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Maternal hyperglycemia induces alterations in
hepatic amino acid, glucose and lipid
metabolism of neonatal offspring: Multi-omics
insights from a diabetic pig model
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ABSTRACT

Objective: To gain mechanistic insights into adverse effects of maternal hyperglycemia on the liver of neonates, we performed a multi-omics
analysis of liver tissue from piglets developed in genetically diabetic (mutant /NS gene induced diabetes of youth; MIDY) or wild-type (WT) pigs.
Methods: Proteome, metabolome and lipidome profiles of liver and clinical parameters of serum samples from 3-day-old WT piglets (n = 9) born
to MIDY mothers (PHG) were compared with those of WT piglets (n = 10) born to normoglycemic mothers (PNG). Furthermore, protein—protein
interaction network analysis was used to reveal highly interacting proteins that participate in the same molecular mechanisms and to relate these
mechanisms with human pathology.

Results: Hepatocytes of PHG displayed pronounced lipid droplet accumulation, although the abundances of central lipogenic enzymes such as
fatty acid-synthase (FASN) were decreased. Additionally, circulating triglyceride (TG) levels were reduced as a trend. Serum levels of non-
esterified free fatty acids (NEFA) were elevated in PHG, potentially stimulating hepatic gluconeogenesis. This is supported by elevated hepatic
phosphoenolpyruvate carboxykinase (PCK1) and circulating alanine transaminase (ALT) levels. Even though targeted metabolomics showed
strongly elevated phosphatidylcholine (PC) levels, the abundances of multiple key enzymes involved in major PC synthesis pathways — most
prominently those from the Kennedy pathway — were paradoxically reduced in PHG liver. Conversely, enzymes involved in PC excretion and
breakdown such as PC-specific translocase ATP-binding cassette 4 (ABCB4) and phospholipase A2 were increased in abundance.
Conclusions: Our study indicates that maternal hyperglycemia without confounding obesity induces profound molecular changes in the liver of
neonatal offspring. In particular, we found evidence for stimulated gluconeogenesis and hepatic lipid accumulation independent of de novo
lipogenesis. Reduced levels of PC biosynthesis enzymes and increased levels of proteins involved in PC translocation or breakdown may represent
counter-regulatory mechanisms to maternally elevated PC levels. Our comprehensive multi-omics dataset provides a valuable resource for future

meta-analysis studies focusing on liver metabolism in newborns from diabetic mothers.
© 2023 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Abbreviations

AGC automatic gain control

BGC blood glucose concentration

BP biological process

CC cellular component

CIA co-inertia analysis

DIA data independent acquisition

DNL de novo lipogenesis

GDA gene-disease association

GDM gestational diabetes mellitus

GO gene ontology

GPF gas phase fractionation

GWAS genome-wide association studies

HOMA-IR  homeostatic model assessment for insulin resistance
KEGG Kyoto Encyclopedia of Genes and Genomes

LC-MS/MS nano-liquid chromatography—tandem mass spectrometry
analysis

LOOCV leave-one-out cross-validation

MF molecular function

MIDY mutant /NS gene induced diabetes of youth

NAFLD non-alcoholic fatty liver disease

NCE normalized collision energy

NEFA non-esterified free fatty acids

OPLS-DA orthogonal projection to latent structures discriminant analysis
ORA over-representation analysis

PC phosphatidylcholine

PCA principal component analysis

PE phosphatidylethanolamine

PHG wild-type piglet born to transgenic hyperglycemic pig
PNG wild-type piglet born to normoglycemic pig

PPI protein-protein interaction network

QUICKI quantitative insulin sensitivity check index
SIDD severe insulin deficient diabetes

SM sphingolipid

TG triglyceride

VIP variance importance in projection

WT wild-type

1. INTRODUCTION

A disturbed prenatal environment is considered a risk factor for health
complications in offspring [1]. The environment of the developing fetus
is influenced by an altered maternal nutritional and metabolic state
[2,3]. For example, in utero exposure to elevated maternal glucose can
trigger long-term consequences in the physiology and metabolism of
the offspring [4]. Offspring of mothers with gestational diabetes mel-
litus (GDM) have a fourfold increased risk of developing a metabolic
syndrome [5]. So far, hyperglycemia-related fetal programming has
been mainly investigated by epidemiological studies and reports at the
molecular level are scarce. Furthermore, human patient data have the
drawback that confounding factors, such as the mother’s lifestyle and
medical history, are frequently not completely recorded. On the other
hand, animal models living in controlled laboratory conditions with
standardized tissue sampling [6] allow differentiating the sole conse-
quences of maternal hyperglycemia from those of comorbidities. The
pig is a promising large animal model to fill the gap between proof-of-
concept studies and clinical trials [7—9]. In the context of diabetes and
pregnancy, it is worth mentioning that pig offspring, similar to human
babies, are born in a more mature state compared to rodent pups and
are therefore also exposed to maternal glycemia in a later develop-
mental phase [10]. Furthermore, piglets show similarities to human
physiology in terms of changes in energy metabolism during both
normal and pathological birth (reviewed in [11]). Since the liver is
responsible for maintaining normal blood glucose levels alongside the
homeostasis of other relevant metabolites such as lipids and amino
acids [12], it is especially relevant for the consequences of maternal
diabetes on offspring. Furthermore, as a major metabolic organ, the
liver is highly relevant in the context of metabolic syndromes. Inter-
estingly, previous studies of both human cohorts and rodent models
suggest that maternal diabetes may be associated with offspring
markers of liver pathology mainly related to an aberrant lipid meta-
bolism [13—17]. The involvement of metabolic organs in neonatal
complications is further suggested by the study of Renner et al. where
it was found that maternal hyperglycemia, even in the absence of
maternal and neonatal obesity, was associated with alterations in the
neonatal offspring’s plasma metabolome (such as amino acids and
lipids) [18]. The detection of molecular changes induced by prenatal
exposure to maternal hyperglycemia and underlying biological

pathways could provide the basis for novel intervention strategies
which could have far-reaching implications for child health care. In this
study, we address hepatic proteome and metabolome alterations
alongside clinical-chemical changes and histomorphological findings
in piglets developed in genetically hyperglycemic INS®**' transgenic
pigs, a model for mutant /NS gene induced diabetes of youth (MIDY)
[19].

2. MATERIALS AND METHODS

2.1. Biological samples

In this study, the hepatic proteome, metabolome as well as clinical-
chemical parameters in serum from 3-day-old wild-type (WT) piglets
born to hyperglycemic mothers (PHG) expressing the mutant insulin
C94Y [19] were compared to the profiles of WT piglets born to nor-
moglycemic mothers (PNG). To further complement molecular findings
histomorphological evaluation of the liver was performed. The hyper-
glycemic INS®* transgenic pig model was obtained using the NS4
expression vector, including the porcine /NS gene with a point mutation
introducing a Cys — Tyr exchange in position 94, which disrupts one of
the two disulfide bonds between the A- and B-chain of the mature
insulin molecule. This generates a misfolded insulin protein that in-
duces endoplasmic reticulum stress in the B-cells, resulting in early-
onset permanent insulin-deficient diabetes mellitus and B-cell loss
[19]. The non-diabetic and diabetic sows used in this project were half-
siblings produced by mating a diabetic boar with different WT sows.
The piglets of the PHG and PNG groups were derived from mating of
non-diabetic and diabetic sows with the same WT boar, reducing
genetic variance. The diabetic sows were treated daily with a com-
bination of long-acting and short-acting insulin, to ensure a blood
glucose concentration (BGC) in a physiological range (around 150 mg/
dL). This physiological range was maintained in the diabetic sows also
during the mating and during the first 3 weeks of pregnancy to ensure
the pregnancy state. After this period, the amount of insulin admin-
istrated was reduced, to obtain a BGC of around 300 mg/dL, which
corresponds to a pathological diabetic situation during pregnancy. 30
min after birth and before first milk intake, blood glucose of newborn
piglets was measured by ear vein puncture using a glucometer
(FreeStyle-Freedom Lite). In addition, venous EDTA plasma samples of
offspring were collected, stored at —80 °C for determination of insulin
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concentration. Sows were housed in groups under control conditions,
with free access to water and fed with commercial food once per day.
Shortly before giving birth, sows were separated into a separate pen in
the farrowing unit. Newborn piglets were housed in the farrowing pen
together with the mother, and a heated nest was offered to the piglets.
At an age of 3 days, non-fasted piglets underwent necropsy. Tissues
were collected by random systematic sampling [6], shock-frozen on
dry ice and stored at —80 °C until analysis. For omics analyses, all
samples were processed in parallel to avoid possible bias related to
different storage times. All experiments were performed according to
the German Animal Welfare Act (Deutsches Tierschutzgesetz),
following the ARRIVE guidelines and Directive 2010/63/EU.

