spine Injury

Cartilage is a soft bone with a minimal capacity for regenera-
tion. When a lesion, such as osteoarthritis, is created, more 
innovative explanations are needed. Lan et al.132 employed a 
scaffold using human nasal and chondrocytes using type 1 
collagen. The scaffold was implanted in the mouse skin, and 
after 9 weeks, the printed cartilage regenerated its original 
shape and size. Cell viability decreased during the construc-
tion of the 3D structure. Similarly, after subcutaneous 
implantation, Beketov et al.133 produced the scaffold using 
the bio-ink consisting of 4% collagen and chondrocytes. The 
cartilage tissue contains a high amount of COL2 and glycos-
aminoglycan (GAG).

A spine injury can be caused by accidents, swelling, dis-
location, extrusion, and ischemia, leading to the damage of 
irreparable nerve cells. Neural stem cells (NSC) and their 
spatial distribution in the spinal cord is the route toward its 
successful repair again. Liu et al.134 used different HMs to 
prepare the scaffold, such as bio-ink containing the mixed 
NSCs, hyaluronic acid derivatives, and chitosan. After 
implantation in the rats, it restored the locomotor abilities, 
called viability, and renewed axons. Similarly, another study 
explained how 3D-generated scaffolds with the help of gela-
tin combined with oligodendrocytes and NSCs improved 
motor skills and the production of new axons and neurons 
after implantation28,135.

Heart Disease and Liver Failure

Decrease of cardiac fibrosis, cardiomyocyte hypertrophy, 
and increase of vascular formation using the 3D-constructed 
scaffold to treat the congenital heart disease of right ven-
tricle failure in the rat model by using the bio-ink contain-
ing progenitor cells laden cardiac ECM gelatin and neonatal 
human c-kit136. Similarly, to produce elongated cells that 
can contract, embedding the printed construct between 2 
layers of rat omentum over a week using hydrogel with 

Figure 3. Mechanism of wound healing from hours to months adopted with permission122.
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Figure 4. Schematic illustration of a bifunctional scaffold with 
significant potential for clinical use in bone tumor therapy. 
The scaffold demonstrates pronounced capabilities for both 
regenerating bone tissue and treating tumors.

iPSCs differentiated into cardiomyocytes and patient-spe-
cific endothelial cells137.

Human hepatocytes and methacrylate gelatin bio-ink 
were used to treat liver failure in mice. A 3D scaffold con-
structed stimulated liver cells’ vascularization and normal 
function138. However, scaffolding in the mouse liver damage 
increased albumin expression and accelerated cell prolifera-
tion by using the 3% alginate hydrogel with induced hepato-
cyte cells139. In addition, Table 2 explains the present 
challenges and their solution provided by 3D technology.

Hybrid Scaffolds

Hybrid scaffolds are a promising field of study because they 
combine multiple materials to create improved features bet-
ter suited for various tissue engineering applications. PCL/
collagen scaffolds have been employed to fabricate artificial 
human skin145,146. The resulting material gains muscular ten-
sile strength by combining collagen with a small amount of 
PCL. This makes it helpful in creating scaffolds perfect for 
human skin tissue engineering147,148. Recent investigations 
indicate that NPs are widely utilized in biomedical applica-
tions, including biosensing of metabolites, drug delivery, 
bioimaging, anti-biofilm, and antibacterial applications 
149,150. A study utilized PCL combined with titanium oxide, 
which has antibacterial properties and is coated with colla-
gen to create a wound dressing material with antibacterial 
capabilities103,151. A different research study utilized human 
endometrial stem cells (hEnSCs) by introducing them into a 
PCL/collagen scaffold to create an innovative structure for 
skin engineering152. Due to the endometrium’s remarkable 
regenerative ability, this nanofiber was suggested to stimu-
late angiogenesis without needing growth hormones. This 
indicates its potential for repairing skin tissue during wound 

healing153. A composite of poly L-lactide (PLLA) and chito-
san was created to preserve the essential properties of both 
materials. PLLA possesses high mechanical strength but is 
not conducive to cell growth154.

