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Development of early prediction 
model for pregnancy‑associated 
hypertension with graph‑based 
semi‑supervised learning
Seung Mi Lee1,2,3,15, Yonghyun Nam2,15, Eun Saem Choi3,14, Young Mi Jung1,3, Vivek Sriram2, 
Jacob S. Leiby2, Ja Nam Koo4, Ig Hwan Oh4, Byoung Jae Kim1,5, Sun Min Kim1,5, 
Sang Youn Kim6, Gyoung Min Kim7, Sae Kyung Joo8,9, Sue Shin10,11, Errol R. Norwitz12, 
Chan‑Wook Park1,3, Jong Kwan Jun1,3, Won Kim8,9, Dokyoon Kim2,13* & Joong Shin Park1,3*

Clinical guidelines recommend several risk factors to identify women in early pregnancy at high risk 
of developing pregnancy‑associated hypertension. However, these variables result in low predictive 
accuracy. Here, we developed a prediction model for pregnancy‑associated hypertension using 
graph‑based semi‑supervised learning. This is a secondary analysis of a prospective study of healthy 
pregnant women. To develop the prediction model, we compared the prediction performances across 
five machine learning methods (semi‑supervised learning with both labeled and unlabeled data, semi‑
supervised learning with labeled data only, logistic regression, support vector machine, and random 
forest) using three different variable sets: [a] variables from clinical guidelines, [b] selected important 
variables from the feature selection, and [c] all routine variables. Additionally, the proposed prediction 
model was compared with placental growth factor, a predictive biomarker for pregnancy‑associated 
hypertension. The study population consisted of 1404 women, including 1347 women with complete 
follow‑up (labeled data) and 57 women with incomplete follow‑up (unlabeled data). Among the 1347 
with complete follow‑up, 2.4% (33/1347) developed pregnancy‑associated HTN. Graph‑based semi‑
supervised learning using top 11 variables achieved the best average prediction performance (mean 
area under the curve (AUC) of 0.89 in training set and 0.81 in test set), with higher sensitivity (72.7% 
vs 45.5% in test set) and similar specificity (80.0% vs 80.5% in test set) compared to risk factors from 
clinical guidelines. In addition, our proposed model with graph‑based SSL had a higher performance 
than that of placental growth factor for total study population (AUC, 0.71 vs. 0.80, p < 0.001). In 
conclusion, we could accurately predict the development pregnancy‑associated hypertension in early 
pregnancy through the use of routine clinical variables with the help of graph‑based SSL.

OPEN

1Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101 Daehak-ro, 
Jongno-gu, Seoul 03080, South Korea. 2Department of Biostatistics, Epidemiology and Informatics, The Perelman 
School of Medicine, University of Pennsylvania, B304 Richards Building, 3700 Hamilton Walk, Philadelphia, 
PA 19104-6116, USA. 3Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, 
South Korea. 4Seoul Women’s Hospital, Incheon, South Korea. 5Department of Obstetrics and Gynecology, Seoul 
Metropolitan Government, Seoul National University Boramae Medical Center, Seoul, South Korea. 6Department 
of Radiology, Seoul National University College of Medicine, Seoul, South Korea. 7Department of Radiology, Yonsei 
University College of Medicine, Seoul, South Korea. 8Department of Internal Medicine, Seoul National University 
College of Medicine, Seoul, South Korea. 9Department of Internal Medicine, Seoul Metropolitan Government, 
Seoul National University Boramae Medical Center, Seoul, South Korea. 10Department of Laboratory Medicine, 
Seoul National University College of Medicine, Seoul, South Korea. 11Department of Laboratory Medicine, Seoul 
Metropolitan Government, Seoul National University Boramae Medical Center, Seoul, South Korea. 12Department 
of Obstetrics and Gynecology, Tufts University School of Medicine, Boston, MA, USA. 13Institute for Biomedical 
Informatics, University of Pennsylvania, Philadelphia, PA, USA. 14Department of Obstetrics and Gynecology, Korea 
University College of Medicine, Seoul, South Korea. 15These authors contributed equally: Seung Mi Lee, Yonghyun 
Nam, Dokyoon Kim and Joong Shin Park. *email: dokyoon.kim@pennmedicine.upenn.edu; jsparkmd@snu.ac.kr

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-15391-4&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:15793  | https://doi.org/10.1038/s41598-022-15391-4

www.nature.com/scientificreports/

Pregnancy-associated hypertension (HTN) is one of the most serious complications of pregnancy, affecting 
1–8% of pregnancies  worldwide1–3. It results in increased mortality and morbidity for both pregnant women and 
 neonates3,4. Recently, prophylactic low-dose aspirin has been reported to reduce the incidence of pregnancy-
associated HTN in high-risk  pregnancies5. Moreover, starting aspirin early in pregnancy appears to be more 
effective than starting in late  pregnancy6–8.

Clinical guidelines recommend several risk factors—including chronic hypertension, diabetes, and/or preg-
nancy-associated HTN in a prior pregnancy—to identify pregnancies at high-risk to guide aspirin prophy-
laxis; however, these factors have low predictive  accuracy6,9. Other algorithms have been developed to predict 
pregnancy-associated HTN using biomarkers such as placental growth factor (PlGF) and/or ultrasonographic 
uterine artery Doppler velocimetry, but this strategy can be challenging to introduce in routine clinical  practice10. 
Indeed, the measurement of uterine artery Doppler velocimetry and PIGF in early pregnancy may not be possible 
in all pregnant women, especially in low-resource areas. Moreover, measurement of uterine artery Doppler or 
PlGF during early pregnancy in low-risk pregnant women has not been established in routine practice because 
of high cost for measurement of PlGF and ultrasound examination.

