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Abstract: The performance of the ultrasonic transducer will directly affect the accuracy of ultrasonic
experimental measurement. Therefore, in order to meet the requirements of a wide band, a kind of
annular 2-2-2 piezoelectric composite is proposed based on doped PDMS. In this paper, the transducer
structure consisted of PZT-5A piezoelectric ceramics and PDMS doped with 3 wt.% Al2O3:SiO2 (1:6)
powder, which constituted the piezoelectric composite. MATLAB and COMSOL software were
used for simulation. Meanwhile, the electrode materials were selected. Then, the performance
of the designed annular 2-2-2 ultrasonic transducer was tested. The simulation results show that
when the polymer phase material of the piezoelectric ultrasonic transducer is doped PDMS, the
piezoelectric phase and the ceramic substrate account for 70% of the total volume, the polymer phase
accounts for 30% of the total volume, and the maximum frequency band width can reach 90 kHz.
The experimental results show that the maximum bandwidth of −3 dB can reach 104 kHz when the
frequency is 160 kHz. The results of the electrode test show that the use of Cu/Ti electrode improves
the electrical conductivity of the single electrode. In this paper, the annular 2-2-2 transducer designed
in the case of small volume had the characteristics of a wide frequency band, which was conducive
to the miniaturization and integration of the transducer. Therefore, we believe that the annular 2-2-2
piezoelectric composite has broad application prospects.

Keywords: 2-2 piezoelectric composites; PDMS; ultrasonic wave; ultrasonic transducer

1. Introduction

Ultrasound detection technology has been widely used in the fields of biomedicine [1,2],
underwater detection [3], and aerospace [4]. Among them, the performance of piezoelec-
tric ultrasonic transducers directly affects the measurement accuracy of the ultrasound
detection technology. However, piezoelectric ultrasonic transducers are normally based
on geometrical resonances of a piezoelectric element; this makes them present a reduced
frequency bandwidth response compared to other non-resonant ultrasonic transducers
(e.g., electrostatic transducers [5], etc.). Wide frequency band response is a key element in
many different applications, such as, for example, ultrasonic communications and spectral
materials characterization [6,7].

For this reason, in the past few decades, researchers have made some attempts to
improve the performance of piezoelectric transducers. One way is to change the connection
mode of the two-phase composite material. Among them, the 1-3 series and 2-2 series
piezoelectric composite materials are representative. The cylindrical piezoelectric compos-
ite material designed by Li et al. [8] based on 1-3 PZT-5A/epoxy resin has a bandwidth
of 7 kHz at a frequency of 72 kHz. According to Zhong et al. [9], based on the matching
layer and 1-3 type PZT4/epoxy/silicone rubber, the cylindrical piezoelectric composite
material has a bandwidth of 56 kHz. Qin et al. [10] reported that, based on the 1-3-2 type
PZT-5H/epoxy resin designed cylindrical piezoelectric composite material, the bandwidth
is 43.13 kHz. Hong-Wei et al. [11] demonstrated that based on the 2-2 type PZT-4/epoxy
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resin designed annular piezoelectric composite material, the bandwidth at 410 kHz fre-
quency is 60 kHz. Lv et al. [12] showed that the matching layer and 1-3 type PZT-4/epoxy
resin designed arc-shaped piezoelectric composite material has a bandwidth of 56.5 kHz.
Liu et al. [13], based on the annular piezoelectric composite material designed by high
frequency PMN-PT/epoxy 1–3, adjusted the shape and layout of the piezoelectric columns
and arranged them in a annular array with a bandwidth of 90% at a frequency of 50 MHz.
Based on the above references and references [14–16], it is shown that the annular structure
plays an active role in expanding the bandwidth.

Another way to improve the performance of the piezoelectric transducer is to change
the material of the polymer phase. Zhong et al. [9] demonstrated that the bandwidth of
the cylindrical piezoelectric composite material designed based on the polymer phase
material of epoxy resin/silicone rubber is 56 KHz; Rittenmyer et al. [17] designed a piezo-
electric composite material containing 50% PZT and 50% silicone rubber. Sharma et al. [18]
designed a composite material based on PZT-PDMS to improve vibration flexibility and
auxiliary damping. At the same time, PDMS is widely used in acoustics. Research by
Orbay et al. [19] showed that PDMS can be used as a channel in acoustic micro-mixers. Re-
search by Yeo et al. [20] showed that PDMS can be used in the propagation of surface acous-
tic waves. A study by Acquaticci et al. [21] showed that PDMS can be done on axicon lens
for focusing ultrasonic brain stimulation techniques. Research by Romo-Uribe et al. [22]
showed that adding 10 wt.% of PDMS to epoxy resin can effectively improve the thermo-
mechanical properties and toughness of epoxy resin. Compared with epoxy resin, PDMS
has a lower acoustic impedance. Therefore, the acoustic impedance matching between the
transducer and the air is improved to obtain a larger bandwidth. However, PDMS is also a
high-attenuation acoustic material.

