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Approximately 36.7 million people were living with the human immunodeficiency virus
(HIV) at the end of 2016 according to UNAIDS, representing a global prevalence
rate of 0.8%. In Brazil, an HIV prevalence of 0.24% has been estimated, which
represents approximately 830,000 individuals living with the virus. As a touristic and
commercial hub in Latin America, Brazil harbors an elevated HIV genetic variability,
further contributed by the selective pressure exerted by the host immune system and
by antiretroviral treatment. Through the progress of the next-generation sequencing
(NGS) techniques, it has been possible to expand the study of HIV genetic diversity,
evolutionary, and epidemic processes, allowing the generation of HIV complete or near
full-length genomes (NFLG) and improving the characterization of intra- and interhost
diversity of viral populations. Greater sensitivity in the detection of viral recombinant
forms represents one of the major improvements associated with this development. It
is possible to identify unique or circulating recombinant forms using the near full-length
viral genomes with increasing accuracy. It also permits the characterization of multiple
viral infections within individual hosts. Previous Brazilian studies using NGS to analyze
HIV diversity were able to identify several distinct unique and circulating recombinant
forms and evidenced dual infections. These data unveiled unprecedented high rates
of viral recombination and highlighted that novel recombinants are continually arising
in the Brazilian epidemic. In the pooled analysis depicted in this report, HIV subtypes
have been determined from HIV-positive patients in five states of Brazil with some of the
highest HIV prevalence, three in the Southeast (Rio de Janeiro, São Paulo, and Minas
Gerais), one in the Northeast (Pernambuco) and one in the South (Rio Grande do Sul).
Combined data analysis showed a significant prevalence of recombinant forms (29%;
101/350), and a similar 26% when only NFLGs were considered. Moreover, the analysis
was able to evidence the occurrence of multiple infections in some individuals. Our data
highlight the great HIV genetic diversity found in Brazil and unveils a more accurate
scenario of the HIV evolutionary dynamics in the region.
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INTRODUCTION

The first registry of AIDS was reported in the beginning of
the 1980s, and until now 77 million people have become
infected with human immunodeficiency virus (HIV) and 35
million have died from AIDS-related causes. By 2017, it was
estimated that 36.9 million people worldwide were living with
HIV (UNAIDS, 2018). Harboring over one-third of the total
population of Latin America, Brazil accounts for nearly half of
the new HIV infections and of the estimated total of individuals
living with HIV/AIDS (48 and 46%, respectively) in the region
(UNAIDS, 2018). This scenario, along with the high error-
prone rate of the viral reverse transcriptase (RT), high virus
replication rates and recombination events, contributes to the
remarkable accumulation of genetic diversity in its population
during the course of infection, further influenced by selective
pressure exerted by the host immune system and by antiretroviral
treatment (Roberts et al., 1988; Overbaugh and Bangham, 2001;
Zhuang et al., 2002; Santoro and Perno, 2013).

The surveillance of HIV diversity assists to monitor the
emergence of new subtypes and the presence of novel strains
in a given geographic location (Hemelaar, 2013). The great
diversity of HIV-1 group M, which disseminated on a global
scale and dominates the current AIDS pandemic, allowed the
phylogenetic classification in nine pure subtypes (A–D, F–H, J,
and K), sub-subtypes (A1–A5, F1–F2), circulating recombinant
forms (CRFs) and unique recombinant forms (URFs) (Robertson
et al., 2000). Currently, more than 90 CRFs have been reported
in the HIV Sequence Database of the United States Los Alamos
National Laboratory1. Recombinant viruses are the result of
simultaneous infection by multiple viruses during a single
transmission event (co-infection) or from sequential infection
at multiple transmission events (superinfection) (Yerly et al.,
2004). Molecular epidemiology studies show that the overall
distribution of HIV-1 groups, subtypes and recombinant forms
is highly heterogeneous, with significant differences in the size of
the epidemic and the geographical distribution. Overall, subtype
C is responsible for half of the current infections (48%), followed
by subtypes A (12%), and B (11%). A high prevalence of
recombinant forms, which account for at least 21% of HIV-1
infections worldwide, is also noteworthy (Hemelaar, 2012). As
seen in Latin America and the Caribbean countries, subtype B
prevails in most parts of Brazil, followed by subtypes F1, C, D, and
diverse recombinant forms. Southern Brazil, however, presents
a distinct epidemiological pattern, with a higher prevalence of
subtypes C, B, and BC recombinants (Cardoso et al., 2009;
Machado et al., 2009, 2017; de Medeiros et al., 2011; Almeida
et al., 2012; Graf and Pinto, 2013; Velasco-de-Castro et al., 2014;
Junqueira and Almeida, 2016; Pessoa et al., 2016; Delatorre et al.,
2017; Filho and Brites, 2017; Lima et al., 2017).