Accurate prediction for pregnancy-associated HTN in early pregnancy remains an unmet need for clinicians. 
Machine learning approaches have recently been widely adopted in clinical research for the development of pre-
dictive models for complex diseases. However, only a few studies have attempted to use machine learning to pre-
dict the risk of pregnancy-associated HTN. Furthermore, these studies developed prediction models using only 
clinical variables retrieved in late  pregnancy11,12 or have failed to show robust performance in early  pregnancy13.

Prediction using supervised learning (traditional machine learning) suffers from the presence of unlabeled 
data (patients lost to follow up and whose outcomes are unknown), which is inevitable in real-world data. 
Semi-supervised learning (SSL), which is capable of using both labeled data (from patients whose outcomes are 
known) and unlabeled data to infer relations across patients, can be used to increase the amount of information 
available in the dataset, resulting in better performance. Several studies have been conducted to incorporate 
both labeled and unlabeled data using SSL for a predictive model for cancer survivability such as breast and 
ovarian  cancer14–16. Furthermore, the early identification of women at high-risk for pregnancy-associated HTN 
will allow for patient stratification, classifying high-risk patients who may share a common underlying disease 
pathophysiology, and thus may be characterized by several common features. Considering these two points, we 
adopted graph-based semi-supervised learning (SSL) for the prediction of pregnancy-associated HTN in early 
pregnancy. Graph-based SSL can perform effective prediction through the propagation of label information 
according to the structure of patient-derived  networks17,18.

To this end, the purpose of the current study was to develop a prediction model for pregnancy-associated 
HTN in first trimester using routine clinical variables. We selected important clinical variables using various 
feature selection methods, and optimized and validated the prediction model using graph-based SSL.

Results
Subject population. During the study period, a total of 1742 women were enrolled until 14 weeks of gesta-
tion. Women with previable preterm birth or abortion (n = 11), withdrawal of consents (n = 30), or who received 
aspirin prophylaxis (n = 3) were excluded, leaving 1,698 women. Exclusion of patients with missing variables 
yielded a final sample of 1404 women for the final analysis of graph-based SSL with both labeled and unlabeled 
data ( SSLL+U ). Among these, 1347 women that were followed up until delivery (labeled data) were included 
in the other machine learning analyses ( SSLL , LR, SVM, and RF). Our unlabeled data of patients included 57 
women with incomplete follow-up. Supplementary Table 1 presents women who completed follow-up and those 
who were lost to follow-up. There were no significant differences in clinical variables between the two groups.

In the 1347 women that completed follow-up (labeled data), 2.4% (33/1347) developed pregnancy-associated 
HTN. Table 1 shows the clinical characteristics, conventional risk factors recommended by ACOG, and preg-
nancy outcomes of the study population. Among women who developed pregnancy-associated HTN, only 
42.4% were classified as high risk according to the ACOG guideline. As regards pregnancy outcomes, patients 
who developed pregnancy-associated HTN delivered in earlier gestational age than those who did not. Neonates 
who were born to mothers with pregnancy-associated HTN had lower birthweight and higher risk of neonatal 
intensive care unit admission than those who were not (Table 1).

The study population was divided into training and test sets based upon the enrollment year of pregnant 
women (training set—971 patients enrolled between 2014 and 2017, including 22 women who developed preg-
nancy-associated HTN; test set—376 patients enrolled between 2018 and 2019, including 11 women who devel-
oped pregnancy-associated HTN). The prediction model for pregnancy-associated HTN was developed using 
the training set, and evaluated in the test set.

Variables ranking and selection. Among 32 routine clinical variables, 11 important variables were 
selected by backward elimination during training according to integrated rankings. The selected variables were 
as follows, listed in order of their importance (Table 2): diastolic BP in early pregnancy, systolic BP in early preg-
nancy, diastolic BP in late first trimester, hemoglobin level measured in the first trimester, systolic BP in late first 
trimester, maternal BMI before pregnancy, maternal age, maternal BMI in late first trimester, history of preec-
lampsia in previous pregnancy, maternal weight in late first trimester, and maternal weight before pregnancy. 
Among variables, laboratory or physical measures were evaluated at 7.7 ± 1.2 weeks for early first trimester and at 
12.4 ± 0.5 weeks for late first trimester. Table 3 compares the top 11 important variables according to the develop-
ment of pregnancy-associated HTN. Selected 11 variables were different between the two groups.
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Development of prediction model for pregnancy‑associated hypertension. Table 4 shows the 
overall performance comparison for each model with respect to sets of [a], [b], and [c] in training set, meas-
ured in terms of AUROC, sensitivity, specificity, positive predicted value (PPV), and negative predicted value 
(NPV). Overall, SSL[b]L+U (SSL using the top 11 important variables) achieved an average AUROC of 0.885 which 
was the best of the five models and was selected as the proposed prediction model. The p-values of pairwise 
t-tests between proposed model ( SSL[b]L+U ) and other representative models ( SSL[b]L  ,  LR[b],  SVM[b],  RF[b]) were 

Table 1.  Baseline clinical features and pregnancy outcomes of the study population. Data are presented as 
proportion (%) or mean standard ± deviation. BMI body mass index, HTN hypertension, NICU neonatal 
intensive care unit.

