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Abstract

Molecular mechanisms behind the etiology and pathophysiology of major depressive disorder and suicide remain largely
unknown. Recent molecular studies of expression of serotonin, GABA and CRH receptors in various brain regions have
demonstrated that molecular factors may contribute to the development of depressive disorder and suicide behaviour.
Here, we used microarray analysis to examine the expression of genes in brain tissue (frontopolar cortex) of individuals who
had been diagnosed with major depressive disorder and died by suicide, and those who had died suddenly without a
history of depression. We analyzed the list of differentially expressed genes using pathway analysis, which is an assumption-
free approach to analyze microarray data. Our analysis revealed that the differentially expressed genes formed functional
networks that were implicated in cell to cell signaling related to synapse maturation, neuronal growth and neuronal
complexity. We further validated these data by randomly choosing (100 times) similarly sized gene lists and subjecting these
lists to the same analyses. Random gene lists did not provide highly connected gene networks like those generated by the
differentially expressed list derived from our samples. We also found through correlational analysis that the gene expression
of control participants was more highly coordinated than in the MDD/suicide group. These data suggest that among
depressed individuals who died by suicide, wide ranging perturbations of gene expression exist that are critical for normal
synaptic connectively, morphology and cell to cell communication.
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Introduction

In an effort to understand the biological processes associated

with depression and suicide, one viable approach has been the

molecular analysis of brain tissue obtained from depressed

individuals who died by suicide relative to non-depressed controls

who died from causes other than suicide. In this regard, marked

differences have been shown with respect to the expression of

CRH, 5-HT and GABAA receptor subunits mRNAs and protein

between depressed and non-depressed individuals [1–3].

The use of microarrays as a means of ‘‘gene discovery’’ has

provided novel insights into various groups or subgroups of genes

that may be associated with depression/suicide [4–6]. The

significance or meaningfulness of the altered expression of a gene

has relied upon the researcher understanding the functional

implications of these genes. At another level, ontology lists can be

created that might suggest how a set of genes might operate

together to determine more complex phenotypes. For example, a

gene list that included down-regulated genes that control cell

differentiation might implicate impaired development of a normal

phenotype. Beyond this level of analysis, considerable difficulty

can be encountered in the interpretation of microarray data as the

functional implications of hundreds of gene changes is reliant on

the end user having broad knowledge of all potential protein/

protein interactions that could be altered.

One (potential) solution to this inability to analyze gene sets

rationally has come from the use of software that ‘‘reads’’ vast

amounts of information (e.g., from PubMed) and then constructs

relationship maps that permit the user to identify known or

potential novel processes that may be altered. Following from this

method, in the present study we used microarrays to compare the

mRNA expression of frontopolar cortex, a region implicated in

depression and suicide [7,8], obtained from control and

depressed/suicide subjects. We then implemented a method of

analysis that ‘‘reads’’ the current medical literature, thus permit-

ting the construction and display of relationships between various

biological molecules and processes. This analysis implicated a

number of processes involved in cell to cell adhesion and brain

structural processes that appear to be perturbed in the depressed/

suicide brain. Since this analysis provides evidence for the
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functional interactions between all gene products, it is also able to

point out potential functional ‘‘hubs’’ where one protein may be

central in the functioning of many others. This approach to

understanding the involvement of gene sets or hubs in relation to

pathology has been used in the analyses of cancer [9–11] and to

our knowledge it has not previously been adopted for brain related

disturbances. To be sure, when multiple relations are conducted,

even when premised on the scientific literature, the risk of alpha

error is exceedingly high. However, it should be no greater in

control than in brain tissue obtained from depressed individuals

that died by suicide. Thus, this approach, despite its inherent

limitations with respect to any one gene, provides important clues

regarding network differences that might exist between these

groups.

Materials and Methods

Description of Subjects Analysed
Gene expression was analyzed from non-psychiatric control

subjects (N = 9) and depressed individuals who died by suicide

(N = 10). All subjects were Caucasian Hungarian males. Tissue

samples were obtained at autopsy at the Department of Forensic

Medicine of the Semmelweis University Medical School in

Budapest (as described in [8]). The suicide and control groups

were of approximately equal age, had similar brain pH, post

mortem interval (PMI) and RNA quality (as measured by RNA

integrity number; RIN) (see Table 1 for summary). Cause of death

is also listed in Table 1.