In order to improve the high attenuation of PDMS, fillers are doped in PDMS. The study
by Wang et al. [23] showed that the addition of metal aluminum with a smaller Young’s mod-
ulus can obtain a larger electromechanical coupling coefficient. Sundar et al.’s [24] research
indicated that the addition of Al particles improved dielectric and piezoelectric properties.
Studies by Serbescu et al. [25] showed that silica particles are largely used as a reinforcing
agent for silicone elastomers. Research by Kuryaeva and Hsu et al. [26,27] showed that
Al2O3 and SiO2 can be used together in a ratio of 1:6.

To sum up, this paper proposes a miniature annular 2-2-2 piezoelectric composite
based on doped PDMS. We deduced the equivalent parameter formula and selected the
piezoelectric phase and polymer phase materials. Meanwhile, we used MATLAB and
COMSOL Multiphysics software for simulation. In terms of the manufacturing process, the
magnetron sputtering method was used to sputter the electrode, and the electrode material
was selected. In this study, we compared the performance advantages and disadvantages
of the transducer polymer phase material doped PDMS and traditional epoxy resin, and
the material properties of the polymer phase of annular piezoelectric composite were
optimized. In addition, compared to the original piezoelectric composite, the frequency
band was broadened. At the same time, more possibilities are provided for the further
study of piezoelectric composites.

2. Theoretical Research and Transducer Design
2.1. Derivation of Equivalent Parameters of Annular Piezoelectric Composite

As shown in Figure 1, the Z direction is taken as the polarization direction, the
piezoelectric phase is a transversely isotropic body, the polymer is an isotropic body, and
the polymer has no piezoelectric effect.
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Figure 1. Comparison of dielectric constant and loss tangent of different doping volume ratios: (a) 
PDMS, (b) 1 wt.% Al2O3:SiO2 (1:6) powder, (c) 3 wt.% Al2O3:SiO2 (1:6) powder, and (d) 5 wt.% 
Al2O3:SiO2 (1:6) powder. 
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Figure 1. Comparison of dielectric constant and loss tangent of different doping volume ratios: (a) PDMS, (b) 1 wt.%
Al2O3:SiO2 (1:6) powder, (c) 3 wt.% Al2O3:SiO2 (1:6) powder, and (d) 5 wt.% Al2O3:SiO2 (1:6) powder.

The second type of piezoelectric equation, whose boundary conditions are mechanical
clamping (S = 0, T 6= 0) and electrical short circuit (E = 0, D 6= 0), is:{

D = εSE + eS

T = −etE + cES
, (1)

The Z direction is set as the polarization direction, so when the 2-2 piezoelectric
composite material is stretched along the polarization direction, it will not cause the
coupling effect of shear deformation. Therefore, T4= T5= T6 = 0, E1= E2= 0 is used to
process the equation.

According to Newnham’s series and parallel model, Smith’s model, and Khan’s
derivation theory [28–33], the stress and strain relations along the X, Y, and Z directions
are obtained. In the formula, Vc represents the piezoelectric phase of 2-2 type piezoelec-
tric composites in the overall volume percentage, the right superscript C represents the
piezoelectric phase, the right superscript P represents the polymer phase, and the right
superscript CP represents the 2-2 type piezoelectric composites as a whole.

In the X direction, the piezoelectric phase and the polymer are connected in series,
each stress is equal, and the strain is the sum of each corresponding variation:

T1
cp = T1

c = T1
p, (2)

S1
cp = Vc × S1

c + (1−Vc)× S1
p, (3)
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In the Y direction, the piezoelectric phase and the polymer are connected in series,
each stress is equal, and the strain is the sum of each corresponding variation:

T2
cp = T2

c = T2
p, (4)

S2
cp = Vc × S2

c + (1−Vc)× S2
p, (5)

For the Z direction, the piezoelectric phase is parallel to the polymer, the strain is equal,
the stress is the sum of the corresponding forces, the electric field intensity is equal, and
the electric displacement component is the sum of the electric displacement components of
each phase.