Characteristics Pregnancy-associated HTN (−) (n = 1314) Pregnancy-associated HTN ( +) (n = 33) P-value

Baseline characteristics

Maternal age (years) 32.3 ± 4.0 33.0 ± 4.7 0.518

Nulliparity 671 (51.1%) 21 (63.6%) 0.211

Risk factors in clinical guidelines

 (1) High risk by the presence of 
either high- or moderate-risk factors 188 (14.3%) 14 (42.4%)  < 0.001

 (2) High risk by the presence of one 
or more high-risk factors 27 (2.1%) 9 (27.3%)  < 0.001

  a. Previous history of preeclampsia 8 (0.6%) 4 (12.1%)  < 0.001

  b. Chronic hypertension 7 (0.5%) 4 (12.1%)  < 0.001

  c. Pregestational diabetes 15 (1.1%) 2 (6.1%) 0.063

  d. Renal disease 2 (0.2%) 0 (0.0%) 1.000

  e. Autoimmune disease 1 (0.1%) 0 (0.0%) 1.000

 (3) High risk by the presence of two 
or more moderate-risk factors 166 (12.6%) 9 (27.3%) 0.030

  a. First pregnancy 671 (51.1%) 21 (63.6%) 0.211

  b. Old age (≥ 35 year) 385 (29.3%) 12 (36.4%) 0.493

  c. Obesity (BMI > 30 kg/m2) 70 (5.3%) 6 (18.2%) 0.003

  d. African race 0 (0%) 0 (0%) (−)

Pregnancy outcome

Gestational age at delivery (weeks) 39.0 ± 1.3 36.3 ± 3.0  < 0.001

Gestational diabetes 72 (5.7%) 6 (20.0%) 0.007

Birthweight at delivery (kg) 3.2 ± 0.4 2.6 ± 0.8  < 0.001

Infant sex (male) 675 (51.4%) 17 (51.5%) 1.000

Infant admission to NICU 53 (4.0%) 9 (27.3%)  < 0.001

Table 2.  Rank of top 11 important variables selected from various machine learning methods; support 
vector machine with recursive feature elimination (SVM-RFE), logistic regression with recursive feature 
elimination (LR-RFE), random forest using gini index (RF-gini), and random forest using information entropy 
(RF-entropy). Early pregnancy, measured at 7.7 ± 1.2 weeks; late first trimester, measured at 12.4 ± 0.5 weeks. 
BMI body mass index, BP blood pressure. a To combine/aggregate four different rankings, we apply the 
geometric mean which is defined as 

(
∏

n

i−1
ri

)
1

n = n
√
r1r2 . . . rn where ri is the variable ranks in i th selection 

methods.

Clinical variables

Ranks by selection methods

Integrated  rankingaSVM (RFE) LR (RFE) RF (gini) RF (entropy)

Diastolic blood pressure (BP) in early pregnancy 1 1 1 1 1.00

Systolic BP in early pregnancy 1 2 2 2 1.68

Diastolic BP in late first trimester 3 5 4 4 3.94

Hemoglobin level measured in the first trimester 4 14 5 5 6.17

Systolic BP in late first trimester 16 17 3 2 6.36

BMI before pregnancy 7 3 10 10 6.77

Maternal age 5 4 14 14 7.91

BMI in late first trimester 10 9 9 6 8.35

History of preeclampsia in previous pregnancy 12 6 6 12 8.49

Weight in late first trimester 8 7 12 11 9.27

Weight before pregnancy 6 10 11 13 9.62
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all < 0.001, respectively. Moreover, in terms of performance comparison for 3 different sets of each model ([a], 
[b], and [c]), the AUROC for all of the models using [b] was better than that of the others. The AUROC of the 
proposed model ( SSL[b]L+U ) using 11 selected variables was increased by 24.5% ( =

(

0.885−0.710
0.710

)

× 100% ) on aver-
age, compared to model ( SSL[a]L+U ) using variables from clinical guidelines, suggesting that the selected variables 
were more effective than conventional risk factors recommended by ACOG guidelines.

The performance of the proposed prediction model ( SSL[b]L+U ) (the graph-based SSL using top 11 important 
variables) was also evaluated and validated in the test set, with an AUROC of 0.811. Figure 1 shows the perfor-
mance comparison between the proposed prediction model and the logistic regression model. The graph-based 
SSL had higher AUROC than that of logistic regression model (0.811 vs. 0.762). In addition, the proposed 

Table 3.  Analysis of selected top 11 important variables in the study population. Early pregnancy, measured at 
7.7 ± 1.2 weeks; late first trimester, measured at 12.4 ± 0.5 weeks. BMI body mass index, BP blood pressure.

