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ABSTRACT

Characterizing regulatory effects of genomic vari-
ants in plants remains a challenge. Although sev-
eral tools based on deep-learning models and large-
scale chromatin-profiling data have been available
to predict regulatory elements and variant effects,
no dedicated tools or web services have been re-
ported in plants. Here, we present PlantDeepSEA
as a deep learning-based web service to predict
regulatory effects of genomic variants in multiple
tissues of six plant species (including four crops).
PlantDeepSEA provides two main functions. One is
called Variant Effector, which aims to predict the ef-
fects of sequence variants on chromatin accessibil-
ity. Another is Sequence Profiler, a utility that per-
forms ‘in silico saturated mutagenesis’ analysis to
discover high-impact sites (e.g., cis-regulatory ele-
ments) within a sequence. When validated on inde-
pendent test sets, the area under receiver operat-
ing characteristic curve of deep learning models in
PlantDeepSEA ranges from 0.93 to 0.99. We demon-
strate the usability of the web service with two ex-
amples. PlantDeepSEA could help to prioritize reg-
ulatory causal variants and might improve our un-
derstanding of their mechanisms of action in differ-
ent tissues in plants. PlantDeepSEA is available at
http://plantdeepsea.ncpgr.cn/.

GRAPHICAL ABSTRACT

INTRODUCTION

Quantitative trait locus (QTL) analysis and genome-wide
association study (GWAS) have been widely used to dis-
sect the genetic basis of complex traits in plants (1–4).
However, since many neutral genomic variants are also sig-
nificantly associated with traits in GWAS, it is difficult
to determine causal variants based on association results
alone. Furthermore, it is difficult to resolve the underlying
mechanisms of variants, especially for non-coding variants
(NCVs) (5). A recent review article summarized 364 QTLs
cloned in six major crops and showed that in maize, 64% of
the causal variants fall in non-coding regions (6), demon-
strating the importance of the prioritization of NCVs and
the annotation of cis-regulatory elements (CREs) in plant
sciences.

With the development of high-throughput sequencing
technologies, various assays have been developed to study
epigenetic states at the genome-wide scale (7). And a large
amount of high-throughput epigenetic data has been gener-
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ated, offering the possibility of systematically modeling epi-
genetic states or regulations through machine learning ap-
proaches. With such models in place, we could predict epi-
genetic states from only genomic sequences. Then the regu-
latory effects of NCVs can be reasonably assessed by com-
paring the epigenetic state predictions obtained from se-
quences with the reference and the alternative genotypes, re-
spectively. Furthermore, through an ‘in silico saturated mu-
tagenesis’ approach, i.e. computationally mutating all nu-
cleotides at each position, we can analyze the effects of each
base substitution on epigenetic states, thereby identifying
high-impact sites which are likely CREs (8).

Models based on deep neural networks (DNNs) have
been proven to be powerful to automatically extract com-
plex and relevant features from genomic sequences and
to learn and predict epigenetic states accurately and effi-
ciently (9). DeepSEA (deep learning-based sequence ana-
lyzer) (8), DeepBind (10), Basset (11) and Basset’s succes-
sor, Basenji (12) are representative frameworks of DNNs. In
comparison, DeepSEA has a simpler structure that allows
training and annotating genomic segments and variants
in a short time. In addition, a PyTorch-based deep learn-
ing library, Selene, makes it easy to build and train DNN
models (13).

Compared to other epigenetic states, the prediction of
chromatin accessibility or open chromatin exhibits higher
accuracy in DNN models, with a median area under the
curve of 0.923 in the human DeepSEA model (8). Mean-
while, open chromatin data are more easily obtained by
techniques such as ATAC-seq (Assay of Transposase Acces-
sible Chromatin sequencing) (7), and several datasets have
been accumulated in plants (14–17). Based on open chro-
matin data it is easy to identify open chromatin regions
(OCRs), which are considered to be the primary location of
CREs (18). Causal variants in human GWAS are enriched
in OCRs (19–22), and similar reports have been made in
plants (23).

Although large-scale chromatin-profiling data have been
available and several tools based on deep-learning mod-
els have achieved state-of-the-art performance in humans,
no dedicated tools or web services have been reported in
plants. In addition, for those who only want to prioritize
causal variants or identify CREs in specific regions of a
genome, building a deep learning model from scratch is
very time-consuming and labor-intensive. Therefore, it is
necessary to build an online web service to predict vari-
ant effects and CREs based on deep learning models in
plants.