S3
cp = S3

c = S3
p, (6)

T3
cp = Vc × T3

c + (1−Vc)× T3
p, (7)

E3
cp = E3

c = E3
p, (8)

Dcp
3 = Vc × Dc

3 + (1−Vc)× Dp
3 , (9)

After equivalent transformation, the equivalent equation with S1, S2, S3, D3 as inde-
pendent variables is obtained. Compared with the constitutive equation, the theoretical
calculation formula of macroscopic equivalent property parameters of 2-2 piezoelectric
composites is obtained.

CEcp
11 + CEcp

12 = Vc(
1− Cc

12

(Cc
11)

2 − (Cc
12)

2 ) + (1−Vc)(
Cp

11 − Cp
12

(Cp
11)

2 − (Cp
12)

2 ), (10)

m = CEcp
11 + CEcp

12 , (11)

n =

(
VcCc

13
Cc

11 + Cc
12

+
(1−Vc)C

p
12

Cp
11 + Cp

12

)
, (12)

CEcp
13 = mn, (13)

CEcp
33 = Vc[Cc

33 −
2(Cc

33)
2

Cc
11 + Cc

12
] + (1−Vc)

Cp
11(C

p
11 + Cp

12)− 2(Cp
12)

2

Cp
11 + Cp

12
+ 2mn2, (14)

ecp
33 = Vc[ec

33 −
2ec

31Cc
13

Cc
11 + Cc

12
] +

2mnVcec
31

Cc
11 + Cc

12
, (15)

In the same way, the piezoelectric equations of the first kind, whose boundary condi-
tions are mechanical freedom (T = 0, S 6= 0) and electrical short circuit (E = 0, D 6= 0),
are applied. The equivalent properties of 2-2 piezoelectric composites can be calculated
as follows:

SEcp
33 =

SEc
33 × SEp

33

VcSEp
33 + (1−Vc)SEc

33

, (16)

dcp
33 =

Vcdc
33SEp

33 + (1−Vc)d
p
33SEc

33

VcSEp
33 + (1−Vc)SEc

33

, (17)

SEcp
13 =

VcSEc
13 SEp

33 + (1−Vc)S
Ep
13 SEc

33

VcSEp
33 + (1−Vc)SEc

33

, (18)

2.2. Piezoelectric Phase Material Selection

In order to achieve the best electrical and acoustic properties of annular composites,
the choice of materials is very important. PZT was selected as the piezoelectric phase
and ceramic substrate. The common results are shown in Table 1. The data in the table
are temperature (◦C), piezoelectric constant (Pc/N), relative dielectric constant, loss angle
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tangent, electromechanical coupling coefficient, density (103 Kg/m3), piezoelectric voltage
constant, and sound velocity (m/s).

Table 1. Common PZT performance parameters.

Materials Tc(◦C) d33 ε33/ε0 tanδ kt ρ g33 C

PZT-4 328 289 1300 0.005 0.51 7.5 2.6 4000
PZT-5A 365 374 1700 0.02 0.49 7.75 2.48 4350
PZT-8 300 225 1000 0.004 0.48 7.65 2.5 4580

From the parameters in Table 1, PZT-4 had a low loss coefficient, low density, high
electromechanical coupling coefficient, longitudinal piezoelectric strain constant, and Curie
temperature, and could be applied to transmitting transducers. Although the dielectric
constant of PZT-8 was low, the loss coefficient was the lowest, the tensile strength and
stability were good, and it was more suitable for high-power transducers. PZT-5A had
a high longitudinal piezoelectric strain constant; relative dielectric constant, density, and
Curie temperature; and had good temperature stability. It was suitable for application
in high temperature environment as a transmitter and receiver dual-purpose transducer.
Therefore, PZT-5A was selected as the piezoelectric phase material.