(a) In training set

Selected variables Pregnancy-associated HTN (−) (n = 949) Pregnancy-associated HTN ( +) (n = 22) P-value

Variables before pregnancy

Maternal age 32.2 ± 3.9 33.3 ± 4.9 0.383

History of preeclampsia 7 (0.7%) 2 (9.1%) 0.016

Weight before pregnancy 57.9 ± 10.1 69.0 ± 13.9  < 0.001

BMI before pregnancy 22.2 ± 3.6 26.2 ± 5.2  < 0.001

Variables in the first trimester

Systolic BP in early pregnancy 113.3 ± 11.4 132.7 ± 17.2  < 0.001

Diastolic BP in early pregnancy 67.3 ± 8.4 80.5 ± 10.8  < 0.001

Systolic BP in late first trimester 112.6 ± 11.4 126.3 ± 14.4  < 0.001

Diastolic BP in late first trimester 67.6 ± 8.6 77.9 ± 9.8  < 0.001

Weight in late first trimester 58.8 ± 10.1 69.7 ± 14.0  < 0.001

BMI in late first trimester 22.5 ± 3.6 26.4 ± 5.2  < 0.001

Hemoglobin level in the first trimester 12.6 ± 1.0 13.6 ± 1.0  < 0.001

(b) In test set

Selected variables Pregnancy-associated HTN (−) (n = 365) Pregnancy-associated HTN ( +) (n = 11) P-value

Variables before pregnancy

Maternal age 32.4 ± 4.2 32.4 ± 4.3 0.891

History of preeclampsia 1 (0.3%) 2 (18.2%) 0.002

Weight before pregnancy 58.5 ± 10.9 65.1 ± 16.2 0.124

BMI before pregnancy 22.3 ± 3.8 25.5 ± 6.2 0.062

Variables in the first trimester

Systolic BP in early pregnancy 115.4 ± 11.1 130.5 ± 11.4  < 0.001

Diastolic BP in early pregnancy 68.8 ± 8.4 79.1 ± 10.2 0.001

Systolic BP in late first trimester 114.4 ± 11.4 126.4 ± 10.1 0.001

Diastolic BP in late first trimester 68.5 ± 8.2 77.0 ± 11.8 0.011

Weight in late first trimester 59.3 ± 10.7 65.2 ± 16.5 0.169

BMI in late first trimester 22.6 ± 3.7 25.5 ± 6.1 0.089

Hemoglobin level in the first trimester 12.7 ± 1.0 13.2 ± 1.0 0.319

Table 4.  Performance comparison in test set. Risk factors: conventional risk factors recommended by 
American College of Obstetricians and Gynecologists. AUROC area under the ROC curve, PPV positive 
predicted value, NPV negative predicted value; [a]: models with variables from clinical guidelines, [b] models 
with selected important variables, and [c] models with all routine variables. The performances of the best 
model are in bold.

Models AUROC Sensitivity Specificity PPV NPV

SSL
[b]
L+U

0.811 0.727 0.800 0.099 0.989

LR[b] 0.762 0.636 0.663 0.054 0.984

SVM[b] 0.701 0.719 0.795 0.096 0.989

RF[b] 0.725 0.725 0.666 0.062 0.987

Risk factors – 0.455 0.805 0.066 0.980
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prediction model showed higher sensitivity (72.7% vs 45.5%) and similar specificity (80.0% vs 80.5%) compared 
to risk factors from clinical guidelines, in test set.

Comparing proposed models vs. PlGF. In the study population of 1347 women with known outcomes, 
maternal blood was collected in the first trimester that was available to measure PlGF, a well-known biomarker 
for early prediction of pregnancy-associated HTN. To compare the prediction performance between graph-
based SSL and PlGF, we performed an external experiment; the entire population was divided into patients 
with or without PlGF and set as a training set (labeled set) and a test set (unlabeled set), respectively. For this 
experiment, the prediction model was constructed with graph-based SSL from patients who did not have PlGF 
measurements (92 patients whose blood sample was not available for measurement, including two patients who 
developed pregnancy-associated HTN and 90 patients who did not) and was validated in the 1255 patients 
that did have PlGF measurements. This experiment demonstrates one of the advantages of the semi-supervised 
approach, as it is possible to predict outcomes with a small amount of labeled data using SSL. Figure 2 compares 
the ROC curve of the proposed prediction model with that of PlGF and conventional clinical guidelines. The 
conventional clinical guideline showed sensitivity of 42.4% (14/33) and specificity of 85.7% (1,126/1,314), and 
PlGF had lower AUROC than the prediction model from graph-based SSL (0.71 vs. 0.80, p < 0.001 by Delong 
test).

A network of patients from graph‑based SSL. Figure 3 shows the constructed patients’ network in 
the test set, derived from the proposed prediction model with graph-based SSL. Red dots represent those who 
develop pregnancy-associated HTN and grey dots represent patients who did not develop pregnancy-associated 
HTN. Red dots are proximally close to one another, suggesting that patients who developed pregnancy-asso-
ciated HTN showed similarity between patients, which enabled positive prediction for pregnancy-associated 
HTN. White dots represent patients who were lost to follow-up, and these patients were also used in model 
development from their characteristics and contributed to the increased model performance of graph-based 
SSL.

Discussion
The major findings of this study. (1) With aggregating ranks, the top 11 variables were selected accord-
ing to their importance of describing pregnancy-associated HTN; (2) The graph-based SSL using the selected 11 
important variables achieved the best average prediction performance, with higher sensitivity and similar speci-
ficity compared to risk factors from clinical guidelines; (3) In addition, the proposed model with graph-based 
SSL had higher AUROC than that of PlGF.