To this end, we present PlantDeepSEA (http:
//plantdeepsea.ncpgr.cn), an online web server for NCV
prioritization and CRE identification in plants, built on
high-quality chromatin accessibility data as well as the
deep learning framework DeepSEA (8). The website offers
two main functions. One is called Variant Effector, which
aims to predict the effects of sequence variants on chro-
matin accessibility. Another is Sequence Profiler, a utility
that performs ‘in silico saturated mutagenesis’ analysis to
discover high-impact sites (e.g. CREs) within a sequence.
The remainder of this paper presents the server in detail
and demonstrates the usability of the web server with two
examples.

MATERIALS AND METHODS

Chromatin accessibility data collection and quality control

We collected the ATAC-seq data of Arabidopsis (Arabidop-
sis thaliana) from the NCBI Sequence Read Archive (SRA)
database with accessions SRP188687 (16), SRP111984 (17)
and SRP113667 (24). The ATAC-seq data of Brachypodium
distachyon, Oryza sativa cv. Minghui63 (O. sativa-MH),
O. sativa cv. Zhenshan97 (O. sativa-ZS), Setaria italica,
Sorghum bicolor and Zea mays were generated from our
previously established protocol (25) and deposited in NCBI
with SRA accession SRP308654.

The raw reads of ATAC-seq were first trimmed by Trim-
momatic v.0.36 (26) with parameters of a maximum of two
seed mismatches, a palindrome clip threshold of 30, and a
simple clip threshold of 10, reads shorter than 30 bp were
discarded. Then reads for each species were aligned to the
reference genome (A. thaliana: TAIRv10.1, B. distachyon:
Bd21-3 v1.1, O. sativa-MH: RS2, O. sativa-ZS: RS2, S. ital-
ica: v2.0, S. bicolor: v3.1.1 and Z. mays: AGPv4; the de-
tailed information can be found at PlantDeepSEA website)
using bwa v0.7.17 mem algorithm with parameter ‘-M -t 5 -
k 32’ (27), respectively. Mapping reads with a mapping qual-
ity score below 30 and PCR duplicates, mitochondrial and
chloroplast reads were filtered using SAMtools v.1.9 (28).
To identified OCRs in each sample, narrow-peak calling set-
tings were used in MACS2 v2.2.7.1 (29) with parameters ‘-
g (1.2e8 for A. thaliana, 2.2e8 for B. distachyon, 3.0e8 for
O. sativa, 3.4e8 for S. italica, 4.1e8 for S. bicolor, 9.5e8 for
Z. mays) –nomodel –extsize 38 –shift -15 –keep-dup all -B
–SPMR –call-summits’. Transcription start site (TSS) en-
richment was calculated by counting fragments per base in
the regions ±3000 bp surrounding TSSs of all annotated
genes and dividing by the average fragment count of the
1,000 bp flanking ends.

Model training in PlantDeepSEA

The deep learning framework DeepSEA implemented using
Selene was used in this work (13). The architecture of the
model is displayed in Supplementary Figure S1. The train-
ing, validation and test sets were generated with Selene In-
tervalsSampler function, with parameter ‘sample negative:
True, sequence length: 1000, center bin to predict: 200,
feature thresholds: 0.5, mode: train’. Each training sample
is a 1000-bp sequence fetched from a reference genome, rep-
resented by a one-hot encoded matrix of length 1000 × 4,
each of the four columns indicates a DNA nucleotide (‘A’,
‘G’, ‘C’ or ‘T’). For each ATAC-seq sample, the training
sample is labeled as 1 (positive sample) if it overlaps with
OCRs in this ATAC-seq sample by more than 50% of its
length, otherwise it is labeled as 0 (negative sample). The
model output is a vector of values from 0 to 1 represents the
probability that the sequence belongs to OCRs in each sam-
ple. To ensure the independence of the training set from the
validation set and the test set, data from 1 or 2 chromosomes
were selected as the validation set or the test set, respec-
tively (Supplementary Table S1), these chromosomes were
excluded at the time of training. For each round of training,
one-kilobase sequences (training data sets) were randomly
selected within the specified sampling chromosomes. Subse-
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quently, the validation set and the test set were selected from
the chromosomes excluded from the training dataset, and
the number of selected sequences was randomly selected in
the ratio of ‘training set: validation set: test set’ = 8:1:1. The
fraction of sequences labeled as OCR in the training and
test sets ranged from 0.2–11.8% and 0.2–14.2%, respectively
(Supplementary Table S2), which is consistent with the re-
ported fraction of OCR on the genome in plants (16). Fi-
nally, we evaluated the performance of the model using the
area under the receiver operating characteristic curve (AU-
ROC) and precision-recall curve (AUPRC).