2.3. Polymer Phase Material Selection

The piezoelectric ultrasonic transducer requires the wafer to have a larger electrome-
chanical coupling coefficient and a wider bandwidth in order to obtain a higher conversion
coefficient. However, the electromechanical coupling coefficient and bandwidth of PZT-5A
are small, so the choice of polymer phase materials is particularly important. At present,
the common material on the market that can be used for the polymer phase is epoxy resin.
However, many experiments have shown that when the polymer phase is epoxy resin, the
thickness electromechanical coupling coefficient is small, only about 0.6. At the same time,
the bandwidth of piezoelectric ultrasonic transducers using epoxy resin as the polymer
phase material is relatively small. In order to improve the performance of piezoelectric
transducers, many scholars have changed the material of the polymer phase. Among
them, the research of Sharma et al. [18] and Romo-Uribe et al. [22] showed that PDMS can
improve the flexibility of vibration, auxiliary damping, and thermomechanical properties.
This is because PDMS has a lower acoustic impedance than epoxy resin and can better
match with air. At the same time, it is a commonly used flexible sensor material that has
strong biochemical stability, high and low temperature stability, good biocompatibility, a
relatively simple production method, and low cost, so the polydimethylsiloxane (PDMS)
was planned to be selected as the polymer phase in this experiment.

However, PDMS is also a high-attenuation acoustic material. In addition, according to
Table 2 and referring to relevant information, the relative dielectric constant of polymer
phase material PDMS was about 2.75, and the tangent of loss angle was about 0.375. The
relative dielectric constant of PZT-5A was about 1700, and the positive angle tangent of
loss was about 0.02.That is, filling the polymer phase would lead to an increase in the
tangent of the loss angle. At the same time, the loss tangent value is an important basis
for judging the performance of piezoelectric materials. The smaller the loss tangent value,
the better the material performance and the smaller the power loss of the transducer
itself. Due to the large difference of thermal expansion coefficient, the metal electrode
deposited by sputtering directly on the electrode would be easy to crack, which would
affect the conductive effect of the electrode. Therefore, in order to solve the abovementioned
problems of PDMS, based on the research of many scholars [23–27], the PDMS was doped
with Al2O3:SiO2 (1:6) powder, with the hope of reduce the attenuation, increasing the
adhesion of the electrode, and reducing the loss tangent. Experiments have proved that
when doped with 3 wt.% Al2O3:SiO2 (1:6) powder, the loss tangent of the polymer phase
is about 0.01~0.03, and the adsorption force to the electrode is the best (see the following
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comparison). Figure 2 is a comparison of the loss tangent values of the polymer with
different doping volume ratios tested by the vector network analyzer and the pure PDMS.

Table 2. Properties of polymer phase materials for selection.

Material Type Epoxy Resin PDMS

ε33/ε0 3–4 2.75
Young’s modulus (kPa) 4.0 × 106 750

Density ρ (Kg/m3) 1140 970
Longitudinal wave velocity (m/s) 2400–2900 1000

Acoustic impedance (106 g/(cm2 × s)) 0.27–0.36 0.097
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Figure 2. Structure diagram of annular type piezoelectric transducer: (a) theoretical structure of piezoelectric transducer, (b)
PZT-5A after laser marking machine processing, (c) SEM image of doped composite material, and (d) surface condition of
electrode under confocal microscope.

2.4. Design and Simulation of Transducer
2.4.1. Annular Structure Design

The annular 2-2-2 piezoelectric composite is composed of type 2-2 piezoelectric com-
posite and ceramic substrate in series. PZT-5A was chosen as the piezoelectric phase
material, and PDMS doped with 3 wt.% Al2O3:SiO2 (1:6) [26,27] powder as the polymer
phase material. The annular structure is shown in Figure 2.

2.4.2. Numerical Calculation of Optimal Volume Percentage Range

We use MATLAB to calculate the equivalent performance parameters of piezoelectric
composites. We preliminarily determined the range of the optimal volume percentage
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and obtained the curves of equivalent density ρ, electromechanical coupling coefficient
of thickness kt, longitudinal wave sound velocity µ, and characteristic impedance Z with
the proportion of piezoelectric phase Vc and ceramic substrate Vc2, respectively, as shown
in Figure 3.
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Figure 3. (a) The relation curve of equivalent density ρ with Vc and Vc2, (b) the curve of longitudinal
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Z with respect to Vc and Vc2, and (d) the variation curve of thickness electromechanical coupling
coefficient of thickness kt with respect to Vc and Vc2.