2.2. Proteomics

2.2.1. Sample preparation

Frozen liver tissue samples were transferred into prechilled tubes and
cryo-pulverized in a CP02 Automated Dry Pulverizer (Covaris, Woburn,
MA, USA) using an impact level of 3 according to the manufacturer’s
instructions. Powdered tissue was lysed in 8 M urea/0.5 M ammonium
bicarbonate (Roche Diagnostics, Mannheim, Germany) by ultra-
sonication (18 cycles of 10 s) using a Sonopuls HD3200 (Bandelin,
Berlin, Germany). Pierce 660 nm Protein Assay (Thermo Fisher Sci-
entific, Rockford, IL, USA) was used for protein quantification. 20 L of
lysate containing 20 pg of protein were processed for digestion. Di-
sulfide bonds were reduced with 45 mM dithiothreitol/20 mM tris(2-
carboxyethyl) phosphine (30 min, 56 °C). Reduced cysteine side
chains were alkylated by adding 100 mM iodoacetamide (30 min, room
temperature), followed by quenching the remaining iodoacetamide
with dithiothreitol (90 mM, 15 min, room temperature). Sequential 2-
step digestion was performed, firstly with Lys-C (FUJIFILM Wako
Chemicals Europe GmbH, Neuss, Germany) for 4 h (1:50 enzyme to
protein ratio) and subsequently with modified porcine trypsin (Prom-
ega, Madison, WI, USA) for 16 h at 37 °C (1:50 enzyme to protein
ratio). After digestion, samples were dried before analysis using a
vacuum centrifuge.

2.2.2. Nano-liquid chromatography—tandem mass spectrometry
analysis

Nano-liquid chromatography—tandem mass spectrometry (LC-MS/
MS) analysis was performed on an UltiMate 3000 nano-LC system
coupled to a Q Exactive HF-X Orbitrap mass spectrometer via a nano-
electrospray ion source (all Thermo Fisher Scientific). 1 g of peptides
were transferred to a PepMap 100 C18 trap column (100 pm x 2 cm,
5 puM particles, Thermo Fisher Scientific) and separated on an
analytical column (PepMap RSLC C18, 75 um x 50 cm, 2 um par-
ticles, Thermo Fisher Scientific) at 250 nL/min with an 80-min gradient
of 5—20% of solvent B followed by a 9-min increase to 40%. After the
gradient, the column was washed with 85% solvent B for 9 min,
followed by 10-min re-equilibration with 3% solvent B. Mobile phases
A and B were 99.9/0.1% water/formic acid (v/v) and 99.9/0.1%
acetonitrile/formic acid (v/v), respectively. Gas phase fractionation
(GPF)-based chromatogram libraries [20] were built using 6 injections
of pooled samples with 25 x 4 m/z-wide data-independent acquisition
(DIA) (30,000 resolution, AGC target 1e6 maximum inject time 55 ms,
NCE 27, +3H assumed charge state) spectra using a staggered
window pattern with window placements optimized by Skyline (v.22.2)
(i.e. 400.43—502.48, 500.48—602.52, 600.52—702.57, 700.57—
802.61, 800.61—902.66, 900.66—1002.70), yielding 300 x 2 m/z-
wide windows spanning from 400 to 1000 m/z after deconvolution. For
DIA measurements, 50 x 12 m/z-wide (in the range of 400—1000 m/
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2) precursor isolation window DIA spectra (15,000 resolution, AGC
target 1e6, maximum inject time 20 ms, NCE 27) was acquired as
described in [21] using a staggered window pattern [22]. Window
placements were calculated by Skyline software [23]. Precursor
spectra (in the range of 390—1010 m/z, 60,000 resolution, AGC target
1e6, max IIT 60 ms, +3H assumed charge state) were interspersed
every 50 MS/MS spectra.

2.2.3. Peptide and protein identification and quantification

Protein intensities were extracted from the DIA data using predicted
spectral libraries generated by DIA-NN’s (v1.8.1) built-in deep-
learning-based spectra and retention time predictor which was
further refined by the experimental data from project-specific GPF-
based library (also generated by DIA-NN). For this, the Sus scrofa
protein database (UniProt Reference Proteome — Taxonomy 9823 —
Proteome ID UP000008227, 49,792 entries) alongside the MaxQuant
contaminants fasta file [24] were used. Only tryptic peptides with a
maximum of one missed cleavage and charge state of +2, +3
and +4 were considered. Cysteine carbamidomethylation was
selected as a fixed modification and the quantification strategy was
set to robust LC (high precision mode). Retention time correction was
performed automatically by DIA-NN and quantification strategy was
set to Robust LC (high accuracy mode). Similarly, mass tolerance was
determined automatically by DIA-NN and was set to 9 ppm and
18 ppm for MS1 and MS2, respectively. The “Genes” column was
used to count unique proteins. All other settings were left default.
DIA-NN’s main output containing precursor level data was used for
the downstream analysis in R using custom scripts. Briefly, the
output was filtered at 1% false-discovery rate, using both global and
run-specific g-values for precursors and global g-values for protein
groups. Peptides derived from potential contaminants, non-
proteotypic peptides and peptides with a low signal quality were
removed. Precursor intensities for different charge states were
summed to derive peptide intensities. Normalization of raw in-
tensities was performed using the MaxLFQ algorithm [25]. Proteins
detected in at least 60% of all replicates were kept for quantitative
analysis. To handle missing values, data imputation was performed
using a random forest algorithm with the R package MissForest [26].

2.2.4. Western blot quantification

Powdered liver tissue was lysed in Laemmli extraction buffer sup-
plemented with protease and phosphatase inhibitors (Complete®,
Sigma-Aldrich) and protein concentration was determined by BCA
assay. Equal amount of denatured tissue lysate per lane was separated
on SDS-polyacrylamide minigels and blotted on PVDF membranes.
Equal loading was controlled by Ponceau staining. The following pri-
mary antibodies were used: rabbit polyclonal antibody against
ALDH1L2 (no. 21391-1-AP, dilution 1:4000, proteintech), rabbit
polyclonal antibody against claudin 15 (no. 38-9200, dilution 1:1000,
Thermo Scientific), rabbit polyclonal antibody against RAB3D (no.
12320-1-AP, dilution 1:1500, proteintech), and mouse monoclonal
antibody against pan-actin (no. MAB1501, dilution 1:40,000; Sigma
Aldrich). As secondary antibodies, HRP-labeled goat polyclonal anti-
body against rabbit IgG (no. 7074, dilution 1:2,000, Cell Signaling) and
HRP-labeled goat polyclonal antibody against mouse IgG (no. 115-035-
146, dilution 1:10,000, Jackson ImmunoResearch), respectively, were
used. Bound antibodies were visualized using SuperSignal™ ECL re-
agents (Thermo Fisher Scientific) and ECL ChemoStar Imager (INTAS).
Stripping was done to analyze ratio of various protein abundances and
the reference protein. Therefore, membranes were incubated with the
stripping buffer (2% SDS, 62.5 mm Tris/HCI, pH 6.7, and 100 mM
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beta-mercaptoethanol) for 60 min at 70 °C. Afterward, membranes
were washed, blocked, and incubated with the next primary antibody.
Signal intensities were quantified using ImageQuant (GE Healthcare).
Standardization of equal loading was referred to the signal intensities
of pan-actin of the corresponding PVDF membrane. Data are shown as
mean =+ SD.