Scoring the variants and in silico saturated mutagenesis anal-
ysis

in silico saturated mutagenesis scan of all possible nu-
cleotide substitutions in an input sequence. Each substi-
tution will generate a new sequence, and our model cal-
culates the probability value that this sequence belongs to
OCRs. We use the values of Pmut – Pref to generate the
in silico saturated mutagenesis heatmap, where Pref repre-
sents the probability predicted for the original sequence and
Pmut represents the probability predicted for the mutated
sequence. We also compute the absolute values of Pmut –
Pref, and the log fold changes of odds, log(Pmut/(1 – Pmut)) –
log(Pref/(1 – Pref)), which are stored in the ‘ism abs diffs.tsv’
and ‘ism logits.tsv’ files. Users can download them from the
results page.

To compute the chromatin effects of variants, for each
variant, we obtain the 1,000-bp sequence centered on that
variant from the reference genome which is used for the
trained model. The probability value that the sequence car-
rying the reference or alternative allele at the variant posi-
tion belongs to OCRs is then calculated separately. Similar
to in silico saturated mutagenesis, we calculate the difference
between the probabilities of the two genotypes, the absolute
value of the difference, and the log fold changes of odds and
store in files ‘diffs.tsv’, ‘abs diffs.tsv’ and ‘logits.tsv’, respec-
tively. The scatterplot on the results page is generated using
the difference value between the reference or alternative al-
lele probabilities. All the scoring values can also be down-
loaded from the results page.

Identification of regulatory motif occurrences

The position frequency matrix of regulatory motif was
downloaded from PlantTFDB (30) and JASPAR 2020 (31).
The motif occurrences were identified by the FIMO version
5.1 (32) with the P-value < 1e–4.

Web server implementation

The web server is implemented using Django Web
framework (https://djangoproject.com). Jobs are scheduled
via Celery’s asynchronous task queuing system (http://
celeryproject.org/), with Redis (https://redis.io/) serving as a
message broker, and executed on a Linux computer with 72
CPU cores and two GPU cores. All interactive charts were
rendered with the bokeh (https://bokeh.org/) library. The
tables were rendered with DataTables (https://datatables.
net/).

DESCRIPTION OF PLANTDEEPSEA

PlantDeepSEA provides an easy-to-use interface to prior-
itize NCVs and discover high-impact cis-regulatory sites
within a sequence in plants (Figure 1A). Up to now, we have
collected ATAC-seq data from multiple tissues of six repre-
sentative plant species including Arabidopsis (A. thaliana),
rice (O. sativa), maize (Z. mays), foxtail millet (S. italica),
sorghum (S. bicolor) and Brachypodium distachyon (B. dis-
tachyon), and obtained OCRs in different tissues of these
species (Table 1, Supplementary Table S2). We then imple-
mented a published deep learning framework, DeepSEA
(8) using the Selene library (13) and used OCRs to la-
bel hundreds of thousands of 1000-bp sequences and train
the model for each species. We eventually obtained seven
trained models, two models for rice and one model for each
of the other species. The model output is a vector of val-
ues from 0 to 1 represents the probability that the sequence
belongs to OCRs in each sample. When validated on inde-
pendent test sets, AUROC of each model ranged between
0.93 and 0.99 (Figure 1B, Supplementary Figure S2 and
Supplementary Table S2) and AUPRC ranged between 0.25
and 0.77 (Supplementary Figure S3 and Supplementary Ta-
ble S2), which is similar to that reported in human mod-
els (8,13). Compared with the fraction of positive samples
in test sets (range 0.2–14.2%), the values of AUROC and
AUPRC demonstrate the usability of the models used in
PlantDeepSEA.

To evaluate the ability of PlantDeepSEA to predict the
tissue specificity of OCRs, we calculated the Shannon en-
tropy using the prediction scores for each sequence labeled
as OCR in at least one sample in the test set. A small
Shannon entropy indicates tissue specificity (33). The re-
sults show that the sequences labeled as OCR in fewer sam-
ples have smaller Shannon entropy (Supplementary Figure
S4), indicating that PlantDeepSEA has the ability to predict
the tissue specificity of OCRs at least to some extent.