On the contrary, chitosan demonstrates favorable tissue 
regeneration capabilities, but it lacks sufficient strength58,105. 
Consequently, collagen was utilized to construct scaffolds 
with funnel-shaped structures with pores, enabling the cells 
to proliferate and establish connections beneath the surface 
77. Subsequently, the collagen funnels were positioned onto a 
PLLA mesh to create hybrid scaffolds. Animal experiments 
have demonstrated that applying these hybrid scaffolds to 
seed fibroblast cells can improve the repair of incisional 
lesions17,52,126. Combining chitosan and silk nanofibrils has 
been utilized to create nanocomposite scaffolds that demon-
strate excellent resistance to high temperatures and impres-
sive mechanical durability126. The nanocomposites share a 
comparable composition with the ECM, so they can produce 
a more sophisticated biomaterial for skin engineering155. An 
article has described a bilayer nanocomposite scaffold made 
from silk fibroin, gelatin, and oxidized alginate. This scaf-
fold has a structure comparable to the ECM and has the 
potential to be used in regenerative medicine and skin engi-
neering156. The efficacy of hybrid collagen scaffolds contain-
ing ZnO-curcumin nanocomposites was assessed to promote 
accelerated wound healing and minimize scarring157. An 
80% cell viability was recorded, indicating a favorable cell 
growth and attachment level. Experiments conducted on live 
albino rats showed an increase in the expression of TGF-β3 
and a notable recovery of burnt wounds without scarring158. 
A separate research project involved the creation of a nano-
composite scaffold using chitosan and PVA. This scaffold 
was infused with photogenic iron oxide nanoparticles (FeO 
NPs) to investigate their effects on diabetic wounds associ-
ated with anemia159. The FeO NPs were synthesized using a 
leaf extract obtained from Pinus densiflora. The FeO NPs 
exhibited favorable anti-diabetic and antioxidant effects in 
biological experiments and antibacterial solid capabilities160. 
The in vitro wound healing experiment demonstrated 
enhanced cellular proliferation by HEK 293 cells. These data 
indicate that this composite scaffold could be used for treat-
ing diabetic wounds, pending a thorough in vivo assess-
ment161,162. Table 3 summarizes various hybrid polymers 
utilized as scaffolds for applications in wound healing and 
skin tissue engineering163.

Future Perspectives

The application of 3D printing in bone tissue engineering is 
now undergoing extensive research and exploration. The pri-
mary benefit of this technology is its capacity to regulate the 
arrangement of fibers, leading to scaffolds that exhibit supe-
rior performance due to their optimized structure and function 
at many scales168. Despite the advancements in 3D printing 
technology, certain constraints still impede the application of 
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tissue engineering scaffolds in practical medical settings. For 
instance, the selection of printing materials is restricted169. It is 
essential to consider the physiochemical qualities of the mate-
rials, such as rheology (flow behavior), wetting performance, 
and melting point170.

In addition, their biological properties should also be con-
sidered, including biodegradability, biocompatibility, and cell 
interaction. Internal faults may arise during printing, leading 
to subpar mechanical quality in the printed product171. To uti-
lize 3D printing technology effectively, it is crucial to thor-
oughly examine ink materials regarding material selection, 
design of 3D structures, and function novelty. Furthermore, 
the printing procedure is essential to optimize the associated 
parameters for high-quality outcomes172,173. Although several 
fabrication material concerns have not yet been resolved, 
there is still ample opportunity to investigate beneficial 
approaches for bone tissue engineering. The current research 

on repairing infected bones needs a thorough grasp of the 
repair mechanism in a complicated model of infected bone 
defects174,175. The currently described bone analogs possess 
only one specific function, and creating bone analogs capable 
of performing multiple tasks in an integrated manner remains 
a significant challenge176. Vascularization is essential for 
developing organs in massive bone tissues, as they require a 
well-developed network of blood vessels to provide nutrients 
and oxygen. Regrettably, the construction of vascular net-
works remains a significant obstacle due to the low vascular-
ization of bone tissue177.

To efficiently address these glitches, it is vital to under-
stand the inherent structural properties of bone tissue and the 
natural mechanisms involved in bone tissue healing and 
regeneration, including the impacts and interplay of many 
factors in infected bone defects178. The design of bone tissue 
engineering scaffolds should aim to replicate the bionic 

Table 2. Detailed Table with Additional Clinical Challenges and Their 3D Printing Solutions.

Clinical challenges Description 3D printing solution References

Complex Bone 
Structures

Bones have intricate shapes and 
internal structures that are difficult to 
replicate accurately.

3D printing allows precise control over the 
shape and internal architecture, creating 
patient-specific, complex structures.

140

Biocompatibility 
and Integration

Ensuring the material is biocompatible 
and integrates well with native  
bone tissue.

3D printing uses biocompatible materials 
and creates surface textures that 
promote better tissue integration.

75

Mechanical 
Strength

Regenerated bone must have sufficient 
mechanical strength to withstand 
physiological loads.

3D printing customizes scaffold properties 
for optimal mechanical strength and 
porosity.

141

Vascularization The formation of blood vessels within 
the scaffold is essential for supplying 
nutrients and removing waste.

3D-printing designs scaffolds with channels 
and pores that facilitate vascularization 
and can incorporate growth factors or 
cells.

93

Customization and 
Personalization

Each bone defect is unique, requiring 
personalized treatment approaches.

3D printing produces patient-specific 
implants based on imaging data, ensuring 
a perfect fit and better functional 
outcomes.

2,4

Cost and 
Accessibility

Traditional methods are often 
expensive and time-consuming, 
limiting accessibility.

3D printing can reduce custom implants’ 
cost and production time, making 
personalized treatments more accessible.

142

Infection Risk Implantation can introduce infections, 
complicating healing and regeneration.

3D printing can incorporate antimicrobial 
agents into the scaffold material, reducing 
infection risks.