From Figure 3a we can see that the equivalent density ρ increased with the increase
of Vc and Vc2. It can be seen from (b) that the longitudinal wave sound velocity increased
rapidly with the increase of Vc. When µ > 0.3, the growth rate gradually flattened out
and finally reached a fixed value. It can be seen from Figure 3c that the characteristic
impedance Z increased with the increase of Vc and Vc2. We can see from Figure 3d that
when Vc was very small, the electromechanical coupling coefficient of thickness kt of the
composite material was also very small. When Vc increased between 0 and 0.1, kt also
increased rapidly. When Vc > 0.1, as Vc and Vc2 increased, kt decreased slowly. As Vc
approached 1, kt decreased rapidly. It can also be seen from Figure 3d that for the annular
fitting result, kt had a minimum of about 0.45 and a maximum of about 0.65. In general, kt
was greater than that of the PZT-5A material itself (kt = 0.49). Therefore, the design of the
experiment can obtain a higher thickness electromechanical coupling coefficient than the
intrinsic electromechanical coupling coefficient of the material.

2.4.3. Optimal Size Simulation

We used COMSOL Multiphysics software to simulate the structure of the annular
2-2-2 piezoelectric composite. Simultaneously, simulations were performed under different
thicknesses t (mm), piezoelectric ring heights h (mm) and piezoelectric ceramic sheet
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diameters r (mm). The results are shown in Figure 4. The simulation results show that
when the polymer phase material of the piezoelectric ultrasonic transducer was doped
PDMS, the piezoelectric phase and the ceramic substrate accounted for 70% of the total
volume, and the polymer phase accounted for 30% of the total volume, the performance of
the transducer was the best.
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3. Preparation Method of Transducer Substrate and Electrode

Figure 5 is the fabrication process of the annular 2-2-2 transducer. First of all, a laser
marking machine was used to cut out the annular type structure, the composite material
was put into acetone solvent by an ultrasonic shock cleaning machine, and the impurities
produced by laser cutting were washed away. Then, nitrogen was used to blow dry and
put in the working area of 100 levels of cleanliness for standby. After mixing the PDMS
and the curing agent at a ratio of 10:1, it was stirred for 30 min and a vacuum machine was
used for vacuum treatment. Then, the polymer was poured into the structural skeleton
with a 0.3*4 mm syringe, and the filling height and the number of grams of polymer were
controlled to ensure that the polymer phase was evenly poured. Finally, the composite
material was placed on the drying table to cure the polymer. The volume percentage of
piezoelectric phase can be controlled by controlling the power of laser marking machine,
and the fabrication process is simple, the cost is very low, and it is very suitable for
mass production.

Electrodes prepared by magnetron sputtering can be optimized by controlling the
parameters of target material, composition ratio, sputtering power, and sputtering time.
At the same time, the purity and consistency of the electrode obtained by the sputtering
coating method are high. Therefore, this experiment used magnetron sputtering to prepare
the electrodes. Before magnetron sputtering, the rougher annular 2-2-2 composite material
obtained in the previous step was thinned and polished by a chemical mechanical thinning
polishing machine. The thinned and polished material was then etched with oxygen ions
in order to make the electrode adhere better to the material. Finally, the composite material
was put into acetone or alcohol solvent by ultrasonic shock cleaning machine again to
remove all kinds of impurities and surface stains. The composite was blow dried with
nitrogen and then we waited for the sputtering electrode.
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3.1. Simulation Results

We used COMSOL simulation software to simulate the vibration mode of the annular
2-2-2 transducer of PDMS doped with 3 wt.% Al2O3: SiO2 (1:6) powder in air. An infinite
air domain was added to the annular transducer, a perfect matching layer (PML) was
added to the outermost layer to simulate the absorption of sound waves in the process of
propagation away from the sound source, and an outfield calculation was established at
the interface boundary between the air domain and the PML domain. The transmission
voltage response TVR and directivity index DI were calculated by Formulas (19) and (20),
respectively. Among them, the transmission voltage response refers to the free field sound
pressure generated by the transmission transducer in the specified direction, 1 m away
from its effective sound center. In fact, the directivity index is the number of decibels higher
the sound level on the directivity transmitting sound axis is than the sound level of the
non-directivity transmitting sound field at the same distance. The simulation results are
shown in Figure 6.

TVR = SvL = 20log
[

Sv

(Sv)0

]
, (19)

where (S v)0= 1µPa/V = 106Pa/V.

DI = 10log
ID

IND
, (20)

In Formula (20), ID represents the sound intensity with directivity, and IND represents
the sound intensity without directivity.

