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Allogeneic islet transplantation allows for the re-establishment of glycemic control with the
possibility of insulin independence, but is severely limited by the scarcity of organ donors.
However, a new source of insulin-producing cells could enable the widespread use of cell
therapy for diabetes treatment. Recent breakthroughs in stem cell biology, particularly
pluripotent stem cell (PSC) techniques, have highlighted the therapeutic potential of stem
cells in regenerative medicine. An understanding of the stages that regulate β cell
development has led to the establishment of protocols for PSC differentiation into β
cells, and PSC-derived β cells are appearing in the first pioneering clinical trials. However,
the safety of the final product prior to implantation remains crucial. Although PSC
differentiate into functional β cells in vitro, not all cells complete differentiation, and a
fraction remain undifferentiated and at risk of teratoma formation upon transplantation. A
single case of stem cell-derived tumors may set the field back years. Thus, this review
discusses four approaches to increase the safety of PSC-derived β cells: reprogramming
of somatic cells into induced PSC, selection of pure differentiated pancreatic cells,
depletion of contaminant PSC in the final cell product, and control or destruction of
tumorigenic cells with engineered suicide genes.
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INTRODUCTION

In patients with type 1 diabetes (T1D), glycemic control can be reestablished by allogeneic islet
transplantation. However, this approach is severely limited by the scarcity of organ donors. A new
source of insulin-producing cells would significantly increase the possibility of cell therapy becoming
a broad and standard therapy for the treatment of all diabetic patients. Pluripotent stem cells (PSC),
such as embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC) derived from somatic
cell reprogramming, can differentiate in vitro into insulin-producing cells with established protocols
that recapitulate embryonic pancreas development. In the first clinical trials, PSC-derived β cells were
transplanted into patients with type 1 diabetes (NCT03163511, NCT02239354, and NCT04786262).
In this context, the safety of the final cellular product in developing PSC derivatives for
transplantation prior to implantation is crucial (1,2). Indeed, not all PSC reach complete
differentiation into functional β cells in vitro, and a fraction of the cells may remain
undifferentiated, exposing recipients to the risk of teratoma formation post-transplantation.

The most commonmethod for determining pluripotency is the teratoma formation model, which
employs immunodeficient animal models, in which pluripotent cells develop into teratomas formed
from all three germ layers. A direct comparison of the teratoma formation capacity between ESC and
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iPSC revealed that iPSC form teratomas more efficiently and
quickly than ESC (3). It is also likely that the extended in vitro
culture and manipulation of PSC facilitates accumulation of genetic
lesions (4–6), as well as genetic and epigenetic abnormalities during
reprogramming to pluripotency (1,7). Even a very small contaminant
at the end of differentiation constitutes a risk. It has been found that as
few as two ESC colonies implanted into immunodeficient mice can
result in teratoma formation; when the clumps were trypsinized to
single-cell suspensions before injection, 245 cells were sufficient to
form teratomas after 10 weeks (8). Several groups have reported the
formation of teratomatous tissue elements in grafts when not purified
PSC-derived pancreatic endoderm cells were infused in mice (9–13).
Although recent protocol refinements have reduced this risk and
increased the percentage of mature β cells obtained, there remains a
need to control contaminant pluripotency in β cells. Therefore, the
therapeutic applications of PSC-differentiated derivatives require
strategies for the control of innate tumorigenicity and the
malignant transformation of inappropriately differentiated cells.

The foreseeable implementation of stem cell-based therapies
for the treatment of thousands of patients requires extreme
caution, as only a single case of stem cell-derived tumors can
set the field back several years. The first published data on
patients with T1D transplanted with PSC-derived pancreatic
progenitors showed that the transplanted cells did not form
tumors, but only a percentage of the implanted cells survived
and secreted C-peptide (14,15). Therefore, whether a greater
number of implanted and engrafted cells can give rise to
teratomas remains unclear. In this review, approaches to
increase the safety of PSC-derived β cells are discussed, which
can be summarized in four different strategies:

(1) The generation of safe iPSC using advanced techniques for
cell reprogramming that conjugate non-integrating delivery
of Yamanaka’s factors and high efficiency.

(2) The selection of pure differentiated cells based on specific β
cell or pancreatic precursor markers, allowing for the
selection of target cells only.

(3) The depletion of contaminant PSC in the final cell product,
using chemical inhibitors or the selective killing of
contaminant stem cells.

(4) The control of tumorigenic cells with suicide genes, in which
stem cells are harbored with one or more suicide gene
cassettes, resulting in cell death in the presence of specific
prodrugs.

Herein, these approaches are discussed with the belief that the
best results will most likely be obtained using a strategy that
combines the choice of the safest PSC source, the selection of the
cellular product, and protection via the use of safety switches.

GENERATION OF THE SAFEST INDUCED
PLURIPOTENT STEM CELL

IPSC can be derived from any individual, with the advantages of
possessing the same plasticity as ESC while avoiding the ethical
problems arising from the use of human embryos. For these

reasons, iPSC are considered valuable tools in regenerative
medicine, disease modelling, and drug discovery. IPSC are
generated through the genetic reprogramming of adult
somatic cells; however, inserting reprogramming factors into
adult cells raises safety issues. In fact, iPSC reprogramming was
originally obtained by the overexpression of four transcription
factors (Oct4, Sox2, Klf4, and c-Myc), subsequently denoted as
the “Yamanaka factors,” with a retroviral delivery system in
murine and human fibroblasts (16,17). The disadvantage of this
original reprogramming method from a translational
perspective is that reprogramming vectors are randomly
integrated into the genome of transduced cells, leading to
risks including teratomas and genomic instability (18,19).
Several integration-free alternative methods have been
developed and tested to overcome these safety issues.
Without the intention of describing all the reported
reprogramming techniques and how these have changed
since the discovery of iPSC 15 years ago, this review focuses
on the optimal reprogramming for the safe application of iPSC
in the field of cell replacement therapies.

The most important factor that should be considered for the
reprogramming of donor cells includes the “footprint” that a
particular method deposits in the reprogrammed cell type.
Within cellular replacement therapy, iPSC should have no
footprint and no residual transgene sequences of the
reprogramming vectors in the final iPSC product. This can
be achieved using methods of transfection with episomal
plasmids or minicircles, infection with non-integrating
Sendai Virus (SeV) or adenovirus, transfection with
synthetic mRNA/miRNA, or transposition with the
piggyBac transposon, all of which leave no traces of the
integration of the transgenes in the genome of
reprogrammed iPSC (18). Alternatives include the use of
lentiviruses and retroviruses that, with an additional step
after reprogramming, allow for the excision of the
transgene, such that only a small portion of the
reprogramming vector remains integrated in the iPSC
genome. Combining this characteristic of the “zero”
footprint with an acceptable level of efficiency and the need
for commercially available easy-to-use reagents that meet good
manufacturing practice (GMP) standards, episomal plasmids
and Sendai virus are currently the best choices for generating
iPSC for projects with translational endpoints (20,21).