Through the progress of next-generation sequencing (NGS)
techniques it became possible to expand the study of HIV genetic
diversity, evolutionary and epidemic processes, allowing the
generation of HIV complete or near full-length genomes (NFLG)
and improving the characterization of intra- and interhost

1http://www.hiv.lanl.gov/content/sequence/HIV/CRFs/CRFs.html

diversity of viral populations. Greater sensitivity and accuracy
in the detection of viral recombinant forms represents one of
the major improvements associated with this development, since
most of the previous studies were based on partial HIV genomic
sequences, mainly within the pol gene region due to the interest
in determining drug resistance mutational patterns, resulting
in underestimation of the frequency of recombinant forms
(Thomson and Najera, 2005; Hemelaar et al., 2011; Marques
et al., 2018). It also permits the characterization of multiple
viral infections within individual hosts. Previous Brazilian studies
using NGS to analyze HIV diversity were able to identify several
distinct unique and circulating recombinant forms and evidenced
dual infections (Pessoa et al., 2014b, 2015, 2016; Alves et al.,
2017; Marques et al., 2018). In the pooled analysis depicted in
this report, we pooled publically available Brazilian sequences
obtained by NGS and new genetic data from HIV-positive
patients in five states of Brazil with some of the highest HIV
prevalence, three in the Southeast (Rio de Janeiro, São Paulo,
and Minas Gerais), one in the Northeast (Pernambuco) and one
in the South (Rio Grande do Sul). Upon analyzing the HIV
subtypes of this large cohort, our study was able to unveil, with
unprecedented accuracy, high rates of viral recombination and
highlighted that novel recombinants are continually arising in the
Brazilian epidemic.

MATERIALS AND METHODS

Study Population and Sample Collection
A total of 84 convenience samples were used for generating
the experimental data presented in this study. These were from
HIV-1-seropositive patients recruited between February 2016
and December 2017 during the routine services conducted
at Sexually Transmitted Diseases/HIV ambulatory at Hospital
Federal de Ipanema (HFI) and at Hospital Universitário
Clementino Fraga Filho (HU-UFRJ), both located in Rio de
Janeiro, southeastern Brazil, and at Hospital Universitário Dr.
Miguel Riet Corrêa Jr. (HU-FURG), located in Rio Grande,
southern Brazil. Clinical and epidemiological data were obtained
through a questionnaire and 10 ml of whole peripheral blood
were collected. This research was approved by the Ethics
Committees in Research of the Brazilian National Cancer
Institute – INCA and of HFI (CAAE 52862016.9.0000.5274),
HUCFF-UFRJ (CAAE 56604816.2.0000.5257), and HU-FURG
(CAAE 52862016.9.3001.5324). The inclusion criteria were being
18 years or greater, being under first antiretroviral scheme and
being upon virological success (undetectable HIV viral load) for
the last 12 months. A fraction of this casuistic, 32 patients from
HFI, has been previously described (Alves et al., 2017). We pooled
these data with all Brazilian HIV-1 data comprising NFLG and
partial sequences determined by NGS and publically available
(Pessoa et al., 2015, 2016). All studies included in the present
report (either experimentally determined herein or retrieved
from the literature) used a similar methodology to amplify the
HIV NFLG and sequence them in an Illumina MiSeq platform.
Multiple infection analyses were also made by de novo assembly
as described below.
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DNA Extraction and PCR of Proviral DNA
The patients’ genomic DNA containing their HIV-1 proviruses
was extracted from whole blood with the Genomic DNA
Extraction Kit (Real Genomics, BioAmerica, Inc.) following
manufacturer’s instructions. Nested PCR performed using
PlatinumTM Taq DNA Polymerase High Fidelity (Life
Technologies) was carried out in a Veriti R© 96-Well Thermal
Cycler (Life Technologies, Carlsbad, United States) for the
amplification of HIV NFLGs. The strategies comprised the
amplification of four to five fragments, from 2 to 3 kb each,
spanning the whole HIV genome (Sanabani et al., 2006b;
Ode et al., 2015). After visualization using GelRed (Biotium,
Hayward, CA, United States) in 1% agarose gels, duplicated
independent PCR-positive products were pooled directly
to avoid representativeness of PCR-based errors and their
interpretation as minority variants in the population. PCR
products were purified with the GFXTM PCR DNA and Gel Band
Purification Kit (GE Healthcare, MA, United States) and their
concentration was measured in a NanoDrop ND 1000 apparatus
(Thermo Fisher Scientific, MA, United States). The purified
products were diluted to 4 ng/µL and pooled per patient.