The simulation results in Figure 6a show that the transmission voltage response (TVR)
of the annular 2-2-2 sensor with polymer phase of PDMS doped with 3 wt.% Al2O3: SiO2
(1:6) powder varied with frequency hen the piezoelectric phase and the ceramic matrix
accounted for 70% of the total volume and the polymer phase accounted for 30% of the
total volume. It can be seen from the figure that when the frequency was 160 kHz, the
bandwidth of the sensor −3 dB was about 90 kHz.



Sensors 2021, 21, 3123 10 of 17Sensors 2021, 21, x FOR PEER REVIEW 10 of 17 
 

 

  
(a) (b) (c) 

   
(d) (e) (f) 

Figure 6. Simulation results of the annular transducer: (a) transmission voltage response of the polymer phase doped 
PDMS annular transducer, (b) transmission voltage response of the polymer phase epoxy resin annular transducer, (c) 
directivity index of the polymer phase doped PDMS annular transducer, (d) the total sound pressure field of 160 kHz of 
the polymer phase doped PDMS annular transducer, (e) the total sound pressure field of 2500 kHz of the polymer phase 
doped PDMS annular transducer, and (f) the total sound pressure field of 400 kHz of the polymer phase doped PDMS 
annular transducer. 

The simulation result of Figure 6b shows that when the polymer phase material was 
epoxy resin, the transmission voltage response (TVR) of the annular 2-2-2 sensor changed 
with frequency when the piezoelectric phase and the ceramic matrix accounted for 70% 
of the total volume and the polymer phase accounted for 30% of the total volume. It can 
be seen from the figure that when the frequency was 160 kHz, the bandwidth of the 
sensor −3 dB was about 18 kHz. 

The reason for the difference is that the acoustic impedance of PDMS is lower than 
that of epoxy resin. Therefore, the acoustic impedance matching between the transducer 
and the air is improved to obtain a larger frequency band width. 

We can see from Figure 6c the directivity index (DI) curve of the annular 2-2-2 
transducer using COMSOL Multiphysics software. In the range of 160 kHz to 250 kHz, 
the directivity index of the transducer increased from 16 dB to 29 dB, whereas its trans-
mission voltage response remained almost constant. Because of this feature, the applica-
tion of the transducer in this working range is very wide. 

Figure 6d–f show the distribution of the total sound pressure field simulated by the 
annular transducer at the frequencies of 160 kHz, 250 kHz, and 400 kHz, respectively. It 
can be seen from the figure that the sound pressure converged in red and blue. The more 
obvious the red and blue position in the picture, the stronger the sound field at that po-
sition. The lower the frequency of the sound wave, the longer its wavelength, and the 
more obvious the sound field distribution. 
3.2. Testing of Electrodes 

Figure 6. Simulation results of the annular transducer: (a) transmission voltage response of the polymer phase doped PDMS
annular transducer, (b) transmission voltage response of the polymer phase epoxy resin annular transducer, (c) directivity
index of the polymer phase doped PDMS annular transducer, (d) the total sound pressure field of 160 kHz of the polymer
phase doped PDMS annular transducer, (e) the total sound pressure field of 2500 kHz of the polymer phase doped PDMS
annular transducer, and (f) the total sound pressure field of 400 kHz of the polymer phase doped PDMS annular transducer.

The simulation result of Figure 6b shows that when the polymer phase material was
epoxy resin, the transmission voltage response (TVR) of the annular 2-2-2 sensor changed
with frequency when the piezoelectric phase and the ceramic matrix accounted for 70% of
the total volume and the polymer phase accounted for 30% of the total volume. It can be
seen from the figure that when the frequency was 160 kHz, the bandwidth of the sensor
−3 dB was about 18 kHz.

The reason for the difference is that the acoustic impedance of PDMS is lower than
that of epoxy resin. Therefore, the acoustic impedance matching between the transducer
and the air is improved to obtain a larger frequency band width.

We can see from Figure 6c the directivity index (DI) curve of the annular 2-2-2 trans-
ducer using COMSOL Multiphysics software. In the range of 160 kHz to 250 kHz, the
directivity index of the transducer increased from 16 dB to 29 dB, whereas its transmission
voltage response remained almost constant. Because of this feature, the application of the
transducer in this working range is very wide.