At present, the most commonly used strategy for
reprogramming with SeV involves the delivery of Oct4, Sox2,
Klf4, and L-Myc genes (22). Sendai virus is an enveloped virus
with a single-chain RNA genome, and its two main
characteristics make SeV the most attractive system for
reprogramming. First, it can infect a wide range of cell types,
infecting cells by attaching itself to the sialic acid present on the
surface of multiple somatic cells, including PBMC, CD34+ cells,
and T cells. Second, SeV vectors are made of RNA and remain in
the cytoplasm, ensuring that they do not integrate into the host
genome or alter the genetic information of the host cell (22–24).
Importantly, however, in the most recent version of SeV, the F
gene, responsible for fusion protein expression, was deleted, and
new temperature sensitivity mutations to the polymerase-
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related genes were added to counteract the formation of non-
transmissible virus-like particles. These modifications prevent
transmission and limit the propagation of reprogramming
vectors, helping to clear the virus faster after reprogramming
and reducing cytotoxicity to cells (25).

SELECTION OF PURE DIFFERENTIATED
CELLS

IPSC reprogramming using a safe method represents a step
towards guaranteeing a safer cellular product. However, it does
not protect completely against the risk of tumorigenesis. Indeed,
although multistep differentiation protocols lead to the in vitro
production of functional insulin-producing cells from PSC
(26–30), the differentiated cultures can also contain
undesirable proliferating cell types, such as residual
pluripotent cells, which can jeopardize graft safety. The most
intuitive and reasonable approach for the selection of β cells,
capable of purifying the cell preparation to be transplanted while
eliminating unwanted unsafe cells, is the positive selection of the
target cells. This approach is mainly mediated by antibodies that
bind to specific proteins expressed on the surface of pancreatic
cells. Two main strategies have been developed: the selection of
pancreatic endoderm (PE) progenitors and the selection of
mature β cells. In both cases, it has been necessary to rely on
transcriptomic and proteomic studies aimed at describing specific
markers (31–35). Despite efforts to characterize insulin-
producing cells and their precursors, there are currently no
universally shared surface markers of these cell types. Finding
endodermal-specific markers is not an easy task and requires the
careful analysis of differentiating cells during embryogenesis. One
elegant study mined microarray gene expression data from early
murine embryos to identify two PE-specific cell-surface proteins
(31,32), namely PDGFRα and Lrp2. However, the presence of
RNA during development does not always correlate with the
presence of the protein (33). Another study revealed that of all
protein classes examined, cell-surface proteins in particular
showed a poor correlation between protein and RNA
abundance when comparing cell types (34). Therefore, RNA
expression may be an unreliable predictor of specific surface
protein expression; thus, proteomic approaches are needed to
identify protein markers that can distinguish cell types in
developing embryos. In a pioneering study, Rugg-Gunn et al.
developed a direct proteomic approach to explore the cell-surface
proteome for developmental lineages using affinity labelling and
mass spectrometry. They identified molecules with potential
importance in the separation and migration of endoderm,
which allowed for the prospective isolation and
characterization of viable PE directly from mouse blastocysts
(35). The results obtained in the mouse model highlighted a
strategy with which to find specific lineage markers for transfer
into human cells.

An early work aimed at identifying β cell markers useful for the
purification of cells during the last stages of differentiation from
stem cells was published in 2011 by the group of scientists of
Viacyte Inc., who proposed three proteins as specific to different

stages (9). Using a flow cytometry-based screening of commercial
antibodies, the researchers identified cell surface markers for the
separation of pancreatic cell types derived from human ESC. In
particular, CD200 and CD318 were used as markers of endocrine
cells. However, when these sorted cells were implanted in vivo,
they gave rise mainly to glucagon-positive cells. In contrast,
CD142, also known as a tissue factor, was found to enrich PE
cells, which give rise to all pancreatic lineages, including
functional insulin-producing cells after transplantation into
mice. In fact, the transplantation of CD142 sorted cell
aggregates gave rise to functional, glucose-responsive, insulin-
secreting cells in vivo, whereas the transplantation of unenriched
material resulted in teratomatous graft rates of 45% (9). The main
limitation of the use of CD142 as a selectionmarker for pancreatic
differentiation is its low specificity. Several other cell types,
including endothelial cells, monocytes, macrophages, and
platelets, express CD142.

In the same year, a study reported CD24 as a new surface
marker for pancreatic progenitors differentiated from human
ESC (36). CD24 is a sialoglycoprotein normally expressed on
mature granulocytes and B cells that modulates growth and
differentiation signals in these cells. In this study, CD24 was
identified as a positive marker of pancreatic progenitors by co-
staining for PDX1 and a panel of cell surface antigens at the
pancreatic progenitor stage of human ESC differentiation.
CD24+ cells co-expressed most of the key transcription
factors of pancreatic progenitors, and the expression of
important pancreatic genes was significantly enriched in
CD24+ cells compared with CD24− cells. Notably, CD24+

cells could differentiate into insulin-producing cells, but
CD24− negative cells could not. As in the case of
CD200 and CD318, the use of CD24 did not include a
follow-up to purify differentiated cells, and to date,
CD24 plays a role mainly as a cancer stem cell marker for
ductal adenocarcinoma (37).