2.2.5. STRING network construction and characteristics

The pig-specific and human-specific networks were downloaded from
STRING database v11.5 (https://string-db.org/) [27]. This large data-
base includes several sources of information grouped in 7 evidence
channels: neighborhood, fusion, co-occurrence, co-expression, ex-
periments, knowledge, and text-mining. Each of these sources reflects
different information (i.e. computational prediction of protein proximity,
protein expression, literature knowledge) and contributes to obtaining
a combined score. This is a metric that considers the probability of
different evidence channels and corrects for the probability of randomly
observing an interaction between two proteins. In both pig and human,
we took into consideration 4 possible networks: full, full with high
confidence interactions (combined score>0.7), physical (direct in-
teractions only), and physical with high confidence (direct interactions
and combined score>0.7). Based on the network connectivity of the
differentially abundant proteins, we decided to proceed with our an-
alyses with the full network and high-confidence interactions, resulting
in 15,360 nodes with 170,244 edges for pigs and 16,793 proteins with
251,982 edges in humans.

2.2.6. Mapping of dysregulated proteins in the PPIs networks

For this aim, we selected those proteins with adjusted p-value <0.05
and fold-change >1.5 and mapped them on the pig- and human-
specific protein—protein interactions (PPI). For each network, we
calculated the percentage coverage and the network connectivity
distinguishing between up-regulated, down-regulated, and total
differentially abundant proteins (Supplementary Figs. 1A—D). Network
connectivity was calculated by computing a z-score of the largest
connected component for each group of proteins and comparing it
against 10,000 randomly selected protein sets of the same size.

2.2.7. ldentification and biological characterization of dysregulated
proteins core

We checked whether each connected component among the up-
regulated and down-regulated proteins would be statistically signifi-
cant in pigs and in humans. Once we extracted the main cores among
the up- and down-regulated proteins, we identified expanded net-
works that would connect at least 90% of the up- and down-regulated
proteins respectively, including their interacting proteins. For this
purpose, we have used a random walk with restart algorithm, setting
the restarting parameter, alpha, equal to 0.9, ensuring that the
propagation would remain close to the original set of seed genes. We
expanded the seed genes (up- and down-regulated proteins) until 90%
would be connected. The biological characterization of the protein
cores and the expanded networks was performed by enrichment an-
alyses for the three main branches of the gene ontology (GO) [28]
biological processes (BP), molecular functions (MF), and cellular
components (CC), and for Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway [29] using GSEAPY [30].

2.2.8. Disease relationship

Disease gene associations were retrieved from DisGeNet [31] which
represents the largest publicly available collections of genes and
variants associated with human diseases, including expert-curated

associations from genome-wide association studies (GWAS) cata-
logues, animal models and scientific literature. Depending on the
accuracy of the type of information, each gene—disease association is
attributed with a gene—disease association (GDA) score that ranges
from 0 to 1. We selected associations with a GDA score >0.3,
retrieving information for 11,099 diseases. The relationship between
each set of differentially abundant proteins (s1) and set of disease
proteins (s2) was then computed in two different ways: 1) by calcu-
lating their Jaccard index (intersection (s1,s2)/union(s1,s2)), and by
network proximity of the two sets [32]. Network proximity computes
the closest distance between two sets of proteins in a network and by
comparing it against 10,000 random sets of similar topological fea-
tures. In this way, we considered and corrected for interactome biases
such as the heavy-tail degree distribution and the discretization of
other common network distances like the shortest path.

2.3. Targeted metabolomics

Targeted metabolomics measurements were performed using liquid
chromatography- and flow injection-electrospray ionization-tandem
mass spectrometry (LC- and FIA-ESI-MS/MS) and the Absolute/D@™
p180 Kit (BIOCRATES Life Sciences AG, Innsbruck, Austria). The assay
allows simultaneous quantification of 188 metabolites. For the LC-part,
compounds were identified and quantified based on scheduled mul-
tiple reaction monitoring measurements (SMRM), for the FIA-part on
MRM. The complete assay procedures as well as the tissue extraction
have been previously published [33]. In brief, tissue homogenates
were always prepared freshly as follows: frozen porcine liver tissue
samples were weighed into homogenization tubes with ceramic beads
(1.4 mm). For metabolite extraction, to each 1 mg of frozen porcine
liver tissue 3 pL of a cooled mixture (4 °C) of ethanol/phosphate buffer
(85/15 v/v) were added. Tissue samples were homogenized using a
Precellys24 homogenizer (PEQLAB Biotechnology GmbH, Germany)
three times for 30 s at 5,500 rpm and —4 °C, with 30 s pause intervals
to ensure constant temperature, followed by centrifugation at
10,000 g for 5 min. Subsequently, 10 pL of the supernatants were
analyzed with the p180 assay. Data evaluation for quantification of
metabolite concentrations and quality assessment were performed
with the software MultiQuant 3.0.1 (SCIEX) and the Met/D@™ software
package, which is an integral part of the Absolute/D@™ Kit. Metabolite
concentrations were calculated using internal standards and reported
as pmol/mg for wet tissue.

2.4. Shotgun lipidomics

All standards were purchased from Avanti Polar Lipids: Ultimate
SplashOne (#330820), dFA 18:1 (#861809), dFA 20:4 (#861810), dCer
d18:0/13:0 (#330726), Glu Cer(d18:1-d7/15:0) (#330729), dLacCer
d18:1/15:0 (#330727), 15:0-18:1-d7-PA (#791642), EquiSPLASH
(#330731).

2.4.1. Lipidomic sample extraction

15 pL (equivalent to 5 mg) of the liver homogenates (see 2.3 for
procedure) were transferred into 1.5-mL glass vials together with
85 L of MilliQ water (H,0). For accurate quantification, 25 pL of a mix
of 77 deuterated internal standards were then added to the samples
(Ultimate SplashOne, dFA 18:1, dFA 20:4, dCer d18:0/13:0, Glu
Cer(d18:1-d7/15:0), dLacCer d18:1/15:0, 15:0-18:1-d7-PA). For lipid
extraction, 160 pL of methanol (MeOH, Optigrade, Thermofisher) and
575 pL methyl tert-butyl ether (MTBE) were added followed by incu-
bation for 30 min on an orbital shaker DOS-10L (Neolabline, Heidel-
berg, Germany) at 300 rpm. For phase separation, 200 pL of H,0 was
added to each vial and were centrifuged at 5,000x g for 10 min at

4 MOLECULAR METABOLISM 75 (2023) 101768 © 2023 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

www.molecularmetabolism.com


https://string-db.org/
http://creativecommons.org/licenses/by/4.0/
http://www.molecularmetabolism.com

room temperature with a Sigma 4-5C centrifuge (Qiagen, Hilden,
Germany). The upper (organic) phase was evaporated with nitrogen
gas using a Barkey evaporator (Barkey, Leopoldshoehe, Germany). The
aqueous phase was again extracted with 100 pL MeOH and 300 pL
MTBE. After addition of 100 puL H,0, the samples were incubated for
5 min at room temperature at 300 rpm and then centrifuged for 10 min
at 5,000 x g. The organic phase was transferred into the respective vial
from the first extraction step and evaporated to dryness with gaseous
nitrogen. Samples were reconstituted in 275 pL running solvent
(10 mM ammonium acetate in Dichloromethane:MeOH (50:50, v/v))
and 267 uL were subsequently transferred into new vials with insert.
For quality control purposes (QC-pool samples), 10 pL of each study
sample were pooled. 15 plL aliquots were created and extracted with
the above-described procedure. Additionally, 3 blank samples con-
sisting of 15 pL EtOH/phosphate buffer were prepared and extracted.