Library Construction and NGS
Libraries were prepared with the Nextera XT DNA Sample
Preparation kit (Illumina Inc., San Diego, United States)
according to the manufacturer’s protocol, except that the starting
material was diluted to 0.4 ng/µL. The library construction
consists of a fragmentation step using transposon technology,
followed by a PCR step where dual indexes were added to
the fragments. After this process, libraries were quantified by
qPCR with the KAPA library quantification kit (Kapa Biosystems,
MA, United States) or by fluorometric quantitation with the
Qubit dsDNA HS Assay Kit (Life Technologies, Carlsbad, EUA).
Libraries were diluted, and pooled prior to sequencing in a MiSeq
Illumina platform (2 × 301 cycles paired-end run) (Illumina)
with 1% denatured PhiX DNA as a sequencing control.

Data Analysis
The analysis of the obtained files was performed in Geneious
v.9.1.3 using the same alignment parameters for a reference-
based genome assembly described by Dudley et al. (2014). Reads
were assembled using an annotated HIV-1 HXB2 reference
sequence and 10 iterations to obtain each viral genome sequence.
The presence of multiple infections was investigated by de novo
assembly performed with IVA (Iterative Virus Assembler) with
default parameters (Hunt et al., 2015). This assembler is based on
seed sequences that are iteratively and conservatively extended
into a contig using reads that have a perfect match. After this
process, the program uses those contig as reference in a reference
genome aligner to extend the initial contigs obtained (Hunt
et al., 2015). The contig sequences obtained were submitted
to a BLAST nucleotide analysis to discard those of human
origin and confirmed with the Los Alamos National Laboratories
HIV BLAST Tool2. All samples suggestive of multiple infections
(more than one contig representing the same genomic region)

2https://www.hiv.lanl.gov/content/sequence/BASIC_BLAST/basic_blast.html

were re-aligned using their respective IVA-assembled contigs as
references in the Geneious program. More restrictive assembly
parameters were used, such as allowing mapping of paired reads
only when both mapped to the same contig and discarding
reads that mapped simultaneously to more than one contig. To
investigate if these contigs were derived from the same virus,
sequences were submitted to hypermutation analysis using the
Hypermut2.0 tool available at Los Alamos HIV Database. The
contigs were considered hypermutated if the p-value was ≤0.05
when comparing the number of APOBEC G-to-A signature
mutations with the control context. The overlapped region
between the contigs obtained per sample was compared to all
sequences publically available at the BLASTn Database3. The
top 10 hits of each contig were retrieved from this database to
construct phylogenetic trees and check its clustering profile.