A substantial new impetus to the surface marker-based
selection approach came when three major papers on the
GP2 protein were published in 2017. In the first study, the
researchers performed microarray analysis to compare the
gene expression pattern of PDX1+/NKX6.1+ pancreatic
progenitors with that of PDX1+/NKX6.1- cells and identified
progenitor-specific cell surface markers (38). CD142 and
CD200, two cell surface markers previously shown to enrich
pancreatic endoderm cells and endocrine progenitors (9) were
expressed in both cell populations. In addition, the researchers
identified a cell surface maker, glycoprotein 2 (zymogen granule
membrane GP2), which was enriched in the PDX1+/NKX6.1+ cell
population obtained from PSC differentiation and fetal pancreas
(38), which could potentially be used for the isolation of
pancreatic progenitors. Furthermore, the researchers showed
that the isolated GP2+ progenitors efficiently differentiated
into glucose-responsive insulin-producing cells in vitro.
Another study reported that GP2+ cells, obtained from the
human pancreas at 7 weeks of development, purified and
cultured in vitro, might give rise to acinar cells, in which
GP2 is upregulated, as well as ductal and endocrine cells, in
which GP2 is downregulated or silenced. In this study, human
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fetal pancreatic differentiation was reconstructed using GP2 in
combination with CD142 to mark pancreatic progenitors, which
could give rise to GP2hiCD142+ acinar cells or enter the endocrine
pathway and express NEUROG3 by turning off GP2 and CD142
(39). At the same time, Cogger et al., in Canada, used a
proteomics approach to phenotypically characterize pancreatic
progenitors derived from PSC and distinguish these cells from
other populations during differentiation (40). In addition,
GP2 has been identified as a specific cell surface marker for
pancreatic progenitors (40). In the developing human pancreas,
GP2 is co-expressed with the endocrine key transcription factors
NKX6.1 and PTF1A. In addition, isolated PSC-derived GP2+ cells
were shown to generate β cells more efficiently than GP2− and
unsorted populations, decreasing the percentage of unwanted
PSC-derivatives, consequently increasing the safety of the final
cell product. This last point was taken up and confirmed by a very
recent study by the same group, wherein they showed that sorted
GP2-expressing pancreatic progenitors give rise to all endocrine
and exocrine cells in vivo, including functional β cells, without
influencing the endocrine-to-acinar ratio within the graft, and
that GP2 sorting prevents teratoma formation in vivo. These
findings support GP2 as a candidate marker for cell selection with
potential for clinical use (41).

Another surface marker for differentiating pancreatic cells, but
at an earlier stage of differentiation, was recently reported: the
CD177/NB1 glycoprotein. This glycoprotein was identified as a
novel surface marker to isolate pancreatic progenitors from
definitive endoderm cells derived from human PSC. Isolated
CD177+ definitive endoderm differentiated more
homogeneously into pancreatic progenitors and into more
functionally mature and glucose-responsive β cells than cells
from unsorted differentiation cultures (42). Therefore,
CD177 is a promising marker for cell selection during
pancreatic differentiation to improve differentiation efficiency,
but it is likely to be an early marker to purify progenitors for safety
purposes. It is worth noting the work by Melton’s team, whose
research resulted in a differentiation protocol to produce β cells
that are now being transplanted into patients in an ongoing
clinical trial (NCT04786262). In a study published in Nature in
2019, Veres et al. used a strategy for endocrine cell enrichment
based on single-cell dissociation followed by controlled re-
aggregation (43,44). This technique was coupled to the
selection of cells with a marker, CD49a/ITGA1, identified by
single-cell transcriptomic analysis (45). Anti-CD49a staining and
magnetic microbead labelling allowed for the efficient sorting of
stem cell-derived β cells. This method produced clusters
containing up to 80% β cells from embryonic and induced
pluripotent stem cell lines. These highly purified β cells were
responsive to glucose in vitro and had increased stimulation
indices compared to unsorted, re-aggregated islets in both
static and dynamic glucose-stimulated insulin secretion (GSIS)
(45). It is reasonable to assume that this purification level reduces
the risk of non-pancreatic contaminants in the final cellular
product, thereby increasing its safety. In 2020, one study
reported an antibody panel against cell surface antigens to
enable the isolation of highly purified endocrine subsets from
mouse islets, and CD71 was used as a specific marker of adult β

cells. CD71 is a transferrin receptor that mediates the uptake of
transferrin-bound iron whose expression is regulated in a
glucose-dependent manner. β cells were also found to express
high levels of several other genes implicated in iron metabolism,
and iron deprivation significantly impaired β cell function (46).
These findings have interesting implications on iron metabolism
in β cell function, as well as for the discovery of CD71 as a novel
surface marker of β cells, at least in mouse islets.

Another potential marker for the identification of adult β
cells is CD81/TSPAN28. In a recent study, the researchers
performed single-cell mRNA profiling of early postnatal
mouse islets, re-analyzed several single-cell mRNA
sequencing datasets from mouse and human islets, and
complemented the findings by testing iPSC-derived
endocrine cells, Min6 insulinoma, and human EndoC-βH1 β
cell lines (47). They found that CD81 marks immature β cells in
healthy islets and labels dedifferentiated β cells in metabolically
stressed environments, such as during diabetes progression.
Since it is possible that β cells derived from stem cells share
some features of dedifferentiated or immature cells, CD81 could
be a valuable tool for targeting β cells and purifying them from
the bulk of progenitors and non-β cells present in the final cell
product of differentiation. Since CD81 likely marks immature β
cells, with reduced levels of expression associated with increased
gene regulatory networks involved in maintaining β cell
maturation, it could be used to select differentiating cells at
the stage of immature β cells, when Nkx6.1 is upregulated, but
cells do not yet secrete insulin (47).

Another possibility for the efficient purification of insulin-
positive cells involves cell sorting based on the expression of
insulin at the immature β-like stage. However, this purification
method, successfully reported in some studies (30), requires the
cell sorting of a genetically modified human ESC line in which a
green fluorescent protein (GFP) reporter gene was inserted into
the endogenous human insulin locus. One paper using a new
approach was published this year, in which the researchers
describe the generation of an array of monoclonal antibodies
against cell surface markers that selectively label stem cell-derived
islet cells (12). High-throughput screening identified promising
candidates, including three clones that marked a high proportion
of endocrine cells in differentiated cultures. These three
antibodies, 4-2B2, 4-5C8, and 4-5G9, were used to
magnetically sort PSC-derived islet cells, which led to the
formation of islet-like clusters with improved GSIS and
reduced growth upon transplantation. Thus, these antibodies
selectively isolated islet cell populations from PSC
differentiated in vitro using a scalable magnetic sorting
approach, facilitating the large-scale production of safe and
functional islets from stem cells (12).

DEPLETION OF CONTAMINANT
PLURIPOTENT STEM CELLS IN THE FINAL
CELL PRODUCT
Despite its efficiency, antibody-mediated cell sorting using
surface markers to detect and select pancreatic cells does not
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guarantee a lack of undifferentiated cells in the sorted
group. Moreover, cell sorting is a technique that inherently
exerts a strong mechanical stress, which can heavily affect cell
viability. However, antibody-mediated strategies could still be
combined with other positive selection solutions or even replaced
with direct depletion of the contaminant pluripotent cells
remaining after the differentiation process. In fact, the two
main characteristics of PSC, namely pluripotency and active
proliferation capacity, can be exploited for the development of
highly selective strategies that facilitate their elimination (48).
Therefore, a variety of approaches have been reported, including
the use of drugs/phototoxic approaches linked to antibodies
targeting PSC surface-specific antigens or small molecules for
selective elimination (Figure 1).