2.4.2. Shotgun lipidomics measurements

The DMS-SLA shotgun lipidomics assay is based on the method
published by Baolong Su et al. [34]. All samples were measured with a
SCIEX Exion UHPLC-system coupled to a SCIEX QTRAP 6500+ mass
spectrometer equipped with a SelexlON differential ion mobility
interface (SCIEX, Darmstadt, Germany) operated with Analyst 1.6.3.
75 uL of the re-dissolved sample were injected using the running
solvent (10 mM ammonium acetate in Dichloromethane:MeOH (50:50,
v/v)) at an isocratic flow rate of 8 uL/min. After 9 min the flowrate was
ramped to 30 plL/min for 2 min to allow washing. Each sample was
analyzed using multiple reaction monitoring (MRM) in two consecutive
flow injection analysis (FIA) runs. In the first run, phosphatidylcholines
(PC), phosphatidylethanolamines (PE), phosphatidylglycerols (PG),
phosphatidylinositols (PI), phosphatidylserines (PS), and sphingomye-
lins (SM) were separated with the SelexlON DMS cell using field
asymmetric ion mobility mass spectrometry (FAIMS) prior to analysis in
the Turbo Spray lonDrive source of the mass spectrometer. To enhance
the separation of the lipid classes, 1-propanol was used as a chemical
modifier. In the second run, cholesteryl esters (CE), ceramides (Cer
d18:1), dihydroceramides (Cer d18:0), lactosylceramides (LacCER),
hexosylceramides (HexCER), phosphatidic acid (PA), lysophosphati-
dylcholines (LPC), lysophosphatidylethanolamines (LPE), lysophos-
phatidylglycerols (LPG), lysophosphatidylinositols (LPI),
lysophosphatidylserines (LPS), free fatty acids (FFA), diglycerides (DG),
and triglycerides (TG) were measured with the DMS-cell switched off.
Lipids were quantified with the Shotgun Lipidomics Assistant (SLA)
software (v1.3) by calculating the area ratio between the analyte and
the respective internal standard [34]. Lipid concentrations (nmol/g)
were corrected for isobaric overlap with SLA. The mass spectrometer
was operated with the following conditions: curtain gas 20 psi, ion
source gas 1 14 psi, ion source gas 2 20 psi, Collision gas medium,
temperature 150 °C, separation voltage +3500 V, ion spray
voltage +4200 and +4500 V in ESI+ mode and —4400 and —3300 V
in ESI— mode for run 01 and 02, respectively. Prior to each batch, the
DMS cell was tuned, and the stability and sensitivity of the instrument
was checked with the EquiSPLASH mixture.

2.4.3. Lipidomics data processing

The shotgun lipidomics raw data set contained 1,204 individual lipid
species. Data were subsequently pre-processed using R (version
4.2.1). To assure high data quality, a multi-step procedure was
applied: in the first step of this quality control (QC) procedure, lipids
with missing values in more than 35% in the pool samples were
discarded from the data set (n = 136). In the second step, the group-
specific missingness was evaluated i.e., whether a specific lipid is
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observed in only one of the biological groups. Lipids exhibiting a group-
wise missingness of 50% in all groups were discarded from the data
set (n = 7). Next, lipids with a coefficient of variation >25%, deter-
mined by the QC-pool samples, were removed from the data set
(n = 22). The last quality control step comprised the calculation of the
dispersion ratio (D-ratio) for each lipid [35]:

Otech
2 2
(\/ Obior + Gtech)

where Gtzech is the technical variance determined by the variance of the
QC-pool samples and 0%,0, is the biological variance given by the
variance of the biological samples within the study. We used a D-ratio
threshold of 50%, as this implies that the technical variance is higher
than the biological variance (n = 43 lipids were removed). After quality
control, 996 lipid species remained in the liver data set, which con-
tained 445 missing values (equivalent to 2% of the data set). Missing
values were imputed using the k-nearest-neighbor obs-sel approach
with k = 10 nearest-neighbors [36].

2.5. Multi-omics data integration

Co-inertia analysis (CIA) was performed using R package omicade4
[37], to estimate the co-variability of proteomics and metabolomics
datasets. Before CIA, each dataset was log2 transformed and Pareto
scaled. The similarity between the two datasets was estimated with
the RV parameter, which is a multivariate extension of the Pearson
correlation coefficients. RV value close to 1 indicates a high degree of
co-structure in datasets. The permutation test with 200 iterations was
used to assess the significance of the RV coefficient.

2.6. OQil red O staining

Liver tissue samples of 3-day-old piglets were fixed in PBS-buffered
4% PFA for 48 h, immersed in sucrose (each 2 h in 7.5% and 15%
sucrose at room temperature, followed by 30% sucrose over night at
4 °C), embedded in Tissue-Tek® 0.C.T.™ compound, frozen on dry
ice, and stored at —80 °C till cryosectioning. 4 um thick cryosections
were stained with oil red O stain and embedded in Kaiser’s glycerin
gelatin.

2.7. Clinical chemistry and determination of HOMA-IR and QUICKI
index

For clinical-chemical analysis, frozen plasma samples derived from
non-fasted 3-day-old piglets were thawed for 1 h at room temperature,
mixed thoroughly and then centrifuged (10 min, 5000x g at 8 °C) and
afterwards analyzed immediately using an AU480 clinical chemistry
analyzer (Beckman Coulter) and adapted reagent kits from Beckman
Coulter, Randox (Glycerol) or FUJIFILM Wako Chemicals Gmbh (NEFA)
as described previously [38]. Insulin concentration was determined
with ultrasensitive insulin ELISA from EDTA plasma (#10-1132-01,
Mercodia) collected from newborn piglets before first milk intake. The
homeostatic model assessment for insulin resistance index (HOMA-IR)
[39] for estimating insulin resistance at fasting conditions was
calculated using the formula: HOMA-IR = fasting plasma insulin (nU/
mL) x fasting plasma glucose (mg/dL)/405. The ‘QUantitative Insulin
sensitivity ChecK’ (QUICKI) index [40] was calculated with the formula:
QUICKI = 1/[log(insulin (mU/L)) + log(glucose (mg/dL))].

2.8. Statistical analysis
All statistical analysis and data visualization were performed in R
(https://www.r-project.org/). Statistical significance of proteome,
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Figure 1: Experimental design, Qil red O stains of liver and assessment of insulin sensitivity. A: Proteomics, metabolomics and histological evaluation of liver samples alongside
serum clinical chemical parameters from PHG (n = 5 female, n = 4 male) and PNG (n = 6 female, n = 4 male). PHG, piglets born to hyperglycemic mothers; PNG, piglets born to
normoglycemic mothers; MIDY, mutant /NS gene induced diabetes of youth; WT, wild-type. B: Qil Red O stains of liver cryosections of 3-day-old piglets show mediovesicular lipid
accumulation in hepatocytes in PHG. #, portal triad; *, central vein. C: Total diglyceride (DG) and triglyceride (TG) levels in PHG and PNG. P-values are from two-way ANOVA (group
effect). D: Homeostatic model assessment of insulin resistance (HOMA-IR) and the ‘QUantitative Insulin sensitivity ChecK’ (QUICKI) index of PHG (n = 9 female, n = 4 male) and
PNG (n = 20 female, n = 26 male) at birth. Statistical significance of the pair-wise differences was assessed using the Student’s t-test. Bar diagrams show means and standard

deviations.

metabolome, lipidome and clinical parameter changes was evaluated
using two-way analysis of variance (ANOVA) considering the effect of
the group (PHG/PNG), sex (female/male) and interaction between group
and sex (group*sex). All resulting p-values (group, sex and group*sex)
were pooled and adjusted for multiple-hypothesis testing with the
Benjamini-Hochberg procedure. Biomolecules with a significant
interaction effect were further followed by Tukey’s honest significant
difference (HSD) post-hoc test. Principal component analysis (PCA)
was performed on log2 transformed data using prcomp() function in R.
Hierarchical clustering was performed using the R package Com-
plexHeatmap [41] with Ward’s method as the clustering method and
the Euclidean as a distance measure. Supervised clustering method,
orthogonal projection to latent structures discriminant analysis (OPLS-
DA), according to the class information (PHG versus PNG), was per-
formed using the R package ropls [42]. Before the OPLS-DA, omics