Phylogenetic Analysis
The consensus sequence for each sample was extracted from
the reference-guided assembly described above using the 50%
stringency setting and classified using maximum likelihood
phylogenetic analysis performed with PhyML v.3.0 and the best
model of nucleotide substitution defined with Model Generator
(Keane et al., 2006; Guindon et al., 2010). To investigate
HIV-1 recombination the bootscaning tool of Simplot v.3.5.1
was used with the following parameters: window = 400 pb;
steps = 40 pb; T/t = 2.0; gapstrip = on; replicas = 100; nucleotide
substitution model = F84; method = Maximum Likelihood
(Lole et al., 1999). Phylogenetic analyses were repeated for
recombinant sequences considering the bootscanning breakpoint
analysis (data not shown). The sequences obtained in this
study were submitted to the GenBank under the accession
numbers MK041550-MK041589. The raw sequencing reads were
deposited to the Sequence Read Archive (SRA) under the
numbers SRR7993842-SRR7993872.

RESULTS

In this study, we included data previously published by our
group from patients followed-up at HFI and all HIV-1 sequences
obtained by NGS publicly available. A detailed description
of the studied populations can be found in their respective
articles (Pessoa et al., 2015, 2016; Alves et al., 2017). We
focused on the HIV-1 subtype classification, identification of
HIV recombinants and multiple infection investigation for our
novel patients. As previous published, the patients from HFI
were mostly males (75%) with a median age of 38 years at
the time of sample collection. Regarding our new cohort, we
also found a prevalence of males (67%) among the patients
from HU-UFRJ with a median age of 43.5 years. Unlike the
other centers, a greater number of female patients (62%) were
observed among patients from HU-FURG, with a median
age of 43 years. Clinical and epidemiological characteristics
of the three cohorts are compiled in Table 1. Regarding
antiretroviral treatment, 19 patients from HI (19/32, 59%),

3https://blast.ncbi.nlm.nih.gov/
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TABLE 1 | Demographic and clinical characteristics of HIV-positive patients.

Characteristic HI HU- UFRJ HU-FURG

(n = 32) (n = 12) (n = 40)

Males (%) 24 (75%) 8 (67%) 15 (38%)

Age (years) 38 43.5 43

(median; IQR50) (31.5–45.25) (41–52) (35–49.5)

Median baseline CD4+ T-cell counts 712.5 11171 780.5

(cells/mm3; IQR50) (606.5–856) (680.75–938.5)

Median baseline CD8+ T-cell counts 657.5 NA 848

(cells/mm3; IQR50) (529–1047.25) (750.5–1053)

Median time since HIV diagnosis 4.7 13.3 4.83

(years; IQR50) (3.9–6.5) (7.7–14.8) (2.42–10.9)

Median time from HIV diagnosis to start of ARV treatment 1.2 1.7 0.88

(years; IQR50) (0.6–2.8)2 (0.1–5.3) (0.25–3.2)

Median treatment time 3.1 9.34 3.83

(years; IQR50) (2.4–3.9) (4.6–11.4) (2.2–4.77)

1 Information available for only two patients (1201 and 1033 cells/mm3). 2Data based on 31 patients. NA, information not available. IQR50, interquartile range.

four patients from HU-UFRJ (4/12, 33%), and 23 patients
from HU-FURG (23/40, 58%), were under the HAART scheme
preconized by Brazilian Ministry of Healthy at the time of
sample collection, composed of tenofovir (TDF), lamivudine
(3TC), and efavirenz (EFV). All schemes used by the patients are
described in Table 2.

Overall, we were successful in sequencing by NGS at least 2
of the 4/5 overlapping PCR fragments of 48 samples from our
cohort included in this study (57%, 48/84). Of those, 28 samples
(58%; 28/48) had the NFLG obtained. The remaining partial
genome sequences had complete Gag CDS (coding sequence)
for nine samples (45%, 9/20), Pol CDS for 4 (20%, 4/20), and

TABLE 2 | Distribution of subtypes and HAART regimen exposure across the 48 HIV-1 genome sequences analyzed.