Figure 6d–f show the distribution of the total sound pressure field simulated by the
annular transducer at the frequencies of 160 kHz, 250 kHz, and 400 kHz, respectively.
It can be seen from the figure that the sound pressure converged in red and blue. The
more obvious the red and blue position in the picture, the stronger the sound field at that
position. The lower the frequency of the sound wave, the longer its wavelength, and the
more obvious the sound field distribution.
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3.2. Testing of Electrodes

Due to the different thermal expansion coefficient of different metal targets, in order to
enhance the adhesion of the electrode, a four-probe tester was used. Under the condition of
sputtering with the same thickness, samples with different wt.% were tested by sputtering
with different metal targets; that is, the electrical conductivity of the electrodes sputtered by
Ag,Cu and Ag/Ti,Cu/Ti was tested, where the transition layer was Ti. Six different points
were selected for measurement, and then the test results of the same sputtered layer were
averaged. The measured sheet resistivity and sheet resistance are shown in Figure 7a,b. As
can be seen from the figure, in the case of the same sputtering thickness, the conductive
performance of the electrode with the transition layer Ti was significantly better than that
of the sputtering layer without the transition layer.
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At the same time, the adhesion of the interface between the electrode and the com-
posite material was tested by the direct pull method. The lead wire was soldered onto the
electrode film with a diameter of about 2 mm and an area of about 3 mm square. The test
results of the electrode are shown in the figure. It can be seen from the data in Figure 7c
that Cu/Ti as the electrode had the best adhesion force.

Figure 7d,e show the electrode adhesion after sputtering Cu/Ti and Ag/Ti electrodes
on the composite materials doped with different wt.% under confocal microscope. It can
be clearly seen from Figure 7e that the electrode sputtered with Ag/Ti had cracks and
obvious electrode pores, resulting in poor electrode continuity and affecting the conductive
effect. Although there were cracks in the sputtered Cu/Ti electrode, there were no electrode
pores. When doped with 3 wt.%, the crack of the electrode was obviously reduced, and the
adhesion and conductivity were the best.

To sum up, we chose Cu/Ti as the electrode of annular transducer.

3.3. Performance Testing

The annular piezoelectric composite material was prepared by the method described in
Figure 5. At the same time, ultrasonic precision impedance analyzer (E4990A, KEYSIGHT,
Beijing, China) was used for testing. In the test process, the wire length between the test
sample and the instrument should be reduced as much as possible so the effect of the
equivalent resistance of the piezoelectric vibrator on the test results can be ignored, so that
the measured minimum impedance frequency and maximum impedance frequency are
approximately equal to the resonant frequency and anti-resonant frequency.

The following electrical parameters of the sample were tested: primary resonance
frequency fr (kHz), secondary resonance frequency fr2 (kHz), thickness electromechanical
coupling coefficient KT , longitudinal wave velocity µ (m/s), density ρ (Kg/m3), character-
istic impedance Z (MRayl), and relative dielectric constant εr. The test results are shown
in Table 3.

Table 3. Performance tests.

Sample fr fr2 Kt µ ρ Z εr

1 157 396 0.67 3084 5604 17.283 1121
2 158 392 0.68 3100 5600 17.360 1120
3 157 395 0.65 3080 5601 17.251 1118
4 156 396 0.67 3080 5602 17.254 1120
5 157 395 0.64 3072 5600 17.203 1118

The test results were relatively close to the data calculated by the data analysis software
and COMSOL Multiphysics software. The error between the experimental value and the
theoretical value is shown in Table 4. Among them, ∆ fr% and ∆ fr2% are the percentages
of the error values of primary resonance frequency and secondary resonance frequency,
respectively, whereas ∆KT%, ∆µ%, ∆ρ%, and ∆Z% are the percentages of the error values
of thickness electromechanical coupling coefficient, longitudinal wave sound velocity,
equivalent density, and characteristic impedance, respectively. The calculation method
of all error values was the ratio of the actual value and the theoretical value, and the
results were positive and retained two decimal places. Therefore, it can be considered
that the above theoretical parameter analysis and simulation results are close to the actual
calculated values.
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Table 4. The comparison between the experimental value and the experimental value.