datasets were log2 transformed and subsequently Pareto scaled
(mean-centered and divided by the square root of standard deviation).
The leave-one-out cross-validation (LOOCV) of all models was used to
select the best fitted OPLS-DA model. LOOCV is advantageous for
small datasets as it maximizes the size of the training set. R2Y and Q2Y
were used to assess the fitting validity and predictive performance of
the OPLS-DA model, respectively. A 200-step permutation test was
employed to estimate whether the supervised classification according
to the known class (PHG versus PNG) is significantly better than any
other random classification. Variance importance in projection (VIP)
scores of the selected OPLS-DA model were used to rank the me-
tabolites based on their discriminating ability of PHG and the PNG.
Over-representation analysis (ORA) based on significantly changed
proteins was performed using the R package webgestaltR [43] with the
functional category “GO Biological Process nonredundant”. The false-
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Figure 2: Overview of proteome differences in the liver from hyperglycemia exposed and control offspring. A: Unsupervised hierarchical clustering of standardized LFQ intensity
values of liver proteomes leads to clustering of each sample according to the maternal glycemic status. The color code shows standardized abundance values. B: Principal
component analysis of log2-transformed data reveals maternal glycemic status as the strongest contributor to the inter-sample variation of the liver proteomes. The shape of each
spot corresponds to the sex, and the color to the mother’s genotype. C: Volcano plot comparing the protein abundance change between conditions (PHG/PNG). The x and y axis
show the log2 fold-change in protein levels and the log10 two-way ANOVA group p-value, respectively. Selected proteins are annotated with gene names and color coded
according to the corresponding biological processes. Proteins changed in abundance with false-discovery rate of 0.05 are above the vertical solid line. ISGs, interferon stimulated
genes; FDR, false discovery-rate D: Enrichment analysis results of liver proteins less abundant in PHG (left column) and more abundant in PHG liver (right column). The size of each
dot indicates the number of differentially abundant proteins involved in the corresponding GO biological process (referred to as count in the figure) and colors the significance
(Benjamini-Hochberg adjusted p-value) of enrichment. Enrichment score is the magnitude of over-representation.
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discovery rate was controlled using the Benjamini-Hochberg method.
Western blot signal intensities, the homeostatic model assessment-
insulin resistance index (HOMA-IR) and the ‘QUantitative Insulin
sensitivity ChecK’ (QUICKI) index were compared using two-tailed
Student’s t-test.

3. RESULTS

3.1. General aspects

This study aimed to investigate the effect of maternal diabetes on non-
diabetic offspring. For this purpose, as a translational model for human
research, we used a non-obese genetically diabetic (IN.SC94Y trans-
genic) pig model characterized by severe hyperglycemia [19],
mimicking severe insulin deficient diabetes (SIDD) [44]. In this study,
the hepatic proteome, metabolome as well as serum clinical param-
eters from 3-day-old wild-type (WT) piglets born to hyperglycemic
mothers (PHG) were compared to the profiles of WT controls born to
normoglycemic mothers (PNG). To complement the molecular findings,
a histomorphological evaluation of the liver was performed (Figure 1A).
0Oil red O staining showed that PHG livers contained an increased
amount of microvesicular and mediovesicular lipid droplets in hepa-
tocytes (Figure 1B). To gain further molecular insights into an elevated
lipid droplet formation, hepatic triglyceride (TG) and diglyceride (DG)
levels were quantified using targeted lipidomics. Results showed
elevation of both TG and DG levels in PHG liver (Figure 1C,
Supplementary Fig. 2B). A detailed overview of the lipidomics results
can be found in Supplementary Tables 1A—G and Supplementary
Figs. 2A—C. Furthermore, homeostatic model assessment of insulin
resistance (HOMA-IR) index monitored shortly after birth was higher in
PHG (mean [SD], male: 1.24 [0.65], female: 0.64 [0.37]) than in PNG
(mean [SD], male: 0.08 [0.09], female: 0.07 [0.09]). Consistently,
quantitative insulin sensitivity check index (QUICKI) was lower in PHG
(mean [SD], male: 0.38 [0.04], female: 0.43 [0.05]) compared with
PNG (mean [SD], male: 1.20 [0.74], female: 1.25 [0.68]). QUICKI in
PHG was below the cut-off value of 0.45 indicative for decreased in-
sulin sensitivity (Figure 1D). The body weight of PHG was significantly
lower than PNG (Supplementary Fig. 3A). Liver mass, relative to body
weight, was not significantly different between the groups
(Supplementary Fig. 3B). Neither sex nor group*sex interaction-related
differences were observed for these parameters.

3.2. Overview of proteome findings in the liver

To detect effects of maternal hyperglycemia on offspring’s liver pro-
teome, we performed a label-free liquid chromatography-tandem
mass spectrometry analysis (LC-MS/MS) of liver tissue samples
from PHG and PNG. To facilitate accurate and in-depth quantitative
proteomics, a data-independent acquisition (DIA) approach was cho-
sen. In the workflow, peptides were identified using an in silico pre-
dicted library, which was further refined by the project-specific
chromatogram libraries generated with narrow-isolation window
gasphase fractionation (GPF) DIA runs. The dataset has been submitted
to the ProteomeXchange Consortium via the PRIDE [45] partner re-
pository with the dataset identifier PXD040305. A total of 61,283
unique peptides from 6,313 protein groups were identified with high
confidence (false-discovery-rate <0.01). Supplementary Table 2A
contains a full list of all identified proteins and their abundance
levels. In the unsupervised hierarchical clustering (Figure 2A) and
principal component analysis (Figure 2B), the proteome profiles of liver
tissue from PHG differed substantially from those of PNG, suggesting
group-specific alterations in protein abundance.

To identify differentially abundant proteins, a two-way ANOVA was
performed (Supplementary Table 2B). 123 proteins were found to be
differentially abundant (Benjamini-Hochberg adjusted p-value <0.05
and I12fc > 1.5) by the effect group (PHG/PNG), of which 62 were
increased and 61 decreased in abundance (Supplementary Table 2C,
Figure 2C). The protein with the highest increase in abundance in the
PHG liver was ISG15 ubiquitin like modifier (ISG15) (5.3-fold). Like-
wise, the levels of other proteins involved in interferon signaling
pathway such as interferon-induced GTP-binding protein Mx2 (MX2),
interferon induced protein 44 (IFI44), and interferon induced protein
with tetratricopeptide repeats 5 (IFIT5) were elevated in PHG samples.
Moreover, proteins involved in glucose metabolism, such as phos-
phoenolpyruvate carboxykinase (PCK1) and glucose-6-phosphate
isomerase (GPl) were increased in abundance. Several proteins
involved in retinol metabolism, such as retinol-binding protein 4 (RBP4)
and dehydrogenase/reductase 7B (DHRS7), were also elevated.
Further proteins with increased abundance in PHG liver were tyrosine
aminotransferase (TAT), branched-chain-amino-acid aminotransferase
(BCAT1), and aromatic-L-amino-acid decarboxylase (DDC), all known
to be involved in amino acid metabolism. A large fraction of up-
regulated proteins is known to be involved in lipid homeostasis,
among which are acyl-CoA synthetase long chain family member 6
(ACSL6), long-chain specific acyl-CoA dehydrogenase (ACADL), mito-
chondrial acyl-CoA dehydrogenase very long chain (ACADVL),
propionyl-CoA carboxylase alpha and beta chain (PCCA and PCCB), and
others. Furthermore, proteins involved in glycerophospholipid meta-
bolism (e.g. choline dehydrogenase (CHDH) and phospholipase A2
(PLA2G4A)) and transport (e.g. ATP-binding cassette 4 (ABCB4)) were
elevated in abundance. On the other hand, some of the down-
regulated proteins are also known to be involved in lipid meta-
bolism, among others fatty acid synthase (FASN), O-acyltransferase
(DGATH1), acetyl-CoA carboxylase 1 (ACACA), ceramide synthase 4
(CERS4), and others. Furthermore, S-adenosylmethionine synthase
(MAT2A), a protein involved in the methionine cycle, was decreased in
abundance.

To get functional insights from proteome alterations between PHG and
PNG, over-representation analysis (ORA) was performed using Web-
Gestalt. The detailed results of the enrichment analysis are provided in
Supplementary Table 2D and Figure 2D. Briefly, proteins involved in
the nucleoside bisphosphate metabolic process, carbohydrate meta-
bolic process, cellular ketone metabolic process, cellular modified
amino acid metabolic process, and cofactor biosynthetic process were
significantly overrepresented in the set of up-regulated proteins, while
proteins involved in DNA replication, regulation of plasma lipoprotein
particle levels, telomere organization, nucleotide-excision repair, DNA
replication, lipid homeostasis, and membrane lipid metabolic process
were overrepresented in the set of down-regulated proteins.