143

Healing Time Long healing times can result in 
complications and prolonged  
recovery periods.

3D-printed scaffolds can be designed to 
release growth factors that accelerate 
bone regeneration and healing.

10

Osteoinductivity The ability of a material to induce bone 
formation is critical for successful 
regeneration.

3D printing allows for the incorporation of 
osteoinductive agents into the scaffold, 
promoting new bone growth.

144

Structural Stability Ensuring the scaffold maintains its shape 
and functionality over time is crucial.

3D-printed scaffolds can be designed 
with optimal degradation rates, 
balancing structural stability with tissue 
regeneration.

90

Supply Chain and 
Scalability

Manufacturing and delivering custom 
implants on a large scale can be 
challenging.

3D printing enables on-demand, localized 
production of implants, improving supply 
chain efficiency and scalability.

104
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structure of natural bone tissue. These scaffolds can be 
enhanced by incorporating inflammatory cytokines, ECM, 
and ligands. This integration allows for imitating the initial 
phases of bone regeneration and tissue repair179–181.

Conclusion

Infected bone injuries and defects are still a core problem for 
orthopedic surgeons and practitioners. Engineering technolo-
gies and biological integration are critical elements in devel-
oping bone tissues. This review concisely discusses strategies 
for addressing bone defects through sustainable hybrid 
3D-printed scaffold materials. A fundamental requirement for 
bone defects is the promotion of tissue regeneration and the 
stopping of bone infection. Many factors are responsible for 

this infection therapy, which include antibacterial coatings, 
bioactive metal ions, anti-infective drugs, and 3D-printed 
scaffolds that collectively fight against bone issues and treat 
osteomyelitis by producing the ideal microenvironment for 
rapid bone growth. Moreover, essential factors like photo-
thermal, electric, and magnetic stimuli can be enhanced to 
promote bone regeneration during the loading of the 3D 
porous scaffolds. In tissue engineering, 3D-printed scaffold 
technology is currently the most reasonable solution for 
designing scaffolds according to infected patients’ complex 
shape injuries.
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Table 3. shows the Advantages and Disadvantages of Various Hybrid Scaffold Materials Used in Biomedical Applications.

Material Advantages Disadvantages Ref

PLA (polylactic acid)/
HA (Hydroxyapatite)

–Biocompatible and biodegradable
–Good mechanical properties
–Promotes bone regeneration and 

integration

–Slow degradation rate,
–Potential for acidic degradation products
–Limited cell adhesion without surface 

modification

53

PCL 
(polycaprolactone)/
GelMA (gelatin 
methacrylate)

–Biocompatible and biodegradable
–Flexible and elastic
–Supports cell adhesion and proliferation
–Tunable degradation rate

–Lower mechanical strength compared to 
some other materials

–Possible immune response to gelatin 
components

97

PLGA (poly[ acid])/
collagen

–Excellent biocompatibility
–Supports cell adhesion and growth
–Tunable degradation rate
–Versatile mechanical properties

–Potential for acidic degradation products
–Rapid degradation rate can sometimes 

be too fast

77

PEGDA (polyethylene 
glycol diacrylate)/HAp 
(hydroxyapatite)

–High biocompatibility
–Tunable mechanical properties
–Non–toxic degradation products
–Supports osteogenic differentiation

–Limited mechanical strength for 
load–bearing applications

–Requires functionalisation for enhanced 
cell interaction

163

Silk fibroin/bioactive 
glass

–Excellent biocompatibility
–Supports osteogenesis
–Good mechanical properties
–Bioactive properties

–Potential brittleness
–Limited degradation rate control

164

Chitosan/β-TCP (beta-
tricalcium phosphate)

–Biocompatible and biodegradable
–Antibacterial properties
–Supports bone and cartilage regeneration

–Variable degradation rate
–Mechanical properties can be lower than 

synthetic polymers

77,105,58

Alginate/GelMA (gelatin 
methacrylate)

–Biocompatible and biodegradable
–Supports cell proliferation
–Easy to process and print
–Promotes angiogenesis

Poor mechanical properties alone
–Rapid degradation in physiological 

conditions

134

PEEK (polyether ether 
ketone)/carbon 
nanotubes

Excellent mechanical properties
–Biocompatible
–Supports osteogenesis
–High wear resistance

–Non–biodegradable
–Potential toxicity of carbon nanotubes
–Expensive and difficult to process

165

Hyaluronic acid/PLGA 
(poly[ acid])

Excellent biocompatibility
Supports wound healing
Tunable degradation rate
Promotes fibroblast activity

Potential for acidic degradation products
–Requires stabilization for mechanical 

integrity

60,166

PVA (polyvinyl alcohol)/
hydroxyapatite

Biocompatible
–Supports osteoblast proliferation
–Good mechanical properties
–Hydrophilic nature

–Non–biodegradable
–Potential for rapid swelling and loss 

of mechanical properties in aqueous 
environments

167
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