Results and clinical implications. Existing clinical guidelines recommend several risk factors to deter-
mine which pregnant women are at high-risk of developing pregnancy-associated HTN and therefore candi-
dates for aspirin prophylaxis in early  pregnancy19–24. However, recent studies using these guidelines reported 
low predictive performance. For example, in a 2017 European study, the British guideline (National Institute 

Figure 1.  Receiver operating characteristic curve of proposed prediction model with graph-based semi-
supervised learning in test set population (enrolled 2018–2019). Risk factors: conventional risk factors 
recommended by American College of Obstetricians and Gynecologists.
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Figure 2.  Receiver operating characteristic curve of proposed prediction model vs. placental growth factor 
(PlGF). Risk factors: conventional risk factors recommended by American College of Obstetricians and 
Gynecologists. AUROC the area under the ROC curve, NPV negative predicted value, PlGF placental growth 
factor, PPV positive predicted value, SSL semi-supervised learning.

Figure 3.  The patient-derived network with 1404 pregnant women. Training set (enrolled in 2014–2017); Test 
set (enrolled in 2018–2019).
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for Health and Care Excellence, NICE) showed a detection rate of around 40%with false-positive rate of 10%25, 
and in a 2019 Asian study, the NICE guideline showed a detection rate of 26% with 5.5% false-positive rate and 
ACOG recommendations showed the detection rate of 54.6% with 20.4% of false-positive  rate10.

Because of these limitations, an alternative approach has been suggested, including mean arterial pressure, 
serum PlGF, and uterine artery pulsatility index by organizations such as the Fetal Medicine Foundation. This 
alternative approach showed much improved performances, with a detection rate of 70–80% with 10–20% 
false-positive  rate10,26. In Asian populations, the AUROC was 0.769 for all preeclampsia and 0.857 for preterm 
preeclampsia. However, this alternative approach needs an additional measurement for serum biomarker and 
uterine artery Doppler indices, which is expensive and not achievable in most countries.

Currently, the prediction of pregnancy-associated HTN using routine clinical variables in the first trimester 
is still an unmet need in clinical practice. In the current study, the proposed model with graph-based SSL using 
the selected 11 important variables achieved the best average prediction performance (mean AUROC of 0.89 
in training set and 0.81 in test set) with higher sensitivity and similar specificity compared to risk factors from 
clinical guidelines and had a higher AUROC than that of PlGF. This result demonstrates that we can predict 
pregnancy-associated HTN accurately in early pregnancy through the use of routine clinical variables with the 
help of graph-based SSL.

Comparison with previous studies. Recent developments in computational algorithms and machine 
learning have found significant connections between diverse datasets that cannot be otherwise correlated. 
Machine learning can be used in prediction or decision model development using real-world data that is too 
complex to be interpreted by classical statistical analysis. With these advantages, there have been numerous 
studies for predictive model development using machine learning algorithms in the medical field. In obstet-
ric research, several studies have been performed using machine learning for the prediction of successful vag-
inal delivery and pregnancy complications such as gestational diabetes, small for gestational age, and other 
 complications27–31. A small number of studies have been performed to develop prediction models using machine 
learning algorithms for the prediction of pregnancy-associated  HTN11–13,32. Jhee et al. suggested a model that 
made use of maternal factors and antenatal clinical factors during the early second trimester through 34  weeks12 
and Sufriyana et  al. developed a robust machine learning model using data collected between 24–37  weeks, 
including uterine artery doppler parameters and biomarkers such as soluble fms-like tyrosine kinase receptor-1 
(sFlt-1) and  PlGF11. Using the nationwide health dataset of Indonesia, Sufriyana also improved prediction power 
using a random forest algorithm with the inclusion of demographic variables and medical histories starting 
from early pregnancy and ending at  delivery32. The Swedish national cohort study may be the first to predict 
pregnancy-associated HTN using first trimester variables—the model was developed using routinely collected 
variables at the first parental visit. However, the model failed to show robust  performance13. Recently, Maric 
et al. suggested a machine learning model based upon 64 routine clinical variables for early prediction of preec-
lampsia, with moderate performance (AUORC of 0.79) and sensitivity of 45.2%, and false-positive rate of 8.1%33.

To the best of our knowledge, the current study is the first to develop a powerful machine learning model 
based upon a limited number of routine clinical variables from the first trimester to predict pregnancy-associated 
HTN. For the development of the best model, we used feature selection methods to choose the most important 
clinical variables and then applied graph-based SSL. Among various clinical variables retrieved in the first 
trimester, we selected the most important variables to be incorporated in our prediction model. For this, four 
different feature selection methods were applied, and geometric mean was calculated to integrate the four differ-
ent rankings. By this process, we were able to select the top 11 variables including clinical measurements in the 
pre-gestational and first trimester periods as well as laboratory results in the first trimester. The importance of 
these selected factors was higher than that of traditional variables, such as the previous history of preeclampsia 
or presence of medical disease including chronic hypertension, diabetes, renal disease, or autoimmune disease. 
Indeed, these traditional risk factors in clinical guidelines could detect only 27.3% of pregnancy-associated HTN. 
The proposed model in the current study could detect the risk of pregnancy-associated hypertension with the 
sensitivity of 80.2 ± 12.7% and the specificity of 82 ± 11.6% (Table 4).

Among the selected important variables, maternal weight or BMI before pregnancy or in early pregnancy are 
well-known risk factors for pregnancy-associated  HTN34,35. Several studies have also reported the importance of 
BP measurements in early pregnancy for the prediction of pregnancy-associated  HTN36. Furthermore, abnormal 
maternal hemoglobin levels in the first trimester have been also reported as risk factors for adverse pregnancy 
outcomes, including pregnancy-associated  HTN37,38.