In terms of sex-related differences, only UDP-glucuronosyltransferase
was changed significantly and was elevated in the liver of female
compared to male offspring (Supplementary Table 2E). To explore
proteins changed in the offspring’s liver due to maternal glycemia in a
sex-dependent manner, the group*sex interaction effect from the two-
way ANOVA was used. This revealed only a few proteins that were
significantly influenced by the group*sex interaction effect
(Supplementary Fig. 4, Supplementary Table 2F). The proteins most
significantly affected by the interaction effect were vacuolar protein
sorting-associated protein 41 homolog (VPS41) and 60S ribosomal
protein L26-like 1 isoform X1 (RPL26L1), both increased in female PHG
(compared to female PNG) but decreased in male PHG (compared to
male PNG). A similar regulation pattern was observed for further
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Figure 3: Network analysis of differentially abundant proteins and their relationships with human diseases. A: Identification of two up-regulated core proteins that deviate from
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proteins like glutaredoxin 5 (GLRX5) and complement component 1 Q
subcomponent-binding protein, mitochondrial (C1QBP).

Furthermore, to confirm quantitative changes detected by mass
spectrometry by other means of quantification, we selected three
candidates where working porcine-specific antibodies were available
and quantified them using Western blot. Supplementary Fig. 5 shows
the abundance change of formyltetrahydrofolate dehydrogenase
(ALDH1L2), Ras-related protein Rab-3 (RAB3D) and claudin (CLDN15)
between PHG and PNG and they are in line with our mass
spectrometry-based quantitative data.

3.3. Protein—protein interaction construction

Next, we evaluated whether among the differentially abundant proteins
we could identify subsets of highly interacting proteins that participate
in the same molecular mechanisms and tried to relate these mecha-
nisms with human pathology. To do so, we first generated a pig-
specific and a human-specific protein—protein interaction network
(PPIs) compiled from the STRING database v11.5 (https://string-db.org/
) [27], obtaining 15,360 nodes and 170,244 edges, and 16,793 pro-
teins and 251,982 edges respectively. At this point, we compared the
size of the connected components of the differentially abundant pro-
teins against 10,000 random groups of proteins of equal size. In this
way, we were able to identify two main cores among the up-regulated
proteins in both pigs and humans (Figure 3A). The first module consists
of five interacting proteins (ACADVL, ACADL, ACSL6, PCCB, PCCA)
conserved in pig (p-value = 0.001) and in human (p-value = 0.003),
which is responsible for lipid homeostasis (Supplementary Table 3A
contains the full list of significantly enriched terms (adjusted p-value
<0.05)). The second up-regulated core is formed of five proteins in pig
(MX2, IFIT5, IFI44, IFI44L, ISG15) (p-value = 0.001) and seven in
human (MX2, IFIT5, IFi44, IFI44L, ISG15, SP110, RNASEL) (p-
value = 1e-05), which is related to an interferon type | response (full
list of enriched terms Supplementary Table 3B for pig and 3C for
human). In both species, the down-regulated proteins form a con-
nected core, 17 proteins in pigs (p-value = 1.7e-60), and 22 in
humans (p-value = 3e-74) (Supplementary Fig. 6A).

Based on the fact and our observation that pigs and humans share
similar core mechanisms on a network level, we decided to focus on
the latter. Using a random walk with restart algorithm (see methods),
we identified a network of 312 up-regulated proteins and their inter-
actors (Figure 3B) and another network for 363 proteins which were
down-regulated in PHG (Supplementary Fig. 6B). These two networks
are very different as shown by their poor edge overlap (Jaccard
index = 0.002), proving once again that they lay in two different parts
of the PPl network contributing to different biological mechanisms.
Their enrichment analysis resembles our previous findings
(Supplementary Tables 3D—E) pointing to those interacting proteins
that in tandem with the differentially abundant ones contribute to
specific phenotypes (i.e. “fatty acid degradation”). Finally, to check the
relationship of these dysregulated proteins with disease onset, we
extracted disease—gene associations from DisGeNet [31], leading to a
list of 11,099 diseases (after filtering). We computed two measures:
the Jaccard index between the set of perturbed genes in diseases and
the dysregulated proteins in our set-up and the network proximity [32]
(Supplementary Table 3F). Since the Jaccard index does not make use
of any network properties, these relationships can be driven even by a
very small pool of genes. To address this, we decided to pursue our
analyses by using network proximity and identified a plethora of related
diseases (227, for the first up-regulated core, and 1,275, for the
second one) (adjusted p-value <0.05, Supplementary Table 3G).
Among the 227 proximal diseases to the first up-regulated core, we

focused on those relevant to metabolic disorders and liver diseases
(Figure 3C), observing very small z-scores compared to those of all
diseases, standing for their closeness to the up-regulated core in the
human PPI. The genes known to be responsible for these pathological
conditions are strictly related to lipid metabolism, such as lipoprotein
lipase (LPL), its receptor (LPLR), and hepatic triacylglycerol lipase
(LIPC) (Figure 3D). This tight distance in the human PPI suggests that
frequently reported susceptibility of GDM offspring to childhood and
adolescence overweight may be caused by the network pathways that
connect the up-regulated core genes (PCCA, PCCB, ACADL, ACADVL,
ACSL6), to APOA5, CETP, and APOA1 (Figure 3D). Similar consider-
ations can be applied to the second up-regulated core (related to the
IFN pathway) and to the expanded unified up-regulated core
(Supplementary Table 3G). After expansion, also by using the Jaccard
index measure, we could observe among the most statistically sig-
nificant associated diseases, primary and secondary biliary cholangitis
(Benjamini-Hochberg adjusted p-value: 0.03), Glutaric Aciduria Il (type
A, B, C) (Benjamini-Hochberg adjusted p-value: 0.004), and Multiple
Acyl Coenzyme A Dehydrogenase Deficiency (Benjamini-Hochberg
adjusted p-value: 0.004), which could hint changes in bilirubin
metabolism due to perturbations of the immediate neighbors in the
human PPI of the up-regulated proteins.

3.4. Overview of metabolome findings in the liver

To gain further insights into the alteration of metabolic pathways as
revealed by proteomics, quantitative readouts of relevant metabolite
classes were performed. The results of the targeted metabolomics
analysis are shown in Supplementary Table 4A. Hierarchical clustering
(Figure 4A) and principal component analysis (Figure 4B) separated
samples of PHG and PNG. To reveal metabolites changed by the effects
of group, sex, and group*sex, a two-way ANOVA was performed
(Supplementary Table 4B). Metabolites with Benjamini-Hochberg
adjusted p-value <0.05 and I2fc > 1.5 were considered significant.
31 metabolites were changed by the effect group (Supplementary
Table 4C, Figure 4C). The supervised OPLS-DA method was used to
evaluate to what extent metabolomics data can discriminate PHG from
PNG. OPLS-DA clearly separated groups (Figure 4D). Statistical evalu-
ation of the OPLS-DA indicated a robust model (R2X = 0.58,
R2Y = 0.99, Q2 = 0.93). The permutation test with 200 iterations
showed the significance of both predictive (Q2Y) and fitting (R2Y)
components (p = 0.002). Variable importance in projection (VIP) plot
(Figure 4E) revealed metabolites with the highest contribution to the
separation of PHG from PNG animals on the OPLS-DA plot. Figure 5
provides a detailed overview of differentially abundant metabolites.
24 different glycerophospholipids (specifically phosphatidylcholines
(PC)) were changed in abundance of which 22 were increased and only
two (PC ae C30:0 and PC aa C32:1) were decreased (Figure 5A).
Furthermore, two sphingolipids (SM (OH) C14:1 and SM (OH) C16:1)
were elevated (Figure 5A). In the PHG liver, enzymes and metabolites
involved in the breakdown and removal (translocation from hepatocytes
to bile) of the PC were elevated while those involved in biosynthesis
were reduced (Figure 5B—C). Several members of biogenic amines
were changed in abundance between PHG and PNG, of which total DMA
(dimethylamine), SDMA (symmetric dimethylarginine) and ADMA
(asymmetric  dimethylarginine) were elevated while trans-4-
hydroxyproline (t4-0H-Pro) was reduced. Furthermore, the amino acid
proline was reduced by 1.7-fold (Figure 5D). Only one metabolite, PC ae
C42:4, was affected by the effect sex (decreased in female offspring)
(Supplementary Table 4D) and only two metabolites (PC ae C42:3 and
SM C26:0) were affected by the interaction group*sex (Supplementary
Table 4E, Supplementary Fig. 7). Only three metabolite ratios, poly-
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unsaturated to mono-unsaturated glycerophosphocholines (PUFA (PC)/
MUFA (PC)), total PC ae and total sphingolipid (SM), were significantly
changed between PHG and PNG (Benjamini-Hochberg adjusted p-value
<0.05) and were elevated in PHG liver (Supplementary Tables 4F—G,
Figure 5C). To check for similarities between the metabolic alterations
in offspring and mother, plasma metabolomics data from this study was
compared to a previously published set of plasma metabolite alterations
from MIDY versus WT pigs [46] (Figure 5E). The mother of the offspring
used in this study had the same insulin mutation as MIDY pigs pub-
lished previously [19]. The majority of PCs changed in abundance in the
offspring were also significantly changed in the same direction in the
MIDY versus WT plasma. Total DMA was elevated in the offspring liver
while it was significantly reduced in the MIDY plasma. Proline which
was significantly increased in the offspring liver was not significantly
changed in the MIDY plasma. The same is true for sphingolipids (SM
(OH) C14:1 and SM (OH) C16:1) and biogenic amines (SDMA and ADMA,
t4-0H-Pro).

