

Aspect ratio dependence of the ultimate-state transition in turbulent thermal convection

Xiaozhou He^{a,b,1,2}, Eberhard Bodenschatz^{b,c,d,e,1,2}, and Guenter Ahlers^{f,1,2}

lyer et al. (1) report heat (Nu) and momentum (Re) transport results for turbulent Rayleigh-Bénard convection (RBC) for a Prandtl number Pr = 1 from direct numerical simulation (DNS) for a cylindrical sample of aspect ratio (diameter *D*/height *H*) $\Gamma = 1/10$. The data show the classic scaling Nu = 0.0525Ra^{0.331} in the range $10^{10} \le \text{Ra} \le 10^{15}$. The authors emphasize that their data do not reveal a transition Rayleigh number Ra* to the RBC ultimate state (2, 3), but neglect to point out that sidewall stabilization, and thus Ra*, is expected to increase with decreasing Γ . Here, we point out that experimental Ra* values do indeed show a strong Γ dependence with Ra* well above 10^{15} for $\Gamma = 0.1$.

Fig. 1 shows the Ra dependence of Nu/Ra^{0.331} for Γ = 0.50 and 1.00 (4–6). The data are from experiments using compressed SF₆ gas with Pr \simeq 0.8 at Ra up to 1.1×10^{15} . Each dataset reveals a transition range Ra^{*}₁ \lesssim Ra \lesssim Ra^{*}₂ of Nu(Ra). For Ra \lesssim Ra^{*}₁, we found the classic scaling Nu \propto Ra^{*}eff with γ_{eff} = 0.312 (0.321) for Γ = 0.50 (1.00). For Ra \gtrsim Ra^{*}₂, we found γ_{eff} \simeq 0.37 for both Γ , consistent with the predicted scaling for the ultimate state (2, 3). Over the transition range, γ_{eff} was close to 0.33. One sees that the transition range increased as Γ decreased. The values found for Ra^{*}₁ and Ra^{*}₂ were confirmed also by Reynolds number measurements (5, 7).

Fig. 2 shows the measured Ra_1^* and Ra_2^* as a function of Γ . While the Γ dependence of Ra_1^* is weak, Ra_2^* changes by one decade over the data range and can be described by the power law $Ra_2^* = a\Gamma^b$, with $a = 8.13 \times 10^{13}$

and b = -3.04. Extrapolating to $\Gamma = 1/10$ indicates that the transition Ra is near 10^{17} for such a slender sample. A similar Γ dependence Ra^{*} ~ $\Gamma^{-2.5\pm0.5}$ was found in cryogenic experiments for Pr $\simeq 1.5$ over the range $0.23 \leq \Gamma \leq 1.14$ (8). However, the reported values of Ra^{*} (also shown in Fig. 2), a transition Rayleigh number defined by Roche et al. (8), are much lower than our results. Extrapolating them to $\Gamma = 1/10$, one finds that the transition should occur in the range $2 \times 10^{13} \leq \text{Ra}^* \leq 10^{14}$. This disagrees with the DNS result by lyer et al. (1).

Thus, the conclusion by lyer et al. (1) is incomplete, since they did not consider the strong influence of Γ on Ra^{*}. For $\Gamma \simeq 1$, a number of experiments (4, 5, 7, 9) have revealed that the transition occurs near Ra = 10¹⁴, which is consistent with the prediction by Grossmann and Lohse (GL) (3). Note that the GL prediction does not apply for Γ much less than 1, since the parameters in the model are all from experimental data for $\Gamma = 1$. Our results show that Ra^{*}₂ ~ $\Gamma^{-3.04}$, leading to a much higher transition Ra for a slender sample. For $\Gamma = 1/10$, our data suggest that the ultimate-state transition will occur near Ra = 10¹⁷, which is well above the Ra limit of the DNS data in ref. 1. That is why the authors found that "classic 1/3 scaling of convection holds up to Ra = 10¹⁵."

Acknowledgments

Supported by the Max Planck Society. X.H. acknowledges the support of the National Natural Science Foundation of China under Grants 11772111 and 91952101.

Author contributions: X.H., E.B., and G.A. designed research, performed research, and wrote the paper.