Patient Subtype/ HAART Patient Subtype/ HAART

URF Regimen URF Regimen

1-HI B AZT+3TC+NVP 31-HI B TDF+3TC+EFV

2-HI# B AZT+3TC+EFV 32-HI BF TDF+3TC+EFV

3-HI B TDF+3TC+EFV 2-HU-UFRJ B TDF+3TC+EFV

4-HI B TDF+3TC+EFV 3-HU-UFRJ B AZT+3TC+EFV

5-HI B AZT+3TC+ATV 4-HU-UFRJ B AZT+3TC+EFV

6-HI F1 AZT+3TC+ATV/r 6-HU-UFRJ B AZT+3TC+EFV

8-HI BC TDF+3TC+EFV 7-HU-UFRJ B AZT+3TC+EFV

11-HI BF TDF+3TC+EFV 9-HU-UFRJ F1 AZT+3TC+AZT/r

12-HI B TDF+3TC+EFV 10-HU-UFRJ B TDF+3TC+EFV

13-HI B TDF+3TC+EFV 12-HU-UFRJ B TDF+3TC+EFV

14-HI B AZT+3TC+LPV/r 1-HU-FURG C TDF+3TC+EFV

15-HI B TDF+3TC+EFV 2-HU-FURG C TDF+3TC+EFV

16-HI B AZT+3TC+FPV/r 3-HU-FURG BC AZT+3TC+EFV

17-HI BF1 AZT+3TC+ATV/r 6-HU-FURG C TDF+3TC+AZT/r

18-HI B TDF+3TC+EFV 7-HU-FURG C TDF+3TC+DRV/r

19-HI B AZT+3TC+EFV 8-HU-FURG C TDF+3TC+ATV

20-HI B TDF+3TC+EFV 10-HU-FURG C TDF+3TC+EFV

21-HI B TDF+EFV+FTC 12-HU-FURG C TDF+3TC+EFV

22-HI B TDF+3TC+EFV 13-HU-FURG C TDF+3TC+EFV

23-HI B TDF+3TC+EFV 14-HU-FURG BF1 AZT+3TC+AZT/r

26-HI B TDF+3TC+EFV 16-HU-FURG C TDF+3TC+EFV

27-HI B TDF+3TC+EFV 17-HU-FURG C AZT+3TC+LPV/r

28-HI BF TDF+3TC+EFV 18-HU-FURG BF1 TDF+3TC+EFV

29-HI B TDF+3TC+EFV 20-HU-FURG BC TDF+3TC+EFV

#The near full-length genomes are represented in bold.

Frontiers in Microbiology | www.frontiersin.org 4 April 2019 | Volume 10 | Article 749

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-00749 April 5, 2019 Time: 16:44 # 5

Alves et al. HIV-1 Genetic Diversity in Brazil Through NGS

FIGURE 1 | Phylogenetic analysis of HIV near full-length genomes (NFLG) from this study. The maximum likelihood analysis was performed with 1,000 bootstrap
iterations. The tree contains 28 HIV-1 proviral sequences obtained from Hospital Federal de Ipanema (HFI), Hospital Universitário Clementino Fraga Filho-UFRJ
(HU-UFRJ), Rio de Janeiro, and Hospital Universitário Dr. Miguel Riet Corrêa Jr. (HU-FURG), Rio Grande do Sul (represented in bold) and reference sequences of
HIV-1 subtypes (named by subtype, country, year, and GenBank accession number). HI sequences determined in a previous study (Alves et al., 2017) are named
with their respective GenBank accession numbers. Only bootstrap values greater than 0.7 are shown.

Env CDS for 12 (60%, 12/20). Six samples from HI, 4 from HU-
UFRJ, and 26 from HU-FURG (43%) failed to have more than
one viral DNA fragment PCR-amplified and were excluded from
further analyses. Of the 302 NGS Brazilian sequences previously
available in the literature, which information was also included in
this study, 247 were NFLG and 55 were partial sequences (Pessoa
et al., 2015, 2016).

HIV-1 consensus sequences were subjected to phylogenetic
analysis to determine their subtype/CRF classification. The
NFLGs obtained by our group were mostly classified as HIV-1
subtype B (71%; 20/28), followed by subtype C (14%; 4/28),

recombinant forms (11%; 3/28), and subtype F1 (4%; 1/28)
(Figure 1). Table 2 describes the subtype classification of each
sample included. The recombinants were classified as distinct
URFs involving subtypes B and F1 based on Simplot analysis
(Figure 2). Two of them, HI-11 and HI-32, were already
described in our former study (Alves et al., 2017). The sequences
of the 20 HIV-1 partial genomes were predominantly subtype
B (7/20), C (6/20), and recombinants forms (6/20) (Table 2).
A single subtype F1 sample was identified. With respect to the
recombinants found in our study and submitted to Simplot
analysis, two were identical URF_BF1 and a third one was a
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FIGURE 2 | Classification of HIV-1 recombinant viruses. The recombinant patterns were defined by phylogeny and similarity analyses. Each color represents a
different subtype: red for subtype B, green for subtype F1, and blue for subtype C. Samples are identified before their respective virus structure and the HXB2
reference genome sequence is at the top of the Figure for reference positioning purpose.