Antibody-Mediated Selection
As previously described, cell sorting using antibodies against
specific surface proteins has primarily been used to isolate
desirable cell types after differentiation. Alternatively,
undifferentiated PSC can be identified by exploiting specific
surface marker expression profiles. Antibodies against tumor-
related antigen (TRA)-1-60 and TRA-1-81 or stage-specific
embryonic antigens (SSEAs), such as SSEA-3, SSEA-4 (49),
and SSEA-5 (50) were used to negatively select PSC from a
mixed cell population. However, when using magnetic-
activated cell sorting (MACS), it was not possible to achieve
complete separation, and thus the elimination of undifferentiated
ESC, while using highly selective fluorescence-activated cell
sorting (FACS), thereby compromising the viability of PSC
derivative cells (49). Therefore, the use of an antibody capable
of inducing cell death or separation based on a specific surface
protein linked to a cytotoxic agent is a valid approach to reduce
the potential for teratoma formation in heterogeneously

differentiated cultures, as the specificity of antibodies can be
exploited without using sorting techniques.

Choo et al. generated 10 monoclonal antibodies against the
surface antigens of undifferentiated ESC, showing strong
reactivity against undifferentiated, but not differentiated, cells.
Among these antibodies, IgM mAb 84, which binds the antigen
podocalyxin-like protein-1, was found to be cytotoxic to
undifferentiated ESC in a concentration-dependent and
complement-independent manner. Single-cell suspensions of
undifferentiated ESC pre-treated in vitro with mAb 84 before
transplantation into mice did not form tumors even 18 weeks
after infusion (51). This strategy was later combined with MACS
selection with an anti-SSEA-1 antibody for the selective removal
of 99.1–100% of undifferentiated ESC (52). One of the main
problems associated with this strategy is the large size of mAb 84,
which can impede penetration into embryoid bodies (EB) or cell
clusters. Consequently, four antibody fragment formats of mAb
84 were engineered and among these only one, scFv 84-HTH, a
single chain variable fragment with a dimerizing helix–turn–helix
motif, could recapitulate the cytotoxicity of mAb 84 on multiple
hESC lines (53).

Another strategy that exploits hyperglycosylated podocalyxin
expression is based on the recombinant lectin probe, rBC2LCN.
Initially, this molecule was used for fluorescence-based imaging
(54) and quantitative detection (55). However, it was later
conjugated with a catalytic domain of Pseudomonas aeruginosa
exotoxin A, which led to the formation of a recombinant lectin-
toxin fusion protein, termed rBC2LCN-PE23. rBC2LCN-PE23
binds to human PSC, followed by its internalization, allowing for
the intracellular delivery of the cytotoxic protein, which is
sufficient to completely eliminate human PSC but not
differentiated cells (56). Ben-David et al. also showed that a
cytotoxin-conjugated antibody that selectively targets Claudin-

FIGURE 1 | Potential targets and strategies acting on different cell compartments for the induction of selective PSC death.
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6-positive cells efficiently kills undifferentiated cells, thus
eliminating the tumorigenic potential of human PSC cultures
containing undifferentiated cells, as Claudin-6 is absent in adult
tissues but highly expressed in undifferentiated cells (57).

In a recent study, desmoglein 2 (Dsg2), which is highly
expressed in undifferentiated PSC versus somatic tissues, was
targeted using the monoclonal antibody K6-1 linked to the
chemotherapeutic agent doxorubicin (DOX). Dsg2-positive
hPSC were selectively targeted by K6-1-DOX, which led to
the pH-dependent endosomal release and nuclear localization
of DOX, with subsequent cytotoxicity via an apoptotic caspase
cascade. The drug is highly efficient in preventing teratoma
formation upon iPSC transplantation (58); however, its effect on
PSC-derived cells transplanted in vivo has not yet been
investigated. Conversely, Sougawa et al. proposed a new
clinical grade method to eliminate residual undifferentiated
iPSC from differentiated cardiomyocyte cell culture using the
anti-CD30 antibody-drug conjugate brentuximab vedotin,
which selectively kills CD30-positive cells by inducing cell
cycle arrest in the G2/M phase followed by apoptosis (59).
The researchers demonstrated that undifferentiated iPSC
express the surface marker CD30, a TNF receptor
superfamily member, at high levels, and brentuximab vedotin
treatment induces PSC apoptosis and prevents teratoma
formation without affecting the differentiated cardiomyocytes
(59). We recently applied this strategy in the field of diabetes,
confirming that treatment with brentuximab vedotin efficiently
induced cell death in human iPSC while sparing iPSC-derived β
cell identity and function. The transplantation of non-treated
human iPSC-derived β cells into NOD-SCID mice may result in
teratoma formation within 4 weeks, whereas cells treated with
brentuximab vedotin prior to transplantation did not result in
the formation of teratomas. These findings suggest that
targeting the CD30-positive iPSC residual fraction reduces
the tumorigenicity of human iPSC-derived β cells, potentially
enhancing the safety of iPSC-based β cell replacement
therapy (60).

Another strategy for eliminating pluripotent cells is the
phototoxic approach. Indeed, in 2003, a new method for
selective cell targeting was described, based on the use of
light-absorbing microparticles and nanoparticles heated by
short laser pulses to create highly localized cell damage (61).
This strategy was then applied for the ablation of hPSC from
differentiating cell cultures using antibodies directed against the
hPSC surface markers Tra-1-60 and Tra-1-81, which were
targeted with nanogold particles. Subsequent laser exposure
resulted in 98.9 ± 0.9% elimination of hPSC by
photothermolysis, while co-treated differentiated cells
maintained their normal proliferation and differentiation
potential. Moreover, the in vivo transplantation of treated
mixed hPSCs/differentiated cell cultures revealed that laser
ablation can strongly reduce the risk of teratoma formation
(62). Alternatively, the PSC-specific fluorescent probe
CDy1 was found to induce the selective death of murine and
human PSC. CDy1 is a fluorescent rhodamine compound that
induces the generation of reactive oxygen species in PSC and
determines selective PSC death by simple visible light irradiation,

without affecting other differentiated cells. Notably, a single
1 minute exposure of CDy1-stained PSC to visible light
confirmed the inhibition of teratoma formation in mice (63).