^aSchool of Mechanical Engineering and Automation, Harbin Institute of Technology, Shen Zhen 518055, China; ^bLaboratory for Fluid Physics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany; ^cInstitute for Dynamics of Complex Systems, Georg-August-University Göttingen, 37073 Göttingen, Germany; ^dLaboratory of Atomic and Solid-State Physics, Cornell University, Ithaca, NY 14853; ^eSibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853; and ^fDepartment of Physics, University of California, Santa Barbara, CA 93106

The authors declare no competing interest.

This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND). ¹X.H., E.B., and G.A. contributed equally to this work.

²To whom correspondence may be addressed. Email: hexiaozhou@hit.edu.cn, gahlers@ucsb.edu, or eberhard.bodenschatz@ds.mpg.de. First published November 24, 2020.

Fig. 1. Reduced Nusselt number Nu/Ra^{0.331} as a function of Ra for $\Gamma = 0.50$ (black circles) and 1.00 (blue diamonds). Solid lines denote power laws $Nu = Nu_0 Ra^{\gamma_{eff}}$, with $\gamma_{eff} = 0.37$ and Nu_0 adjusted to fit the data for Ra > Ra⁴₂ for each Γ . Dashed lines are the power-law fits to the data for Ra < Ra⁴₁, with $\gamma_{eff} = 0.312$ for $\Gamma = 0.50$ (Upper) and $\gamma_{eff} = 0.321$ for $\Gamma = 1.00$ (Lower). Vertical dotted lines are Ra⁴₂ = 8 × 10¹³ and 7 × 10¹⁴.

Fig. 2. Ra_1^* (open symbols) and Ra_2^* (solid symbols) as a function of Γ . The black dashed line and red solid line represent the power function $y = ax^b$ with the exponent b = 0.40 and -3.04, respectively. Red stars are the Ra^* data from ref. 8. The black solid line corresponds to $Ra^* \sim \Gamma^{-2.5}$. Vertical black solid line indicates the Ra range of the DNS data in ref. 1.

- 1 K. P. Iyer, J. D. Scheel, J. Schumacher, K. R. Sreenivasan, Classical 1/3 scaling of convection holds up to Ra = 10¹⁵. Proc. Natl. Acad. Sci. U.S.A. 117, 7594–7598 (2020).
- 2 R. H. Kraichnan, Turbulent thermal convection at arbitrary Prandtl number. Phys. Fluids 5, 1374–1389 (1962).
- 3 S. Grossmann, D. Lohse, Thermal convection for large Prandtl number. Phys. Rev. Lett. 86, 3316–3319 (2001).
- **4** G. Ahlers, X. He, D. Funfschilling, E. Bodenschatz, Heat transport by turbulent Rayleigh-Bénard convection for $Pr \simeq 0.8$ and $3 \times 10^{12} \lesssim Ra \lesssim 10^{15}$: Aspect ratio $\Gamma = 0.50$. New J. Phys. **14**, 103012 (2012).
- 5 X. He, E. Bodenschatz, G. Ahlers, Azimuthal diffusion of the large-scale-circulation plane, and absence of significant non-Boussinesq effects, in turbulent convection near the ultimate-state transition. J. Fluid Mech. 791, R3 (2016).
- 6 G. Ahlers, D. Funfschilling, E. Bodenschatz, Transitions in heat transport by turbulent convection at Rayleigh numbers up to 10¹⁵. New J. Phys. 11, 049401 (2009).
- 7 X. He, D. Funfschilling, H. Nobach, E. Bodenschatz, G. Ahlers, Transition to the ultimate state of turbulent Rayleigh-Bénard convection. Phys. Rev. Lett. 108, 024502 (2012).
- 8 P. E. Roche, F. Gauthier, R. Kaiser, J. Salort, On the triggering of the ultimate regime of convection. New J. Phys. 12, 085014 (2010).
- 9 X. He, D. Funfschilling, E. Bodenschatz, G. Ahlers, Heat transport by turbulent Rayleigh-Bénard convection for $Pr \simeq 0.8$ and $4 \times 10^{11} \le Ra \le 2 \times 10^{14}$: Ultimate-state transition for aspect ratio $\Gamma = 1.00$. New J. Phys. 14, 063030 (2012).