FIGURE 3 | Summary of the HIV-1 subtype distribution in the five Brazilian states represented in this pooled analysis (n = 350). Each pie graph represents one state
as depicted in the map. HIV-1 subtypes and recombinants are color-coded according to the legend at the bottom of the figure.

unique URF_BF1 previously described (HI-28), and three were
distinct URF_BC strains (one of those also described, HI-08)
(Figure 2; Alves et al., 2017).

Altogether, the pooled analysis of all Brazilian NGS data,
including NFLG (29%, 79/275) and partial sequences (29%,
22/75), showed a significant prevalence of recombinant forms
(29%; 101/350). Considering the distribution of the HIV-1
subtypes and recombinant viruses in the five Brazilian states
analyzed, three in the Southeast (Rio de Janeiro, São Paulo, and
Minas Gerais), one in the Northeast (Pernambuco) and one
in the South (Rio Grande do Sul), we could observe a highly
diversified pattern of HIV-1 subtype distribution (Figure 3).
A higher prevalence of recombinant forms in São Paulo and Rio
de Janeiro (30%) could also be found, followed by Rio Grande do
Sul (28%), and by Minas Gerais and Pernambuco (27%), although
those differences were not significant (data not shown).

De novo analysis generated results suggestive of multiple
infections (more than one IVA-contig in the same genomic

region) for four samples (HU-UFRJ-03, two contigs; HI-11,
two contigs; HI-14, three contigs, and HI-17, five contigs).
For three of them (HU-UFRJ-03, HI-11, and HI-14), only one
of the contigs generated intact open reading frames (ORFs),
while the other contigs presented truncated ORFs showing
multiple stop codons, consistent with APOBEC-mediated G-to-
A mutations. They were confirmed as hypermutated sequences
when compared to the viable sequence from the respective
patient in Hypermut (p < 0.05, data not shown). Patient HI-
17 had several overlapping regions between the contigs, two
of them at the gag-pol region and three at env (Figure 4A).
Phylogenetic trees comprising the contigs, the top-ten best
hits found in BLASTn searches for each contig and reference
sequences were constructed for each overlapping region. Overall,
these trees showed different clustering profiles between the
contigs and HIV-1 subtype references, suggesting the presence
of variants with different HIV-1 subtypes within this samples
(Figure 4B). The contigs were then submitted to Simplot
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FIGURE 4 | Different contigs representing HIV-1 sequences found in patient HI-17 through multiple infection investigation with their respective positions along the
HXB2 reference genome and phylogenetic classification (A) considering the bootscaning (B) and maximum likelihood phylogenetic analyses. Each color represents a
different subtype: red for subtype B, green for subtype F1 and blue for subtype C. Samples are identified before their respective virus structure and the HXB2
reference genome sequence is at the top of the Figure for reference positioning purpose.

analysis to confirm the subtype classification and determine the
recombination breakpoint profile. All contigs were confirmed
as distinct variants. For the HI-17 patient, the longest contig
had the same recombination profile observed for the consensus
sequence (URF_BF1), one had a distinct recombination profile
comprising B and F1 subtypes, and three were classified as
subtype B (Figure 4A). Another two cases of multiple infections
with distinct subtypes were described by Pessoa et al., one
involving viruses of subclade F1 and subtype B and another
involving a CBF1 recombinant and a non-recombinant subtype
B (Pessoa et al., 2015, 2016).