Small Molecules
The first report of a small molecule that induced the selective cell
death of hESC dates back to 2004, when Bieberich et al. described
that, in tumors formed after engraftment of differentiated
neuronal cells into the mouse brain, Oct-4 expression co-
localized with that of PAR-4, a protein that mediates
ceramide-induced apoptosis during neural differentiation of ES
cells. They then demonstrated that a ceramide analog, N-oleoyl
serinol (S18), can eliminate human Oct4+/PAR4+ cells and
increase the proportion of Nestin-positive neuroprogenitors,
and that this enrichment prevents teratoma formation (64).
However, this strategy exploits the characteristics of
pluripotent cells committed to neuronal differentiation and is
therefore not applicable for differentiation into other lineages,
including β cells. Instead, a feature common to pluripotent stem
cells, which distinguishes them from all somatic cells, is their high
susceptibility to DNA damage (65), as PSC commit programmed
cell death even under low genotoxic stress to ensure genomic
stability (66). This rapid apoptosis process results from the high
induction of mitochondria-dependent cell death mechanisms,
which can be mediated through several processes, such as
cytoplasmic p53, mitochondrial translocation of BAX, or
through the inhibition of ESC-specific anti-apoptotic proteins,
such as BIRC5 (Survivin) or BCL10 (67). This peculiarity has
therefore been widely exploited in research on small molecules
capable of inducing the selective death of PSC, since adult stem/
progenitor cells express other pro-survival proteins. For instance,
it was demonstrated that a single treatment of PSC-derived cells
with chemical inhibitors of Survivin, such as the flavonoid
quercetin (QC) or YM155, induced the selective and complete
cell death of undifferentiated hPSC and prevented teratoma
formation, while differentiated cell types derived from PSC
survived and maintained their functionality (68,69). Recently,
it was reported that another natural flavonoid, luteolin, is even
more potent than QC in selectively inducing PSC death in a p53-
dependent manner (70). However, the effect of this molecule has
not been explored in vivo. Similarly, the sequential administration
of the mitotic drug Taxol at very low doses followed by the CDK
inhibitor purvalanol A has been shown to eliminate Survivin
activity; this drug combination was able to induce apoptosis in
ESC and teratomas (71), although tissue analysis was performed
only 18 h after transplantation and a longer follow-up was not
reported. However, the efficacy of purvalanol A for PSC-derived
teratoma eradication (together with two CDK1 inhibitors,
dinaciclib and Ro-3306) in another study showed that
inhibiting CDK1 leads to the activation of the DNA damage
response and negative regulation of the anti-apoptotic protein
MCL1 in human and mouse ESC, but not in differentiated cells
(72). Apoptotic susceptibility to DNA damage in PSC was also
tested using the genotoxic anti-tumoral drug etoposide, which
effectively purged the population of residual teratoma-forming
cells within the progenitor population of cells upon in vivo
transplantation, without causing genomic instability in the
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surviving progeny (73). Furthermore, Brequinar, an inhibitor of
dihydroorotate dehydrogenase (DHODH), a key enzyme in the
de novo pyrimidine synthesis pathway, was shown to be effective
in inducing cell cycle arrest, cell death, and stemness loss in
mouse PSC (74). However, its effect has yet to be evaluated in PSC
of human origin.

Using compound screening, the ER stress induction molecule
JC011 was found to induce cell death in PSC; undifferentiated
cells pre-treated with this compound failed to form teratomas in
immunodeficient mice (75). Using a similar approach, the
screening of a library of cytotoxic compounds identified
methyl 27-deoxy-27-oxookadaate, a substrate for two ATP-
binding cassette transporters (ABCB1 and ABCG2) whose
expression is repressed in PSC, as a reagent that selectively
induces the death of human pluripotent stem cells (76).
Similarly, the high-throughput screening of over 50,000 small
molecules identified 15 pluripotent cell-specific inhibitors
(PluriSIns) (77). Among these, PluriSIn#2 induces PSC
selective death by suppressing the expression of topoisomerase,
an enzyme essential for maintaining DNA integrity. Notably,
topoisomerase IIα (TOP2A) is uniquely expressed in
undifferentiated cells and is downregulated during their
differentiation. PluriSIn#2 does not directly inhibit TOP2A
enzymatic activity, but rather selectively represses its
transcription, thereby significantly reducing TOP2A protein
levels (78). Doxorubicin, a proven chemotherapeutic agent, is
another inhibitor of topoisomerase II that has been shown to
increase cardiomyocyte purity by removing potential proliferative
stem cells from terminally differentiated cells. Doxorubicin,
however, does not discriminate between the two isoforms of
topoisomerase II (α, PSC- and cancer-specific, and β, expressed in
almost all cell types). Therefore, in this study, it was crucial to
determine the optimal doxorubicin dosage that prevented cell
proliferation of residual undifferentiated stem cells while being
non-cardiotoxic towardsmore terminally differentiated cells (79).
However, although effective, strategies that induce oxidative
stress or DNA damage should be carefully evaluated and used
with caution, as they may increase the risk of DNA damage in
differentiated cell types.

Another possibility that would allow for the selective
elimination of pluripotent cells involves taking advantage of
the different pathways of PSC compared to differentiated cells.
PSC produce most ATP via glycolysis, transitioning to oxidative
phosphorylation (OXPHOS) for most ATP production during
differentiation (67). Cardiomyocytes, for example, produce the
most energy using glucose, fatty acids, and lactate by OXPHOS. It
has been demonstrated that these differentiated cells can be
purified from PSC using a medium lacking glucose and
glutamine, but supplemented with lactate (80). However, many
other differentiated cell types cannot uptake and metabolize
lactate, making this strategy cell-specific. In particular, this
strategy would not be suitable for β cells, as glucose is
fundamental for insulin release and β cells lack the lactate
transporter MCT13 and have reduced expression of lactate
dehydrogenase (81). Similarly, even the use of an inhibitor of
glucose transporter 1 (GLUT1) such as STF-31, which is able to
selectively kill undifferentiated PSC (82,83), is not applicable to

the β cell field, as GLUT1 is the main glucose transporter in
human insulin-secreting β cells (84). The response to treatment
with high concentrations or deprivation of specific amino acids is
also different between undifferentiated PSC and differentiated
cells, and these differences may be used for the selective
elimination of PSC. For instance, a high concentration of
l-alanine was able to selectively eliminate undifferentiated
iPSC co-cultured with differentiated cells (85); however, this
strategy would not be feasible for PSC-derived insulin-
secreting cells, as prolonged l-alanine exposure induces
changes in metabolism, Ca2+ handling, and desensitization of
insulin secretion in pancreatic β cells (86). L-methionine-free
media were also tested as a PSC-depleting agent in combination
with cell culture at 42°C, demonstrating that this combination of
culture conditions is capable of preventing tumor formation upon
iPSC subcutaneous transplantation (87). In addition, in this case,
the strategy does not seem applicable to β cells, as L-methionine
has recently been shown to prevent β cell damage and modulate
the β cell identity marker MafA (88).