Tissue harvesting occurred after written informed consent was

obtained from next of kin, which included the request to consult

the medical chart and to conduct neurochemical and/or

biochemical analyses. The ethics committee at Semmelweis and

the Ethics Committees of Carleton University and the University

of Western Ontario approved harvesting and analyses of the tissue

samples. The ethical rules for dissecting human brains vary across

countries. In some of the European countries, as in Hungary, once

death is confirmed by 3 physicians/pathologist, the removal of the

brain may proceed. In the cases of persons who died by suicide or

in traffic accident, pathological sectioning, as ‘‘medicolegal cases’’,

is ordinarily obligatory. These brains may be removed from the

skull as soon as 1–2 hours post mortem, frozen and stored until the

pathological sectioning. The dissection (microdissection) of the

brain can be performed after pathological diagnosis has been

obtained, including tests for HIV, tuberculosis, syphilis, hepatitis,

presence of alcohol and other drugs.

The suicide condition comprised individuals that died by

hanging, drug overdose or jump from height. Medical, psychiatric

and drug history of suicides were obtained through chart review

coupled with interviews with the attending physician/psychiatrist

and family members, as previously described [8]. These interviews

were semi-structured and focused on issues such as previous

psychiatric history, family history of mental illness, and recent

stressful experiences. In each instance a psychiatric diagnosis of

depressive disorder was previously on record. The diagnoses were

conducted and/or confirmed by experienced psychiatrists on the

basis of DSM-IV criteria. Insofar as could be determined, the

participants had not used antidepressant medication for at least

two months prior to death and did not have a history of either

drug or alcohol abuse. Toxicological tests of blood samples

confirmed that drugs or alcohol were not present in cases of death

by hanging or jump from height.

With respect to the control participants, examination of medical

records confirmed the absence of a history of psychiatric illness,

alcohol or drug abuse during the last ten years. Moreover,

interviews with family members indicated that control participants

had never been treated for depression, and did not have a history

of alcohol abuse. Causes of death in control subjects were acute

cardiac failure, myocardial infarction or traffic accident. In all

instances death was sudden and did not involve a prolonged

agonal state.

Tissue Collection, Dissection and Storage
Brains were obtained 1–6 hours after death in Budapest,

Hungary. After removal from the skull, the brains were cut in six

major pieces (four cortical lobes, basal ganglia-diencephalon, and

lower brainstem-cerebellum), rapidly frozen on dry ice, and stored

at 280uC until dissection (which occurred 2 days to 2 months

later). At the time of the dissection, the brain samples were sliced

into 1 to 1.5-mm-thick coronal sections at a temperature of 0–

10uC. Cortical samples were always taken from the right

hemisphere. The frontopolar (FPC) region was cut out of the

sections by a fine microdissecting (Graefe’s) knife. This comprised

Brodmann area 10, dissected at the most polar portion of the

frontal lobe below the intermediate frontal sulcus. The samples

were stored in airtight containers or plastic tubes at 280uC until

use. RNA was extracted using Trizol reagent (Invitrogen,

Carlsbad, California). RNA quality assessment was performed

Table 1. Summary of the attributes of the cohort of subject
used for analysis.