DISCUSSION

The present study describes the HIV-1 genetic diversity and
molecular epidemiology observed in Brazil using NGS-generated
HIV-1 sequences, combining recently published reports and
novel data from our group. In comparison to our previous
published study with HIV+ patients recruited at HFI, we
extended our analysis for three of the nine patients which
data could not be obtained in the first study, and obtained
NFLG sequences for another five patients (Alves et al., 2017).
Concerning the integrity of the open reading frames (ORF),
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4.5% (11/247) of the sequences available in the literature,
and 25% (7/28) of our sequences displayed mutations and/or
insertions and deletions resulting in frameshifts or premature
stop codons.

Considering our cohort, a high prevalence of infection by
HIV-1 subtype B viruses was found among patients from Rio de
Janeiro (79%, 27/34). On the other hand, subtype C was the most
prevalent subtype in Rio Grande do Sul, with a similarly high
proportion (72%, 10/14), highlighting the regional differences
observed in HIV-1 subtype distribution in the country. It is
well documented that the overall prevalence of non-B strains,
such as URF_BF1, URF_BC, and particularly subtype C and
CRF31_BC in the South of Brazil, has been increasing (Santos
et al., 2007; Cardoso et al., 2009; Machado et al., 2009; Almeida
et al., 2012; Velasco-de-Castro et al., 2014). Similarly to some
recently published data using NFLG, the recombinants identified
in our cohort did not show any similarity with the CRFs already
described (Sanabani et al., 2013; Alves et al., 2017). However,
it is worth to mention that two partial sequences from HU-
FURG show the same recombinant pattern (14 HU-FURG and
18 HU-FURG) and did not have any evidence of epidemiological
linkage between them.

Through the analysis of HIV-1-positive patients in five states
of Brazil with some of the highest HIV prevalence, three in
the Southeast (Rio de Janeiro, São Paulo, and Minas Gerais),
one in the Northeast (Pernambuco) and one in the South
(Rio Grande do Sul), we could determine, with unprecedented
accuracy, the prevalence of HIV-1 recombinant forms in the
Brazilian epidemic and their distribution across the country.
The high prevalence of recombinant strains (29%) identified
by NGS is supported by the circulation of multiple subtypes
and consistent with the hypothesis that novel recombinants are
continuously arising in the Brazilian epidemic (Sanabani et al.,
2013). Our cohort presented 19% of recombinant sequences, a
lower prevalence than 28 and 40% observed in other Brazilian
NGS-based studies (Pessoa et al., 2015, 2016). The higher
prevalence of recombinant forms when compared to recent
Brazilian Sanger sequencing-based studies (ranging from 5 to
16%) can be attributed to the smaller genomic region analyzed
in the latter, mostly based only on pol gene, which impairs the
accurate classification of recombinants (Librelotto et al., 2015;
Moura et al., 2015; da Costa et al., 2016; Dos Anjos Silva et al.,
2016; Delatorre et al., 2017; Filho and Brites, 2017; Lima et al.,
2017). Some of these studies covering small genomic regions
could not find recombinant strains, like the study conducted
by Corado et al. (2017) among 73 individuals from Roraima
state, northern Brazil. A study conducted by Graf et al. (2016)
found a higher proportion of recombinant strains than others
Sanger-based studies (21%, 66/317). However, this study used
molecular data from more than one gene (HIV-1 pol, env,
or both). It should also be noted that 30% of the URF_BC
samples were intergenic recombinants whose recombination
breakpoints were not documented within these fragments (Graf
et al., 2016). The comparison of the estimated prevalence of
recombinant virus between the classical Sanger-based approach
and the NGS data clearly highlights underestimated rates
in the former analyses, mainly associated with the smaller

genomic region analyzed, which also implies in the inaccurate
detection of the recombinant breakpoints and, therefore,
their classification.