The most selective compound for achieving PSC-specific
selective killing among the PluriSIns identified is PluriSIn#1,
an inhibitor of stearoyl-coA desaturase (SCD1), which
catalyzes the conversion of saturated fatty acids to
monounsaturated fatty acids. Even if the expression level of
SCD1 in PSC is comparable with that of other cell types, the
biosynthesis of oleate by SCD1 is a vital process in PSC, which is
highly sensitive to SCD1 inhibition. As a result,
PluriSIn#1 activates a cascade of events that culminate in the
death of these cells via apoptosis after the induction of ER stress,
mitochondrial ROS, and mitochondrial DNA damage. The
treatment of a mixed population of pluripotent and
differentiated cells for 48 h with PluriSIn#1 was reported to
prevent teratoma formation in mice (77). However, the
researchers did not show the analysis of the grafts of the
animals that did not develop teratomas and did not confirm
that the differentiated cells were the only ones to have survived.

Another molecule capable of acting on mitochondrial
metabolism is MitoBloCK-6, an inhibitor of the mitochondrial
redox protein Erv1/ALR, which induces apoptotic cell death via
the selective release of cytochrome C in PSC, but which has no
effect on differentiated cells (89). However, it remains unclear
how PSC are specifically sensitive to MitoBloCK-6. Similarly, the
mechanism of action of metformin, which has been shown to be
effective in preventing the occurrence or in decreasing the size of
teratomas after transplantation of iPSC in an apoptosis-
independent manner, has not yet been elucidated. The
hypothesis is that metformin suppresses the expression of
Oct4 and Survivin, two pivotal genes of malignant stem cells
responsible for teratocarcinoma growth, circumventing the
suppression of AMPK (AMP-activated protein kinase
(AMPK), which allows iPSC to avoid anabolic inhibition,
similar to cancer cells (90).

Molecules capable of targeting various other elements of the
cell, such as lysosomes, proteins, and pumps present on the cell
membrane, have also been described. Recently, Chakraborty et al.
explored the use of WX8 and apilimod as inhibitors of PIKfyve
phosphatidylinositol kinase, which is essential for lysosome
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homeostasis, to selectively kill PSC under conditions where
differentiated cells remain viable (91). PIKfyve inhibitors
prevent lysosome fission, induce autophagosome accumulation,
and reduce cell proliferation in both pluripotent and
differentiated cells, but induce death specifically in pluripotent
cells by non-canonical apoptosis (91). Recently, it has been shown
that bee venom (BV) can specifically induce cell death in iPSC but
not in iPSC-derived differentiated cells; however, the cause of this
selectivity has yet to be clarified. BV was found to rapidly disrupt
cell membrane integrity and focal adhesions, followed by the
induction of apoptosis and necroptosis in iPSC, with BV exposure
remarkably enhancing intracellular calcium levels, calpain
activation, and reactive oxygen species generation (92).

In another study, the cytotoxic effects of the US Food and
Drug Administration (FDA)-approved cardiac glycosides (CG),
such as digoxin and lanatoside C, on ESC were investigated (93).
CG is a specific inhibitor of the transmembrane sodium pump
Na+/K+-ATPase, which leads to an increase in the intracellular
concentrations of calcium ions. ESC expressed Na+/K+-ATPase
more abundantly than adult stem cells. Thus, the viability of the
ESC-derived cells was not affected by digoxin and lanatoside C
treatments. Furthermore, in vivo experiments have demonstrated
that digoxin and lanatoside C prevent teratoma formation (93).

In general, there are no single small molecules suitable for all
types of differentiation, as these compounds often exploit the
biological properties of pluripotent cells potentially shared by
differentiated cells (i.e., JC011 and 27-deoxy are toxic for neurons,
and MitoBloCK-6 is toxic for cardiac development). Notably, all
the depletion approaches presented thus far have proven to be
effective in selectively killing PSC without damaging the
differentiated cells and preventing or limiting teratoma
formation. However, despite their proven efficacy, almost none
of these strategies have been tested in PSC-derived β cells for
diabetes cell therapy. In addition, there is also a need to develop
an alternative safe approach to selectively eliminate PSC in vivo
after accidental transplantation into patients. To this end, genome
editing strategies may be a solution to this critical problem.

A SAFETY SWITCH FOR A SAFER CELL
THERAPY

One strategy to fully control the cellular product, even after
transplantation, is to equip cells with a suicide gene that can
eliminate cells that have gone astray, since mutations can occur
anytime and differentiated cells can undergo malignant
transformation in vivo (Figure 2) (94). Ideally, the insertion of
a suicide gene, which can be stably expressed in both quiescent
and replicating cells, should not impair the pluripotency,
differentiation, or genomic stability of PSC (95). The choice of
the gene editing approach is based on the type of target cells that
will be edited. Since gene editing of hESC or iPSC has a lower
efficiency rate compared to other cell lines due to lower resilience
to DNA damage (96), protocols designed ad hoc for human PSC
must be adopted. The crucial components to be evaluated for the
efficient gene editing of PSC are the choice of the delivery vectors
and of the suicide genes with their relative selectionmarker, as the

selection of edited cells is fundamental to obtain a pure edited
population. Selection methods include the addition of antibiotic-
resistant cassettes or genome-edited cell sorting based on the
induced expression of fluorescent reporters or surface antigens
(90–92). These selection strategies can also be combined to obtain
a purer population or to select a cell population edited with more
than one construct.

Viral and Non-viral Vectors
The vector is essential for the delivery of gene constructs to PSC.
Currently, both viral and non-viral gene delivery systems are used
to this end.

Among the most common viral delivery systems, retrovirus
(RV), lentivirus (LV), Epstein-Barr virus (EBV), herpes simplex
virus (HSV), and baculovirus (BV) have a higher transduction
efficiency for PSC than adenovirus (AV) and adeno-associated
virus (AVV) (97,98). In particular, RV (99) and LV (100) have the
highest transduction efficiency; however, they permanently
modify the host genome with the risk of causing insertional
mutations when randomly incorporated (101). Conversely, EBV
(102), HSV (103) and BV (104) are non-integrating viruses that
mediate transient gene expression in dividing and non-dividing
cells (97). Additionally, AV does not integrate into the host
genome and allows long-term transgene expression, as AV
persists as an episome in the nucleus. However, due to the
active cell division or proliferation of PSC, the percentage of
transduced cells decreases over time (105,106). Viral gene
delivery systems are primarily based on DNA, RNA, and
oncolytic vectors. The vectors based on DNA deliver a
plasmid containing the gene construct (107), while the RNA-
based vectors provide RNA-dependent RNA polymerase
complexes coupled with negative-strand RNA templates (108).
The oncolytic vectors, an emerging weapon in the cancer field, are
able to specifically target and lyse tumor cells (109).