Strengths. To our knowledge, this study is the first to adopt graph-based SSL to develop a prediction model 
for pregnancy-associated HTN. Traditional machine learning algorithms such as logistic regression, support 
vector machine, random forest, and gradient boosting are based on supervised learning, meaning that only 
labeled data (where patients’ primary outcome is known) are used. However, graph-based SSL performs predic-
tion using the propagation of label information according to the structure of patient graphs derived from their 
characteristics. Graph-based SSL exploits the knowledge of the input structure from patients while at the same 
time using the label information provided by labeled data. In the current study, our model from graph-based SSL 
using both labeled and unlabeled data ( SSLL+U ) had better performance than our model from graph-based SSL 
with labeled data only ( SSLL ), as well as models based on other machine learning algorithms. The comparative 
results shows that our patients’ network with selected variable can capture the similar characteristics between 
pregnant women with or without pregnancy-associated with HTN. Furthermore, semi-supervised approaches 
incorporating incomplete follow-up samples can help to increase performance on early prediction of pregnancy-
associated with HTN.
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Patient data without known clinical outcomes generally cannot be used in analyses, especially when a patient 
enrolls in a prospective cohort study but is loss to follow-up. In terms of machine learning, patients loss to 
follow-up become unlabeled data and their information cannot be used in supervised learning approaches. In 
this study, we used graph-based SSL to predict pregnancy-associated HTN with a large number of unlabeled 
patients. Graph-based SSL can exploit the underlying structure of input data with graphs (i.e., relationships of 
all patients in the networks) from both unlabeled and labeled data, using the information from labeled data to 
inform the role of unlabeled data in  prediction39.

We also compared the model performance of graph-based SSL for pregnancy-associated HTN prediction to 
that of PlGF. Mean circulating PlGF levels are lower in patients destined to develop pregnancy-associated HTN, 
making it a useful biomarker for the  phenotype10,26. Therefore, PlGF measurement itself serves as a classifier 
that can predict pregnancy-associated HTN. However, the measurement of PIGF in early pregnancy may not 
be possible in all pregnant women, especially in low-resource areas. Moreover, measurement of PlGF during 
early pregnancy in low-risk pregnant women has not been established in routine practice. In order to further 
demonstrate that the proposed patient network captures a group of patients at risk for pregnancy-associated 
HTN, we performed an external experiment comparing graph-based SSL against PlGF. For this, we labeled only 
6.8% of patients who did not have PlGF measurement, and then compared prediction performances between 
graph-based SSL and PlGF in the classified remaining samples (93.2% (1,255/1,347)). As a result, our proposed 
model with graph-based SSL had higher AUROC than that of PlGF.

Limitations and research implications. Some aspects of this study remain for future work. Although 
the proposed model using graph-based SSL showed the best performance in the current study, further studies 
with larger cohorts are needed for external validation. As the current study was conducted in Korean pregnant 
women with a small number of cases, prospective studies with a larger number of cases are needed with the use 
of the proposed model to verify its clinical utility in other ethnicities or races. In addition, more studies compar-
ing our model to predictive models using additional markers such as ultrasound indices like uterine artery Dop-
pler measure are needed to not only evaluate performance but also analyze cost-effectiveness. In an algorithmic 
perspective, the selected clinical variables are used only to construct the patients’ network. Then, we present a 
straightforward implementation of a graph-based algorithm, which is used to propagate and predict the labels 
through semi-supervised approaches. As a proof-of-concept-study, this study demonstrates that incorporating 
labeled and unlabeled samples can help to predict early prediction of pregnancy-associated HTN using graph-
based SSL. The graph-based SSL with patients’ network have observed all the sample beforehand regardless of 
presence of outcomes. In other words, there is a disadvantage that the network needs to be re-constructed to 
predict new patients, but also there is advantage that the prediction performance can be improved if the network 
is updated with high-quality new samples. In most scenarios, semi-supervised approaches outperform induc-
tive ones in terms of prediction accuracy while they often suffer from high training costs compared to induc-
tive  approaches40. Clearly, semi-supervised learning is known to increase predictive performance as the labeled 
data increases, like other supervised learning algorithms (such as artificial neural network and support vec-
tor machine)18,41. Moreover, in semi-supervised approaches, there are several up-to-date algorithms using net-
work, such as the graph convolutional neural network (GCN)40,42. To verify the effectiveness of incorporating all 
samples regardless of outcomes, we applied graph-based SSL to predict pregnancy-associated HTN using label 
propagations along with the patient’s network with selected variables. There are many comprehensive graph-
based machine learning models and it can be used for classifier of predicting early prediction of pregnancy-
associated HTN. The graph neural network could be used for this clinical problem, which can keep track and 
merge features for each patient when predicting early pregnancy-associated HTN. In addition to the well-known 
women’s health problems such as the prediction of breast cancer prognosis, where relatively large amounts of 
data are collected and studied, our study shows that the semi-supervised approaches incorporating unlabeled 
samples is also necessary in the problem of predicting pregnancy complications. Furthermore, excluded samples 
with missing variables can be incorporated in this analysis after missing value imputations. It can lead to a more 
sophisticated patient network, and the prediction performance can be improved by increasing labeled samples.