Sample ∆fr% ∆fr2% ∆Kt% ∆µ% ∆ρ% ∆Z%

1 1.86 1.00 1.47 6.54 1.89 4.75
2 1.25 2.00 0.00 6.06 1.82 5.21
3 1.86 1.25 4.41 6.67 1.84 4.55
4 2.50 1.00 1.47 6.67 1.85 4.57
5 1.86 1.25 5.88 6.91 1.82 4.26

3.4. Bandwidth and Relative Pulse Echo Sensitivity Test

The pulse echo method of ultrasonic nondestructive testing was used to test the band-
width. The experiment needed a pulse signal generator (AFG3021C, Tektronix, Shanghai,
China), an oscilloscope with FFT function (TDS 1001B, Tektronix, Shanghai, China), and
four order probe calibration blocks with thicknesses of 2.5, 5, 10, and 20 mm. The length
of the near-field region [21] was calculated with Formulas (21) and (22), and the width of
the calibration block was larger than the diameter of the tested sample, so the part with
a thickness of 20 mm was selected for testing. The design of the experimental platform
is shown in Figure 8a. In order to avoid interference, a double probe detection method
was used in the experiment; that is, a probe transmitted and a probe received, and a pulse
signal generator was used to excite a square wave signal with 160 kHz frequency and 1V
amplitude. For samples 1–5, the piezoelectric phase material was PZT-5A, the polymer
phase material was PDMS doped with 3 wt.% Al2O3: SiO2 (1:6) powder, the piezoelectric
phase and ceramic matrix accounted for 70% of the total volume, and the polymer phase
accounted for 30% of the total volume. The experimental results of samples 1–5 are shown
in Figure 8b,c and Table 5. For samples 6–10, the piezoelectric phase material was PZT-5A,
the polymer phase material was epoxy resin, the piezoelectric phase and ceramic matrix
accounted for 70% of the total volume, and the polymer phase accounted for 30% of the
total volume. The experimental results of samples 6–10 are shown in Figure 8d,e and
Table 6. The relative pulse echo sensitivity Srel (dB) was calculated by Formula (23). The fu
and f 1 are the high and low frequencies at the echo amplitude 50% (−6 dB) lower than the
maximum echo amplitude. VP-P is the peak-to-peak voltage displayed by the oscilloscope
from the sample to be measured.

N =
D2

4λ
=

A
πλ

, (21)

In Formula (21), D is the diameter of the transducer m, A is the effective area of the
transducer m2, and λ is the wavelength of the ultrasonic wave propagating in the medium,
which can be calculated using Formula (22):

λ =
c
f

, (22)

where c is the wave speed of ultrasonic wave propagation in the medium m/s, and f is the
frequency of ultrasonic wave Hz.

Srel = 20 ∗ lg(Ue/Ua), (23)

where Ue and Ua are the peak-to-peak voltage (V) of the return wave from the specified
reflector and the peak-to-peak voltage (V) applied to the tested sample, respectively.
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Table 5. Test result of doped PDMS + annular transducer.

Sample −3 dB (kHz) −6 dB (kHz) f1 (kHz) fu (kHz) Vp-p (V) Srel (dB)

1# 100 165 60 225 15.40 17.73
2# 98 162 62 224 15.90 18.01
3# 102 167 58 225 15.10 17.56
4# 104 168 58 226 15.80 17.95
5# 100 165 60 225 15.20 17.62

Table 6. Test result of epoxy resin + annular transducer.

Sample −3 dB
(kHz)

−6
dB(kHz) f1 (kHz) fu (kHz) Vp-p (V) Srel (dB)

6# 20 36 142 178 1.04 0.34
7# 26 40 140 180 1.10 0.83
8# 22 38 142 180 1.08 0.67
9# 22 38 142 180 1.08 0.67
10# 20 36 142 178 1.04 0.34

4. Conclusions

In summary, a piezoelectric ultrasonic transducer based on doped PDMS as a polymer
phase material was designed. First, the formula for equivalent parameters was derived, and
then the optimal size and simulation results were determined with MATLAB software and
COMSOL Multiphysics software. For the polymer phase, PDMS was used to replace the
common epoxy resin available in the market, and the original PDMS was doped with 3 wt.%
Al2O3:SiO2 (1:6) powder, which broadened the frequency band. The experimental results
show that the maximum bandwidth of−3 dB could reach 104 kHz when the frequency was
160 kHz. The results of the electrode test show that the use of Cu/Ti electrode improved
the electrical conductivity of the single electrode. At the same time, due to the unique
copolymerization and adhesion of PDMS, it could be flexibly doped with materials of
different properties to change the performance of the polymer phase. Thus, it can be
argued that the annular 2-2-2 piezoelectric composite has broad application prospects.
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