3.5. Cross-omics correlation

Using a co-inertia analysis (CIA) [47], we investigated the complex as-
sociation between proteomics and metabolomics datasets. CIA projects
multiple omics datasets simultaneously onto the same plane. Repre-
sentation of samples on a lower-dimensional space reveals global co-
variability —between proteomics and metabolomics datasets
(Figure 6A). CIA reveals that proteomics and metabolomics datasets are
more similar within groups than between groups. The first component of
the CIA (horizontal) accounted for 56% of the variance, and the second
component (vertical) accounted for 25%. The CIA showed clear clus-
tering of PHG and PNG samples. In line with this RV coefficient which
represents the degree of association was 0.79 and was significant as
revealed by 200-step permutation-based test (p = 0.005). The corre-
sponding score plot shows the proteins and metabolites responsible for
partitioning PHG and PNG samples on the CIA plot (Figure 6B). In the
score plot, each quantified protein and metabolite is depicted by the
black square and grey circles, respectively and some of the most
informative biomolecules across datasets are labelled.

3.6. Overview of clinical-chemical findings in the serum

To clarify if maternal diabetes is associated with alteration of circu-
lating biomarkers of liver damage, relevant clinical-chemical param-
eters were measured in the serum of PHG and PNG. The detailed
clinical-chemical data and the results of the two-way ANOVA anal-
ysis are shown in Supplementary Table 5A and Supplementary
Table 5B, respectively. Clinical-chemical parameters with statistically
significant (p-value <0.05) changes between PHG and PNG serum
samples were bilirubin (increased in PHG), non-esterified free fatty
acids (NEFA) (increased in PHG), and albumin (increased in PHG)
(Supplementary Table 5C). Glycerol (decreased in PHG, p = 0.06) and
triglycerides (decreased in PHG, p = 0.07) levels were changed as a
trend (Figure 7). High-density lipoprotein levels were significant for the
effect of sex (increased in female offspring) (Supplementary Table 5D).
Alanine transaminase (ALT) showed a significant interaction effect,
with significantly higher levels in male PHG versus male PNG
(Supplementary Table 5E, Supplementary Fig. 8).

4. DISCUSSION
To investigate to what extent maternal hyperglycemia affects the off-

spring’s liver metabolism, a multi-omics analysis combining data-
independent acquisition proteomics and targeted metabolomics was

performed. Additionally, relevant clinical-chemical parameters that
reflect the liver state were measured in the serum. In this work, the
liver and serum samples were collected from offspring born to a
genetically engineered diabetic pig model for mutant /NS gene-induced
diabetes of youth (MIDY) [19] (PHG) and from offspring born to WT
littermate controls (PNG), according to the principles of systematic
random sampling [6]. The body weight of PHG was significantly lower
than PNG. Similarly, in human studies, neonates of mothers with se-
vere diabetic complications tended to have a lower birthweight (SGA)
[48,49]. Like macrosomia, SGA is a risk factor for a variety of diseases
in future life (reviewed in [50]). To clarify if hepatic damage in the
offspring due to maternal glycemia is apparent already in the neonatal
period, we investigated livers from 3-day-old piglets. To our knowl-
edge, this is the first holistic multi-omics study from a clinically rele-
vant large animal model addressing the molecular derangements in
the offspring liver caused by maternal hyperglycemia.

Circulating bilirubin was significantly elevated in the offspring born to
hyperglycemic mothers which was also observed previously in human
offspring studies [51,52], underlining the clinical relevance of our
finding. A higher level of bilirubin may reflect different types of liver or
bile duct complications [53]. In line, disease—gene association revealed
several diseases associated with disturbed bilirubin metabolism. One of
the primary constituents of bile are phospholipids (predominantly
phosphatidylcholines (PC)) [54]. PC excretion into bile is mediated by the
PC-specific floppase ABCB4 [53,55]. Our targeted metabolomics
revealed consistent elevation of multiple PC (with mainly one acyl- and
one alkyl-bound fatty acids (PC ae), and a higher proportion of poly-
unsaturated PCs), while proteomics showed significantly elevated levels
of ABCB4, suggesting an active translocation of PCs to bile. Trans-
location of PCs is considered to have hepatoprotective properties as PCs
inactivate the detergent activity of bile salts to prevent damage to cell
membranes [56]. Besides translocation to bile, hydrolysis of PCs by
phospholipase A2 to produce fatty acids and a lysoPC is an important
step in PC homeostasis [57]. The products of PC hydrolysis are important
precursors for generating key inflammatory mediators, oxylipins [58]. In
our data, phospholipase A2 was significantly elevated while one of the
downstream enzymes leukotriene a4 hydrolase (LTA4H) was moderately
increased (LTA4H, 12fc = 0.31, adjusted p-value = 0.006), suggesting a
breakdown of PC molecules and generation of leukotrienes in PHG liver.
Finally, PC homeostasis in the liver is achieved via the metabolic
pathways involved in its biosynthesis, predominantly from choline via the
CDP-choline pathway (also known as the Kennedy pathway) [59].
Choline kinase (CHKA), the initial enzyme in the sequence, catalyzes the
transfer of a phosphate group from adenosine triphosphate (ATP) to
choline to form phosphocholine. Subsequently, the key regulatory
enzyme in this process, CTP:phosphocholine cytidylyltransferase
(PCYT2, alias CCT) catalyzes the transfer of a cytidylyl group to phos-
phocholine to form CDP-choline, which then forms PC (catalyzed by
choline phosphotransferase 1 (CHPT1 alias CPT1)). Although with a
moderate fold change (CHKA, 12fc = —0.31; PCYT2, 12fc = —0.22),
CHKA and PCYT2 were reduced significantly (adjusted p-value <0.05).
CHPT1 levels were also reduced but did not reach statistical signifi-
cance. CDP-choline is the major pathway of PC synthesis, however, in
the hepatocytes where PC demand is high, it can also be synthesized by
sequential methylations of phosphatidylethanolamine (PE) where
MAT2A-catalyzed S-adenosyl-methionine (SAM) transformation to S-
adenosylhomocysteine (SAH) donates the methyl groups. We found
significantly reduced levels of MAT2A together with non-significantly
reduced levels of other enzymes involved in this pathway. Additionally,
LPCAT3, which catalyzes the third mechanism of PC synthesis -
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reacylation of lysoPC to PC [60] - was moderately reduced (12fc = —0.4,
adjusted p-value = 0.03). Collectively, our data show reduced levels of
enzymes involved in PC synthesis, but elevated levels of enzymes and
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downstream products involved in its elimination and breakdown.
Elevated PC levels in the PHG, despite reduced biosynthesis, may be
explained by increased transplacental transfer from the hyperglycemic
mother and subsequent hepatic uptake. This is in line with the previous
data where PC levels were shown to be elevated in the serum of hy-
perglycemic pigs [46]. We suggest that the feedback loop mechanism by
which increased PC levels downregulate enzymes involved in its
biosynthesis is plausible. Supporting our hypothesis, previous reports
showed a correlation of maternal and fetal metabolites during both the
peripartum period [61] and even several years postpartum [62].