Based on these trained models, we have designed a series
of online tools to help users quickly obtain predicted results
for genomic variants or interested regions. After selecting a
model listed on the home page, the user can use ‘Variant
Effector’ to predict the regulatory effects of variants in dif-
ferent tissues, or use ‘Sequence Profiler’ to judge whether
the submitted sequence belongs to OCRs and to identify
putative CREs (Figure 1C). After submitting the task, the
user will be given a job ID and will be redirected to a page
that will automatically refresh. The results are displayed on
this page when the task is completed, and the user can also
use the job ID to query the results within a week.

Variant effector

Variant Effector is a tool designed for predicting the ef-
fects of sequence variants on chromatin accessibility. The
accepted input is a VCF file containing information on the
sequence variants. The results contain information on the
effects of variants on chromatin accessibility in each tissue.
Each variant has an effect score for each tissue, calculated as
the predicted probability that the alternative allele belongs
to OCRs in this tissue minus the predicted probability that
the reference allele belongs to OCRs in this tissue. In the
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Figure 1. Overview of PlantDeepSEA. (A) Workflow of PlantDeepSEA. Firstly, we collected high-quality chromatin accessibility data from multiple
representative tissues of six plant species. Secondly, we obtained credible open chromatin regions (OCRs) for each species through sequence alignment,
quality control (QC), and OCR identification steps. Thirdly, we implemented a high-performance deep learning model, DeepSEA (8) using the Selene
SDK (13), and used chromatin accessibility data to train the model. Fourthly, we built PlantDeepSEA (http://plantdeepsea.ncpgr.cn) based on tools such
as Django and bokeh. PlantDeepSEA can be used to identify high-impact sites or prioritize causal variants. (B) Boxplot of area under curve (AUC) in
each deep neural network model. Each point represents the corresponding AUC of each sample. (C) Two main functions in PlantDeepSEA. We designed
two tools named ‘Variant Effector’ and ‘Sequence Profiler’, the accepted inputs and outputs are listed in the plot.

Table 1. Summary statistics of ATAC-seq data used in PlantDeepSEA

Species
Tissue

number
Sample
number

Total Q30
read

numbera
Mean TSS

enrichmentb

Mean
OCR

numberc

A. thaliana 6 14 458 734 749 12.1 25 947
B.distachyon 5 9 187 359 453 11.5 44 370
O. sativa-MH 6 15 625 034 398 12.0 75 670
O. sativa-ZS 6 15 521 213 434 13.9 72 567
S.italica 5 9 624 666 196 7.2 72 230
S. bicolor 7 14 818 482 967 9.9 82 166
Z. mays 8 19 856 301 588 11.0 74 257

aThe total number of reads per sample aligned to the reference genome
(mapping quality >30).
bMean TSS enrichment score for each sample.
cMean of the number of OCRs identified by MACS2 in each sample.

first part of the result page, variants are plotted and ranked
by the effect scores. The second part of the result page is
a table containing the effect scores of variants, genotypes,
and tissue information (Figure 1C). The user might prior-
itize the variants by referring to the ranking of their effect
scores. All results can be downloaded as figures or tsv-files.

Sequence profiler

Sequence Profiler is a utility that performs ‘in silico sat-
urated mutagenesis’ analysis for discovering high-impact
sites within a sequence. Specifically, it performs computa-

tional mutation for every base of the input sequence and
predicts the effect of every mutation on chromatin acces-
sibility. The accepted inputs are a chromosome and a posi-
tion, a BED file containing multiple coordinates of genomic
regions or a custom sequence. The way of submitting cus-
tom sequences to Sequence Profiler can be used to predict
the effect of haplotypes, i.e., one can evaluate the effect of
different combinations of variants and the effect of variants
in different sequence contexts. Details of the calculations
and presentation of results are given in Materials and Meth-
ods and the figure legend (Figure 1C).