Non-viral gene systems allow for construct delivery via
physical or chemical methods, including electroporation or
liposomes, which show less toxicity and immunogenicity than
viral vectors; however, their transfection efficiency is orders of
magnitude lower than that of viral vectors (110). Among the non-
viral gene delivery systems described thus far, the scaffold/matrix
attachment regions (SMARs) are non-integrating vectors suitable
for PSC engineering and can autonomously replicate without
causing molecular or genetic damage. Moreover, SMARs provide
sustained transgene expression during the reprogramming and
differentiation of PSC and their progenies (111).

Regardless of the strategy used, if the chosen vector integrates
the genetic material, the insertion site is of fundamental
importance, as random gene insertion may lead to
perturbation of endogenous gene activity and the inactivation
of a random gene, leading to the death of the targeted cell or
cancer promotion (112). Thus, the installation of the suicide
switch into a genomic safe harbor is fundamental for the
establishment of a safe and efficient system. Among the
known safe harbors in the human genome, namely AAVS1,
CCR5, and the human homolog of murine ROSA26 locus,
AAVS1 is the most studied for PSC gene editing, as no gross
abnormalities or differentiation deficits were observed in PSC
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harboring transgenes targeted in AAVS1 (112,113). Moreover,
transgene expression at this locus is stable and consistent across
different cell types (112,114).

To date, site-specific genome editing can be achieved by
applying zinc-finger nucleases (ZFN), transcription activator-like
effector nucleases (TALEN), or CRISPR/CAS9 systems (115). ZFN
and TALEN are based on similar principles: they contain a FoxI
endonuclease and exploit protein-DNA binding. Although both
TALEN and ZFN have been applied for genome editing in human
PSC (116,117), the ZFN system is the worst in terms of target
specificity and off-target frequency (118). The more novel CRISPR
system contains a Cas9 nuclease and has a binding principle based on
RNA-DNA. Compared to ZFN and TALEN, the CRISPR/
Cas9 system has the highest target specificity and lower off-target
frequency (118,119). Therefore, CRISPR/Cas9 is becoming the most
used system for the genetic manipulation of hPSC (120).

Suicide Genes
The choice of the gene and promoter to be used for its expression
is of crucial importance for efficient gene editing. The most
efficient and widely used suicide gene is herpes simplex virus
thymidine kinase (HSV-TK), which induces apoptosis in edited
cells upon treatment with ganciclovir (GCV) by inhibiting DNA
synthesis (85). Schuldiner et al. were the first to demonstrate that
using GCV enables the in vivo elimination of a teratoma
originating from the injection of edited ESC into SCID mice
using cells edited with a constitutive promoter, PGK, carrying the
expression of the HSV-TK gene (121). However, this strategy is
not applicable for selectively removing pluripotent
undifferentiated cells from a heterogeneous cell preparation, as
a constitutive promoter leads to the constitutive expression of the
target gene in all undifferentiated and differentiated cells.
Consequently, another possibility involves the selection of a

FIGURE 2 | Schematic representation of gene editing strategies to increase the safety of iPSC-derived β cell transplantation. Gene-edited iPSC are differentiated
into β cells and only insulin-positive cells are purified.
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promoter that targets a gene specifically expressed by PSC,
enabling the survival of differentiated progenitors. For
example, adding a suicide gene under TERT, OCT4,
TERF1, or NANOG promoters, which are highly expressed
in a pluripotent state, can selectively remove undifferentiated
cells (122–125).

The most commonly used suicide genes perform their
function via enzymatic drug conversion activity, apoptotic
potential, or the ability to direct the immune response against
a cell by the addition of a tag (126). In particular, enzyme
prodrugs can enzymatically convert an innocuous prodrug
into a toxic compound that can kill the target cell (127). The
toxic molecule generated can act only towards the edited cell or
can have a broader action killing also the surrounding cells, called
the “bystander effect,” usually used to treat cancer (128). The
most common prodrug enzymes used are HSV-TK, cytosine
deaminase (CD) from Escherichia coli or yeast, and E. coli-
associated nitroreductase (NTR), which make cells sensitive to
the prodrugs GCV, 5-fluorocytosine (5-FC), and CB1954,
respectively (127).

HSV-TK, CD, and NTR have been used as safety switches in
the field of PSC (122,129,130), among which HSV-TK is one of
the most studied and applied prodrug-activated enzymes (131).
Interestingly, Rong et al. introduced the HSV-TK gene into the
3′-untranslated region of the endogenous NANOG gene in ESC
and found that the safety switch allowed for the clearance of
residual undifferentiated cells from differentiated neural
populations in vitro and in vivo in an SCID mouse model
(132). Another possibility involves introducing HSV-TK into
human and murine ESC under the control of a cell division
gene, such as CDK1, which is fundamental for the G2 to M phase
transition. Specifically, Liang et al. introduced HSV-TK into the
Cdk1 3′-untranslated region in homozygosity, which allowed for
the maintenance of CDK1–TK expression without incurring a
loss of gene function due to mutational events. Upon the
transplantation of edited ESC-derived neural epithelial
progenitors into mice, only the proliferative cells died after
GCV administration, leaving the non-dividing differentiated
cells intact (133). This approach may be interesting for
application in PSC-derived β cells, as the final differentiated
cell no longer has proliferation capacity compared to the PSC
and progenitor cells. The miRNA regulatory system can also be
used in suicide gene therapy strategies. For instance, the specific
expression of the let7 miRNA family in differentiated cells, but
not in pluripotent cells, has been exploited to construct an HSV-
TK gene under the constitutive promoter human translation
elongation factor 1A (EF1α) tagged to four tandem miRNA
recognition elements (MRE) complementary to mature
miRNAs of the let7 family. In this case, HSV-TK was
specifically expressed in PSC that were selectively killed by
GCV, whereas differentiated cells were fully protected (134).

Despite its effectiveness in killing target cells, some
disadvantages of the HSV-TK system include immunogenicity,
in vivo drug resistance, and the presence of inactivating mutations
(94,134,135). Moreover, a recent study documented the
acquisition of GCV resistance by iPSC expressing HSV-TK
(87), underlining the need for the use of gene editing

techniques that allow for insertion in genomically safe harbors
that cannot be silenced.

Notably, a recent study on ESC-derived β cells applied a
double fail-safe approach, capable of both killing residual PSC
and selecting insulin-positive cells (130). Specifically, they used
the HSV-TK cassette placed under the human telomerase reverse
transcriptase (hTERT) promoter, which is highly expressed only
by stem cells and tumor cells, to induce PSC-selective death when
exposed to GCV. At the same time, nitroreductase (NTR) was
used to select insulin-positive cells, as this construct is flanked by
loxP sites and eliminated by Cre expression under the control of
the human insulin promoter. Therefore, insulin-expressing cells
are rendered insensitive to the prodrug CB1954. Using this
method, only insulin-positive and non-proliferating cells
survive selection, and cells that may de-differentiate after
transplantation may still be selectively killed in vivo by GCV
without affecting the rest of the graft (130).