In the current study, we excluded patients with abortion or previable preterm birth, because pregnancy-
associated HTN is defined as HTN after 20 weeks of gestation and usually does not present in previable period. 
As these patients are neither patients with labeled data (normal outcome or pregnancy-associated HTN) nor 
those with unlabeled data, we excluded them from the initial analysis. However, there is a possibility that exclu-
sion of these patients could result in an error in the development of the prediction model. In addition, we did not 
have information regarding gestational age at diagnosis of pregnancy-associated HTN. Incorporating gestational 
age at diagnosis as the prediction outcome in the model would be more helpful in the clinical application of the 
developed model.

Conclusion
To solve a common issue to handle missing labels (i.e., patients with incomplete follow-up) in medical scenario, 
this study presented graph-based SSL to predict pregnancy-associated HTN by incorporating labeled and unla-
beled data concurrently. Moreover, patients’ networks with selected variables identified the most discriminative 
features for the problem at hand, which can be even more informative than the one recommended by the clini-
cal guidelines. From the experimental results, we showed that the semi-supervised approach would be more 
helpful in the clinical application of the developed model. Furthermore, based on graph-based SSL, we could 
classify patients into high-risk and low-risk groups for pregnancy-associated HTN in early pregnancy with high 
accuracy. The proposed prediction model with routine variables showed higher sensitivity and similar specific-
ity compared to risk factors from clinical guidelines, and with better predictive performances than PlGF. This 
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result suggests the clinical utility of the proposed model, through the use of routine clinical variables with the 
help of graph-based SSL.

Methods
Data source. This is a secondary analysis of a large prospective cohort study that enrolled healthy pregnant 
women to examine the risk of pregnancy  complications43–46. This cohort enrolled singleton pregnant women in 
early pregnancy (before 14 weeks of gestation) from Incheon Seoul Women’s Hospital and Seoul Metropolitan 
Government Seoul National University Boramae Medical Center in Seoul, Korea. For this study, we selected 
consecutive pregnant women in the cohort who were enrolled between October 2014 and October 2019 and 
followed up until delivery.

This cohort collected clinical, demographic, lifestyle, and health-related variables using a self-reported ques-
tionnaire, including factors such as age, parity, medical history, and physical measures before pregnancy (height, 
weight, body mass index [BMI], and waist circumference). Additional clinical and laboratory data were retrieved 
directly from patient medical records, including blood pressure [BP], weight, and waist circumference in the 
late first trimester (10–14 weeks). This study was approved by the Institutional Review Board of Seoul National 
University Hospital, Seoul Metropolitan Government Seoul National University Boramae Medical Center, and 
the Public Institutional Review Board designated by Ministry of Health and Welfare, and all experiments were 
performed in accordance with relevant guidelines and regulations. Patients gave informed consent for the use 
of clinical information for research purposes.

Study design. Pregnancy-associated HTN was defined as the occurrence of gestational hypertension, 
preeclampsia, eclampsia, and/or superimposed preeclampsia. Hypertension was diagnosed as a sustained eleva-
tion in BP (systolic BP ≥ 140 mmHg systolic and/or diastolic BP ≥ 90 mmHg). Preeclampsia was defined as the 
presence of both hypertension and features of organ damage such as proteinuria, low platelet, renal insufficiency, 
liver damage, cerebral symptoms, and pulmonary edema. Eclampsia was defined as convulsion in the setting of 
 preeclampsia7. Superimposed preeclampsia was diagnosed as the development of preeclampsia in women with 
preexisting chronic HTN.

Conventional risk factors. For comparison with a previously developed prediction model, conventional 
risk factors recommended by American College of Obstetricians and Gynecologists (ACOG) were evaluated 
in the study  population19. According to the guideline, pregnant women were considered to be at high-risk of 
developing HTN if they have at least one high-risk factor or at least two moderate risk factors. High-risk factors 
include previous history of preeclampsia, chronic HTN, type 1 or type 2 diabetes, renal disease, multiple gesta-
tion, and connective tissue diseases such as systemic lupus erythematosus or antiphospholipid syndrome. The 
current study includes only singleton pregnancy and therefore multifetal gestation was not evaluated. Moderate 
risk factors include nulliparity, advanced maternal age (≥ 35 years old), and obesity (BMI > 30 kg/m2). All women 
in the current study were Asian, and therefore ethnicity was not considered. Among moderate risk factors rec-
ommended by the ACOG guideline, we did not have information regarding interpregnancy interval, family 
history of preeclampsia, or history of small-for-gestational age or adverse outcomes in previous pregnancies.

Measurement of PlGF. Blood samples were taken routinely at 10–14 weeks of gestation, centrifuged, and 
stored at − 70 °C until measurement of PlGF. PlGF was measured using a commercial enzyme-linked immuno-
sorbent assay (ELISA) kit, in accordance with the instruction of the manufacturer (Quantikine ELISA Human 
PIGF, R&D systems, USA).

Statistical analysis. For comparison of clinical variables, continuous data were analyzed using the Stu-
dent’s t-test or Mann–Whitney U test, and categorical data were analyzed using χ2 test or Fisher’s exact test, as 
appropriate. We used an alpha threshold of 0.05 as our significance threshold. All statistical analyses were con-
ducted with R version 4.0.3 (http:// www.r- proje ct. org) and MedCalc Statistical Software version 13.3.1 (Med-
Calc Software bvba, Ostend, Belgium).