HIV-1 NFLG-based studies can unveil an underestimated rate
of recombinant viruses in the country. Using NFLG data, several
studies have described new Brazilian CRF strains designated as
CRF28_BF, CRF29_BF, CRF39_BF, CRF40_BF, CRF46_BF, and
CRF31_BC, CRF70_BF1, CRF71_BF1, CRF72_BF1, CRF90_BF1
(De Sa Filho et al., 2006; Sanabani et al., 2006a,b, 2010; Santos
et al., 2006; Guimaraes et al., 2008; Pessoa et al., 2014a,b;
Reis et al., 2017). An important study conducted by Pessôa
et al. evaluated the complete genomes of HIV-1 strains by NGS
previously sequenced by Alencar et al. assigned to subtype F1 and
showed that 23 of the 24 samples analyzed were BF recombinants,
with 4 CRF70_BF1 and 11 CRF71_BF1 novel recombinant types
(Alencar et al., 2013; Pessoa et al., 2014b). The same was observed
by Marques et al. (2018) where 34 of the 55 sequences analyzed
were classified as recombinants. In our cohort, only one sequence
was classified as subtype F1 and three as URF-BF1, which
corroborates to literature and highlights the higher prevalence of
recombinants forms comprising subtype F1.

Regarding molecular diversity, our pooled analysis
corroborates the crescent prevalence of non-B strains in
the Brazilian epidemic, confirming the phylogenetic intermixing
of HIV-1 sequences. The most prominent case comprises subtype
C and C-containing recombinant forms expanding from the
South of Brazil to other regions (Bello et al., 2012; Graf and
Pinto, 2013; Graf et al., 2015). Non-B strains represent 39% of
the sequences from São Paulo, 36% from Rio de Janeiro, 33%
from Minas Gerais, and 29% from Pernambuco. Subtype B was
not found in Rio Grande do Sul, probably because of the small
number of samples analyzed in this region.

We also investigated infection by distinct variants using a
de novo strategy to obtain sequences from each patient that
are subsequently run in one of the reference-guided approaches
using this sequence as a reference (see section Data Analysis of
Materials and Methods). This strategy was employed by several
studies to reduce the influence of a reference genome in the
assembly process while investigating multiple infections (Mangul
et al., 2014; Aralaguppe et al., 2016; Alampalli et al., 2017; Baaijens
et al., 2017). The prevalence of multiple infections observed in
our study (2%, 1/48) was similar to the prevalence reported by
Pessôa et al. (4%, 1/24 and 2%, 1/47), but both were greater than
the prevalence subsequently reported (0.3%, 1/259) (Pessoa et al.,
2014b, 2015, 2016, respectively). At this point, it is not possible to
infer whether the distinct viral strains resulted from coinfections
or the acquisition of a second variant after the establishment of
the first one (superinfections).

We are aware that the pooled analysis presented here includes
HIV-positive patients with different HIV clinical profiles. While
our cohort is composed by patients under first-line HAART
and undetectable HIV viral load for at least 12 months prior
to collection date attending at sexually transmitted diseases/HIV
ambulatory, the studies conducted by Pessôa et al. involved
recently infected donors at four blood centers. However, it should
be noted that all epidemiological HIV-1 NFLG studies based
on NGS conducted in Brazil available in the literature were
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included in this pooled analysis. However, it should be noted
that our convenience samples may have biased the analysis,
especially regarding the multiple infection prevalence, which
requires analysis from a larger data set.

Like previously described, the inclusion criteria used in this
study were very strict and represented an important barrier
to enroll a large number of patients. The difficulty at PCR-
amplification of archived proviral genomes was also a limitation
due to early chronic infection and undetectable HIV viral load.
It is also important to mention that HU-FURG samples were
incorporated in this study at a later stage. This fact, coupled
with the difficulty in the PCR amplification of these samples
resulted in a limited number of sequences from Rio Grande
do Sul and additional studies are necessary to complement our
findings. Another limitation of our study was that only the NFLG
sequences (n = 28) were evaluated for ORF intactness, and seven
of them (25%) had stop codons due to hypermutation or to
frameshift deletions.

The analysis of all Brazilian HIV-1 NFLG obtained by
NGS give us a more accurate evaluation of the viral diversity
present in this epidemic. Through the subtype analyses
conducted in this large cohort, we were able to find high
rates of viral recombination, showing that larger viral genomic
regions are required for reliable genetic evaluation and
thus to establish effective public health policies to assure
suitable HIV screening, diagnosis, monitoring and novel
strategies based on viral variability. Our data highlight the
great HIV genetic diversity found in Brazil and unveils a
more accurate scenario of the HIV evolutionary dynamics
in the region.
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