Suicide genes, with apoptotic potential, are directly involved in
triggering the apoptotic pathway. The most known are Fas ligand,
Fas, FADD, caspase-3, caspase-8, caspase-9, p53, p33ING1, p73α,
Bax, Apaf-1, IkappaBdN, Bcl-2, Bcl-x, and NBK (126), some of
which have also been used to eliminate pluripotent cells. For
instance, the inducible caspase-9 (iCASP9) suicide gene, under
the control of the endogenous OCT4 promoter, was applied to
specifically kill undifferentiated PSC in vitro and in vivo (136).
Similarly, the SOX2 promoter has been exploited as a safeguard
system for PSC-based therapies (137). However, SOX2 is a less
specific marker since it is also expressed in differentiated lineages,
including ectoderm and endoderm (138,139). Thus, this strategy
could not be applied to the β cell replacement field. Another study
in iPSC used iCASP9 under the control of a constitutive promoter
EF1α, which is able to eliminate pluripotent cells within 24 h of
exposure to a chemical inducer of dimerization, AP20817 (140).
Similarly, iCASP9, under the control of the synthetic promoter
CAG, allowed for the killing and complete elimination of iPSC
in vitro by inducible activation using AP1903, a lipid-dependent
tacrolimus analog. In this case, a synthetic promoter was chosen
to obtain higher expression levels (141).

Recently, a new drug-inducible safeguard combination has
been adopted to eliminate in vitro and in vivo undifferentiated
PSC. The construct NANOG-iCASP9, activated by the
AP20187 molecule, has been used to induce PSC apoptosis
and reduce the risk of teratoma formation prior to
transplantation, while the construct ACTB-OiCASP9, activated
by AP21967, killed all PSC-derived cell types to protect against in
vivo adverse events. A third construct, ACTB-HSV-TK, activated
by GCV, was used to kill all PSC-derived dividing cells in vivo
(142). The iCASP9 suicide gene system is effective, safe, and less
immunogenic owing to its human origin (143).

Another strategy to reduce the tumorigenic potential of ESC
and iPSC involves exploiting the antitumor function of p53,
which increases the gene copy number while retaining full
pluripotency. Edited cells showed an improved response to
anticancer drugs, which could aid in their elimination when
tumors arise (144). Moreover, enzymatic activity already
present in the cell, such as alkaline phosphatase (ALP),
particularly overexpressed by iPSC, can be exploited to
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selectively kill pluripotent cells. The peptide
l-phosphopentapeptide, when dephosphorylated by ALP, forms
intranuclear peptide assemblies that lead to cell death, but is
innocuous to normal cells, which do not overexpress ALP (145).

Taking advantage of the recipient immune system represents
another strategy to selectively kill a target cell. For instance,
porcine xenoantigen α1,3-galactosyltransferase (GalT) was
inserted under the control of the hTERT promoter in hESC.
As in human serum, antibodies against the α-gal epitope and
GalT expression are present only in edited PSC, and the immune
system directly kills hESC upon transplantation, providing
protection from in vivo cell dedifferentiation or de novo tumor
formation that involves hTERT reactivation (146).

Marking cells with a distinctive tag expressed in the plasma
membrane represents another method available in the field of
suicide gene technology. The tag should preferably not be an
immunogenic human sequence. This approach, which is mostly
used in T cell transplantation, allows for the in vivo control of
adverse events associated with the use of stem cell-derived
differentiated cells. For instance, the overexpression of the
CD20 tag has been assessed in combination with an anti-tag
monoclonal antibody, which can be administered in vivo, for an
antibody-dependent cytotoxic response (147). However, this
strategy has yet to be applied to iPSC (148). One possible
disadvantage of this method is that it incurs a toxic off-target
effect if the antibody binds other cells that express the same
receptor. Finally, a new frontier is the application of an
engineered oncolytic virus to selectively replicate in and kill
tumor cells. Mistui et al. developed a conditionally replicating
adenovirus (CRA), and in particular, a variety of CRAs, such as
Surv.m-CRA and Tert.m-CRA, that replicate only in
undifferentiated cells as they are controlled by the Survivin
and TERT promoters, which are more expressed in PSC (149).

In conclusion, gene editing represents a promising approach
for the control PSC-derived cellular products, especially with
regards to the elimination of cells with tumorigenic potential
in vitro and intervening in time in case of tumor occurrence in
vivo. Currently, there are many preclinical and clinical studies
that confirm the validity of this approach. In general, for PSC
gene editing, a vector capable of providing a stable and efficient
insertion must be chosen because the stability of the insertion
should be maintained in the pluripotent state and in the progeny,
during cellular differentiation, and in the final differentiated
stage. Moreover, accuracy is required to select the best
promoter-gene construct expressed only in the target cell
population, which does not undergo silencing, reduction of
expression, or changes due to mutations. In addition, issues
related to immunogenicity and toxicity of the inserted genes
must also be considered.

DISCUSSION

A new source of insulin-producing cells would represent a
significant step forward in cell therapy for the treatment of
diabetes. Stem cells are strong candidates due to their infinite
replication and differentiation capabilities, as well as their

ability to be gene-edited. Among stem cells, iPSC are of
particular interest because they can be derived from any
individual, and there are numerous in vitro differentiation
protocols capable of transforming them into β cells in an
efficient and reproducible manner. Within the context of the
use of iPSC-derived β cells in clinical applications, safety
issues are an essential consideration. In this regard, we have
identified and described four main steps to ensure the
transplantation of safe cellular product in patients. First,
iPSC must be reprogrammed with a non-integrating vector
that is easily cleared from the cell, such as the latest generation
of Sendai viruses. Second, the differentiated β cells must be
purified as much as possible using the surface markers
identified or in combination, such as GP2 at the precursor
stage and CD49a at the β cell stage. However, if this selection is
not 100% effective, treatments with molecules or antibodies
that eliminate the residual stem component could be
employed, for example adding PluriSIns or anti-CD30
monoclonal antibody to the iPSC derivatives. Finally, it is
desirable to incorporate a suicide gene into iPSC, enabling the
conversion of a non-toxic prodrug into an active cytotoxic
compound that kills the cell itself. In this case, if tumor cells
develop after transplantation, the graft can be eliminated by
prodrug assumption. However, it must be taken into
consideration that with the use of gene editing strategies,
cell therapies will require further regulatory review steps to
ensure patient safety.
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