Control
Cause of
Death Age RIN PMI Brain pH

1 AMI 56 7.2 2 6.62

2 AMI 46 5.5 4 6.36

3 ACF 67 5.2 1 6.35

4 ACF 45 6.6 5 6.43

5 ACF 49 6.9 6 6.15

6 ACF 41 5.2 2 6.22

7 ACF 75 6.9 1 6.79

8 ACF 73 8.5 6 6.96

9 ACF 83 6.9 6 6.74

Average 59.4 6.5 3.7 6.51

SEM 4.7 0.4 0.8 0.10

Depressed Suicide

1 Hang 62 6.3 2.5 6.63

2 Hang 42 5.7 3 6.51

3 Hang 45 5.7 4 6.77

4 Hang 47 6 6 6.92

5 Hang 55 8.5 4 6.97

6 OD 49 8.3 6 6.59

7 Hang 49 8.6 4.5 6.45

8 Jump 71 8.3 1 6.64

9 Hang 48 8.6 6 6.28

10 Hang 57 8.4 16 6.58

Average 52.5 7.4 5.3 6.63

SEM 2.8 0.4 1.3 0.07

p value 0.46 0.13 0.25 0.22

Abbreviations used myocardial infarction; MCI; Acute cardiovascular failure: ACF
Hang; death by hanging; jump death by jump form a height; over dose; OD.
doi:10.1371/journal.pone.0047581.t001
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using Agilent 2100 Bioanalyzer (Agilent Technologies, Santa

Clara, California). Table 1 provides a description of the brain pH,

post mortem interval and RNA integrity number (RIN) for each

sample and cause of death. None of these variables were found to

differ significantly between the controls and depressed individuals

that died by suicide (p.0.05).

Microarray Experiment
We utilized GeneChip Human Genome U133 Plus 2.0 Array

(Affymetrix, Santa Clara, California), which analyzes expression

level of over 47,000 transcripts, including 38,500 well-character-

ized human genes.

Data Analysis
MAS5 probe level expression data generation algorithms were

used as implemented in Affymetrix Expression Console software

version 1.1. Expression data were filtered using MAS5 detection

call with threshold of $50% present in both classes [12]. If a gene

was considered to be present it was assigned the value of 1, a

marginal presence was given a value of 0.51 and an absent call was

assigned a value of 0. For a probe set to be considered for

subsequent analysis the sum of call values from each subject had to

exceed 4.59 for the control group (n = 9) and 5.10 (n = 10) for the

suicide group.

Power analysis and FDR assessment. Partek Genomics

Suite (GS) (Partek, St. Louis, Missouri) was used to determine

differentially expressed genes between depressed suicide patients

and non-psychiatric controls using Principal Component Analysis

(PCA) and Analysis of Covariance (ANCOVA). We have used

subject’s age, brain pH, PMI and RIN as covariate factors in

ANCOVA. Effect of these covariate factors was removed from the

data set using batch remove tool of Partek GS. Probe sets which

demonstrated significantly different expression levels between

classes at p,0.01 with Fold Change (FC) .1.3 in either direction

were considered for subsequent analysis.

We performed post-hoc power analyses of the mRNA expression

data at a= 0.01, b= 0.2 and a Fold Change |FC| = 1.3 cut-off

using the interactive power analysis tool for microarrays HCE 3.5

[13]. The analyses showed that sufficient power existed to detect

differentially expressed genes at these cutoffs.

We found traditional FDR control methodologies such as BH

[14] to be too conservative for our data set after removal of

covariates’ effect. However, we performed an assessment of FDR

using Significance Analysis of Microarrays (SAM) [15] workflow

which demonstrated that with our p and FC cut-offs FDR is

controlled at approximately 0.01.

The probe sets representing 238 known genes, obtained by

filtering expression data according to criteria described earlier,

were loaded into Pathway Studio software version 6.2 (Ariadne

Genomics, Rockville, Maryland) pathway analysis. Pathway

Studio software builds and displays molecular pathways and

connections of biomedical interest. It allows for interpretation of

experimental results in the context of pathways, gene regulation

networks, and protein interaction maps. When performing

pathway reconstruction in Pathway Studio software it is important

to note that reported relationships are not necessary direct in the

biochemical or protein interaction sense. What is reported is an

implied causal relationship extracted from existing scientific

literature. Gene interaction networks were generated to show

known direct relationships involving differentially expressed genes

in the data set. Small networks of less than four proteins were

manually discarded.