In line with increased lipid species as revealed by targeted metab-
olomics and targeted lipidomics, higher total hepatic lipid content was
detected using Qil red O staining. Accumulation of liver fat is recog-
nized as a risk factor for non-alcoholic fatty liver disease (NAFLD) [63],
cardiometabolic disease [64,65] and other complications. Although the
presence of liver steatosis in the offspring born to a diabetic mother is
supported by several recent human [13,17,66,67] and rodent studies
[68], another human study found that in predicting infant hepatic fat
content, maternal diabetes may be less important than the presence of
maternal obesity [14]. Authors of two systematic reviews proposed that
the evidence for an association between maternal diabetes and
offspring adiposity, which is strongly associated with NAFLD, remains
inconclusive due to the attenuation of the association when adjusting
for maternal pre-pregnancy BMI [69,70]. Lipogenesis as well as
availability of plasma fatty acids are considered as important con-
tributors to hepatic steatosis [71]. The initial rate-limiting step of he-
patic de novo lipogenesis (DNL) is acetyl-CoA carboxylation to malonyl-
CoA by the action of acetyl-CoA carboxylase (ACACA) [72]. Subsequent
conversion of malonyl-CoA into palmitic or various other fatty acids is
catalyzed by fatty acid synthase (FASN) which plays a central role in
hepatic DNL [73]. The terminal step of triglyceride (TG) synthesis - the
acylation of diglyceride - is catalyzed by diacylglycerol 0-acyl-
transferase 1 (DGAT1) [74]. Despite increased hepatic fat content,
levels of ACACA, FASN and DGAT1 were significantly reduced.
Decreased circulating TG levels in PHG may be explained by an
elevated hepatic TG accumulation and reduced release in the serum.
This is in line with the downregulation of DGAT1 in PHG, as DGAT1
overexpression is associated with higher rates of very-low-density
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lipoprotein-TG complex secretion from rat hepatoma cells [75].
Conversely, inhibition of DGAT1 in mouse liver and isolated hepato-
cytes resulted in an increased transfer of fatty acids into mitochondria
for beta-oxidation [76—78]. In PHG beta-oxidation markers such as
ACSL6, ACADL and ACADVL were elevated suggesting active degra-
dation of long-chain and very long-chain fatty acids. Furthermore,
although with a moderate fold-change (12fc = 0.32) both HADHA and
HADHB which catalyze the last three steps of beta-oxidation were
increased in abundance (adjusted p-value <0.05). Decreased lipo-
genic enzymes in the liver suggests that elevated hepatic lipid content
in PHG is not linked to DNL. This is in line with the observation that
limited capacity for DNL exists in human fetus, and the drivers of fetal
fat accumulation are primarily supplied transplacentally [79]. Shifting
the balance of lipid metabolism away from de novo synthesis to favor
lipid breakdown via beta-oxidation, mechanistically resembles the
observation made for PC (see above). Decreased DNL together with
increased beta-oxidation might be a way of adaptation developed in
offspring to slow down or prevent the progression of increased fat
content into liver steatosis, which is especially relevant in pigs as they
seem to be protected against steatosis even in morbid obesity [80]. In
line, previous studies reported protection against steatosis through
pharmaceutical inhibition of DNL enzymes [81,82]. The resistance of
pigs to hypertriglyceridemia is not well understood but extrahepatic
lipogenesis has been proposed as a potential mechanism [83]. Another
key driver of reduced lipogenesis might be PC which were elevated in
PHG (see above). An elevated lipogenesis and steatosis in early stages
of fatty liver disease was shown in the setting of reduced PC [84].
Additionally, several clinical studies observed the attenuation of
steatosis after treatment with PC (reviewed in [85]).

Besides lipid metabolism, the homeostasis of other key biomolecules
such as amino acids and glucose is a pivotal function of the liver. Under
normal circumstances, the fetus is dependent on a continuous supply of
glucose from the mother, and no significant production of glucose
(gluconeogenesis) by the fetus has been demonstrated [86].
Conversely, a rapid rise of hepatic gluconeogenesis is observed in
newborn mammals in parallel with the appearance of PCK1, the key
enzyme of this pathway [87]. Specifically, in humans, gluconeogenesis
is apparent soon after birth in healthy newborns and it contributes 30%
of the total glucose produced [88]. Our proteomics data revealed
significantly higher levels of PCK1 in PHG liver. Increased levels of
gluconeogenic precursors were observed in the plasma of piglets born
to diabetic mothers [18], and was explained by reduced insulin
sensitivity. Impaired insulin sensitivity was also observed in offspring
exposed to hyperglycemia in utero due to maternal GDM or type 1
diabetes compared with offspring from the background population [89].
It was proposed that increased rates of gluconeogenesis in the offspring
born to diabetic mothers may be predictive of the increased risk of
glucose intolerance in later life [89]. Interestingly, PCK1 was elevated in
the liver of the male but not in female offspring born to streptozotocin
(STZ)-induced diabetic mice [90]. Similarly, in our study increase in
PCK1 levels were almost three times higher in male than in female PHG
when compared to PNG. We also observed significantly elevated
circulating levels of ALT in the PHG male but not in female offspring. ALT
catalyzes conversion of the main gluconeogenic precursor alanine into
pyruvate for glucose production and thus plays an important role in
gluconeogenesis [91]. An ALT blood test is used to diagnose liver
disorders [92] and it has been shown that ALT activities are increased in
gluconeogenic conditions and may be implicated in the development of
diabetes. Higher rates of gluconeogenesis in PHG may be explained by a
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failure of insulin to inhibit gluconeogenesis in the setting of decreased
insulin sensitivity [93]. Indeed, as revealed by QUICKI and HOMA-IR
index, PHG had reduced insulin sensitivity with a more pronounced
effect in male offspring. In line with this observation, notable sex-
specific differences with regard to glucose metabolism were reported
and females were shown to have higher whole-body insulin sensitivity
than males [94]. The exact mechanism responsible for sex-specific
differences in insulin sensitivity is not well understood, however, sex
hormones or adipokines were proposed as potential contributors [95].
TAT which catalyzes the conversion of tyrosine to 4-
hydroxyphenylpyruvate was another transaminase elevated in the
PHG liver. In line, metabolomics showed near significance of reduced
levels of tyrosine (12fc = —0.47, adjusted p-value = 0.06), suggesting
an active tyrosine catabolism. TAT is a gluconeogenic enzyme which is
activated in the liver shortly after birth [96]. A potential mediator of
decreased insulin sensitivity in PHG might be elevated NEFA levels [97].
Even slight elevation in plasma NEFA, whose flux is high, can signifi-
cantly increase hepatic uptake [98]. Interestingly, higher expression of
interferon-stimulated genes (ISGs) was observed in insulin resistant
human patients [99]. ISG15 was positively correlated with insulin
sensitivity and glucose homeostasis in humans and mice [100]. ISGs
are a group of genes that are stimulated in response to interferon, thus
their upregulation may hint towards inflammation due to an immune
response [99)]. Low-grade chronic inflammation may be a potential
driver of insulin resistance in obesity and NAFLD [101]. A recent study
reported the enrichment of ISGs, including IFI44, in GDM human
amniocytes [102]. Besides, the metabolic-inflammatory circuit that
links perturbations in lipid homeostasis with the activation of innate
immunity was suggested [103]. Taken together, upregulation of glu-
coneogenic precursors and related enzymes suggests higher rates of
gluconeogenesis in PHG liver which may be associated with impaired
insulin sensitivity and glucose intolerance in later life. In conclusion,
using a clinically relevant large animal model we showed that maternal
hyperglycemia without confounding obesity results in profound meta-
bolic alterations in the neonatal offspring’s liver. Specifically, maternal
hyperglycemia was related with increased rates of hepatic gluconeo-
genesis, amino acid metabolism and beta-oxidation but decreased
rates of lipogenesis in PHG. Additionally, we found that hepatic PC
biosynthesis was reduced while catabolism and translocation to bile
was increased in PHG. We hypothesize that elevated PC levels despite
reduced biosynthesis may be due to increased transplacental transfer
and subsequent downregulation of enzymes involved in its synthesis via
a feedback loop mechanism. In this study protein abundance changes
alongside with quantitative data of metabolites were used as a proxy for
the state of biochemical processes, however, our comprehensive
dataset would greatly benefit from future studies assessing further
measures of protein activity such as protein interactions and post-
translational modifications. The generated datasets provide an impor-
tant resource for future comparative or meta-analysis studies on the
progression of hepatic complications and other associated comorbid-
ities in neonatal offspring due to isolated maternal hyperglycemia.
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