Ranking/selecting variables. To determine important clinical factors for the prediction of pregnancy-
associated HTN among the 32 clinical routine variables retrieved in first trimester of pregnancy, we applied 
four multivariate feature selection methods: logistic regression, support vector machines, random forest with 
Gini criteria, and random forest with entropy  criteria47–49. From the result of each feature selection method, we 
calculated a combined feature ranking defined as 

(
∏n

i=1ri
)

1
n = n

√
r1r2 . . . rn , where ri was the order of features 

in i th feature selection method. The final selection of important variables was determined through backward 
elimination, which starts by including all variables and then removes the least important variable one by one 
when building the prediction model using graph-based SSL.

Model development and evaluation. The study population was divided into training and chronologi-
cally independent test sets based upon year of enrollment (training set enrolled between 2014 and 2017; test set 
enrolled between 2018 and 2019). Our prediction model was developed using the training set, and the hyper-
parameters of each model was tuned and optimized through cross validation. The final model was chosen as 
the model with the best prediction performance in the training set, and it was evaluated in the chronologically 
independent test set.

http://www.r-project.org
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To develop the prediction model, graph-based SSL was employed to predict pregnancy-associated HTN 
with constructed patients’ networks (Fig. 4). To demonstrate the generalized prediction performance, we com-
pared five representative predictive models, including graph-based SSL with both labeled and unlabeled data 
( SSLL+U ), SSL only with labeled but without unlabeled data ( SSLL ), logistic regression (LR), support vector 
machine (SVM)50, and random forest (RF)51. To investigate the effectiveness of adding unlabeled samples in 
patients’ network, SSLL+U used network with incorporating all labeled and unlabeled samples and SSLL used 
network constructed by only 1347 labeled samples. To verify the significance of selected variables, performance 
comparison was also performed for three different sets of variables: [a] variables from clinical guidelines, [b] 
selected important variables, and [c] all routine variables. Supplementary Table 2 presents the lists of variables 
used in set [a], [b], and [c] for the prediction model development. In this manuscript, the type of variable set is 
marked as the superscript of each model. (e.g., SSL[b]L+U means graph-based SSL with set [b] (selected important 
variables based on feature selection)). To tune the hyper-parameters and avoid overfitting, fivefold cross valida-
tions with stratified random sampling were performed and repeated 100 times in the training set. Note that two 
transductive models ( SSLL+U and SSLL ) were used all training and test set in a network regardless of presence of 
clinical outcomes, but to compare with the inductive model (SVM, LR, and RF), the experiments for transductive 
model were conducted by masking the label of the validation set of each  fold14,52. The area under the receiver 
operating characteristic curve (AUROC) was used as performance measures.

Constructing patient network and graph‑based semi‑supervised learning. For developing the 
prediction model with graph-based SSL, a patient network was constructed to identify women at high-risk for 
pregnancy-associated HTN. The network represented the associations between patients. Each node represents 
an individual patient, and each edge represents the similarity between two patients. The strength of similarity is 
represented by the weight of the edge—a higher value implies a higher relation between patients.

The patient network is an undirected and weighted graph, G = (V ,W) , which is constructed for pregnant 
women with selected sets of variables. Assume that we have n = (nl + nu) patients from labeled patients (known 
outcomes; complete follow-up) L = {

(

vi , yi
)nl
i=1

} and unlabeled patients (unknown outcomes due to follow-up 
loss) U = {

(

vj
)n

j=nl+1
} . Node V = (L ∪ U) indicates set of patients and similarity W =

{

wij

}

 indicates edge 
weights which are calculated between patients using Euclidean distances by wij = exp(−dist(vi , vj)/σ

2) . σ is 
hyper-parameter for adjusting distances. We set to the initial label information ( yl ∈ {±1} for known outcomes, 
and yu = {0} for unknown outcomes). Here, yi = {+1} means that patient i  was diagnosed with pregnancy-
associated HTN, yi = {−1} means that patient i was not diagnosed, and yi = {0} means that the outcomes were 
unknown since patient i does not follow-up. Graph-based SSL is known as a transductive model that can make 

Figure 4.  Overall framework.
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predictions using both labeled and unlabeled samples, and it showed sufficient prediction performance even if 
there are many unlabeled samples. Let y =

(

y1, . . . , yn
)T denotes the set of labels and f =

(

f1, . . . , fn
)T denotes 

the set of predicted results. Graph-based SSL perform the predictions on unlabeled samples with the following 
assumptions: (a) loss condition (predicted value fi should not be close to the given label yi) , and (b) smoothness 
condition (predicted value fi should not be different from the fj in adjacent samples). Then, SSL propagates the 
label information from a patient to the adjacent patient along with the patient network. We can obtain the pre-
dicted output f  by minimizing the following quadratic objective function as:

the closed form solution is obtained as f = (I + µL)−1y where the graph Laplacian L is defined as L = D −W , 
D = diag(di) is degree matrix with di =

∑

jwij . The predicted outcome f  implies whether a likelihood of 
whether or not the patients have pregnancy-associated HTN. We can decide final labels on each patient by 
using analysis of the receiver operating characteristic curve. Deciding labels on each patient were performed 
on f  as a final predicted outcome with a threshold value. Youden’s J statistics, where the maximum value of 
J(= sensitivity + specificity − 1) , was used as a threshold value for the receiver operating characteristic  curve53. 
The pseudo-code for the proposed method is described in Supplementary Fig. 1.

Data availability
All data generated or analyzed during this study are available on reasonable request from the corresponding 
author. Implemented code for graph-based semi-supervised learning is provided on https:// github. com/ dokyo 
onkim lab/ GHTpr edici ton.
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