CASE STUDIES

Prioritizing non-coding causal polymorphisms in the rice gene
DEP1

DEP1 is a well-studied gene in rice, which regulates leaf
and panicle morphology and has been widely used in rice
breeding for high yield (34). A recent study showed that
nine NCVs in the DEP1 promoter region (2.0 kb upstream
of the ATG) can regulate the gene expression and leaf-
trait variation (35). We mapped these nine variants to Rice-
VarMap database (36) and constructed the VCF file based
on the reference genome Minghui 63 (RS2). We first selected
the model ‘Minghui 63’ listed on the home page and then
selected the corresponding reference genome ‘Minghui 63
(RS2)’ listed in the panel ‘Variant Effector’. Then we up-
loaded the VCF file to Variant Effector to predict the ef-
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Figure 2. Two case studies. (A) Prioritization of causal variants in DEP1 promoter region. We made the VCF file of nine variants in DEP1 promoter region
and used the tool ‘Variant Effector’ to prioritize these variants. The result showed that vg0916410299 was ranked as the most likely causal variant among
the provided variants. (B) Analysis of high impact sites around the SNP vg0916410299. We used the tool ‘Sequence Profiler’ by entering the chromosome
and the position of vg0916410299. The in silico saturated mutagenesis map showed sequence TGGCCC (overlapped with vg0916410299) might be a cis-
regulatory element. (C) Analysis of high impact sites for different haplotypes of QTL UPA2 using the tool ‘Sequence Profiler’. The in silico saturated
mutagenesis map of CIMMYT 8759 haplotype (upper) and W22 haplotype (under) showed the sequence AGTGTG might be a cis-regulatory element,
which is consistent with the results of Tian et al. (39). The loss score refers to the maximum decrease in probability that an allele belongs to open chromatin
compared to the reference nucleotide in all mutations at each site. And the gain score refers to the maximum increase.



W528 Nucleic Acids Research, 2021, Vol. 49, Web Server issue

fect of the variants. From the results, we found one SNP,
named vg0916410299 in RiceVarMap, had the greatest ef-
fect score compared to the other variants (Figure 2A). We
next inputted the genomic coordinates of this SNP into
the panel ‘Sequence Profiler’. In the result page, the in sil-
ico saturated mutagenesis map showed that the sequence
TGGCCC, which overlaps with vg0916410299, has the ex-
treme effect scores (Figure 2B). FIMO (32) results also in-
dicate that this sequence overlaps with a binding motif of
the TCP transcription factors (37). We also noticed that an-
other study reported the vg0916410299 as the only variant
in the DEP1 promoter associated with panicle traits (38),
which is consistent with the prediction results.

Discovering high-impact sites within the maize QTL UPA2

Maize leaf angle is an important factor affecting maize
plant density and yield. Tian et al delimited a QTL UPA2
to a 240-bp non-coding region using a BC2S3 population
constructed by crossing a teosinte line CIMMYT 8759 with
a maize inbred line W22 (39). They finally confirmed that
a 2-bp deletion in the C2C2 motif (AGTGTG) is the func-
tional variant regulating a gene ZmRAVL1 located 9.5 kb
downstream. We used the tool Sequence Profiler to analyze
the two haplotypes of the 200-bp region around the 2-bp
deletion. The in silico saturated mutagenesis map in the flag
leaf (rep1) shows the haplotype of CIMMYT 8759 (with
AGTGTG) has intensive high effect scores in the C2C2 mo-
tif region compared to the haplotype of W22 (with AGTG–)
(Figure 2C).

These case studies demonstrate that PlantDeepSEA
could help to identify causal NCVs and functional CREs.

DISCUSSION

In this work, we constructed PlantDeepSEA, a deep
learning-based web service to predict regulatory effects of
genomic variants in plants for users with or without DNNs
expertise. In each step of the analysis process, we used vari-
ous rigorous criteria to evaluate the quality of the data and
DNN models in PlantDeepSEA, and we designed several
useful and user-friendly tools and have shown how to use
the website by case studies. For reasons of data availability
and uniformity, we currently support only six representa-
tive plant species and construct the models using only chro-
matin accessibility data. More species and more chromatin
features will be integrated in future updates. Moreover, due
to the limitation of computational resources, we have lim-
ited the length of the analyzed sequences and the number
of analyzed intervals, which may be gradually solved in the
subsequent updates. We also note that some recently pub-
lished DNN models such as Basenji (12) may yield more
accurate prediction results, and deepLIFT (40) can detect
high-impact sites more efficiently by the backpropagation-
based approach. We will integrate more DNN methods
and applications in the future to comprehensively evaluate
CREs as well as NVC effects in sequences. We believe that
PlantDeepSEA will greatly facilitate the prioritization of
regulatory causal variants and help to improve our under-
standing of their mechanisms of action in different tissues
in plants.

DATA AVAILABILITY

PlantDeepSEA (http://plantdeepsea.ncpgr.cn/) is freely
available to all users. The sequences of reference genomes
used in PlantDeepSEA, the OCR lists identified from
ATAC-seq data, the deep learning models and the
configure files used for model training can be ac-
cessed at https://plantdeepsea-toturial2.readthedocs.io/en/
latest/08-Statistics.html.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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