To determine whether generated network represent a true

biological difference between two classes, we generated 100

random probe sets chosen from all genes that were considered to

be present on the arrays. The lists of these sets were used to

reconstruct relationship networks and then were assessed for

complexity (the number of proteins and relationships within the

generated networks). A bootstrapping analysis was then performed

to determine whether the networks generated from the differen-

tially expressed gene sets could be considered to be part of the

randomly generated networks. In this regard, a Z score of .3.0

was considered to be statistically significant.

To further analyze differentially expressed genes with known

relationships, we generated gene networks based on Pearson

correlations for both classes using Pathway Studio software. We

used a p-value cut-off of 0.01, Pearson’s correlation (r) cut-off of

0.8, removal of 5% of genes with the most stable expression and

only the largest gene networks were considered for subsequent

analysis.

To identify the possible function of the gene lists generated by

the Pathway studio analysis, we also performed functional

annotation and clustering GO analysis using DAVID (ver 6.7).

Gene lists that were analyzed were the following: differentially

expressed genes (238 genes); differentially expressed genes involved

in direct relationships (46 genes); differentially expressed genes

with correlated expression in the control group (45 genes);

differentially expressed genes with correlated expression in the

suicide group (21 genes).

QPCR Validation
Samples for Quantitative PCR (QPCR) analyses were prepared

by reverse transcribing 3 mg of total RNA using Superscript II

reverse transcriptase (Invitrogen Canada, Burlington, ON).

Aliquots of this reaction were then used in simultaneous QPCR

reactions. RNA extraction and QC was performed in the same

way as described for microarray experiment.

For QPCR, SYBR Green detection was used according to the

manufacturer’s protocol (iQ SYBR Green Supermix; Bio-Rad,

Hercules, CA). A Bio-Rad MyiQ real-time thermocycler was used

to collect the data. All of the PCR primer pairs used generated

amplicons between 90 and 120 bp. Primer efficiency was

measured from the serial dilutions of cDNA over the range that

incorporated experimental cDNA amounts using iQ software. All

of the primer pairs had a minimum of 90% efficiency. We choose

10 genes at random over the range of expression of FC 0.5 to 2.5.

These genes were as follows: b2 microglobulin, B2M,

calreticulin, CALR, caveolin 1, CAV1, caveolin 2, CAV2, coronin

2A, CORO2A, glutamine synthetase, GLUL, lumican, LUM,

neuronal cell adhesion molecule, NRCAM, prion protein, PRNP,

sorting nexin 2, SNX2, RNA polymerase II polypeptide A,

POLR2A. Primers that amplify RNA polymerase II mRNA were

used as a reference gene to normalize the data. (PCR primer

sequences can be found in Supplemental data).

Results

In order to determine whether the gene expression of two

groups was different, principal component analysis (PCA) was

performed on the complete P/A call-filtered MAS5 data set (as

implemented in the Partek Genomics Suite). The first three

principal components of this data set explained 46.4% of the

variability between control and depressed/suicide classes and

demonstrated a separation of classes, albeit with some overlap

(Figure 1). This analysis also showed higher variability of gene

expression in the control than in the depressed suicide group. At

fold change (FC) of 1.3, we found 340 differentially expressed

probe sets, p,0.01. Figure 2 shows a ‘heat map’’ representation of

Pathway Analysis of Depressed/Suicide Brain
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the differentially expressed genes (DEGs) found in this analysis.

These 340 probe sets corresponded to 238 annotated genes. Gene

ontology analysis of the 238 DEG showed that it was enriched

with genes involved in intracellular protein transport, synaptic

transmission and cell-cell signaling, p’s ,0.01 (Table 2, Table S1).

To assay whether differentially expressed probe sets represented

a true biological difference between two groups, we generated a

number of probe set lists at different p and FC cut-offs and

compared them to randomly generated probe set lists of the same

size using DAVID (Database for Annotation, Visualization and

Integrated Discovery) functional annotation analysis [16]. We

generated nine differentially expressed probe set lists at combina-

tions of p equal 0.001, 0.01 and 0.05 and FC equal 1.3, 1.4 and 1.5

cut-offs. A number of random probe set lists of the same size were

then generated from the complete probe set list. Functional

annotation analysis was conducted using DAVID and frequency

distributions of GO enrichment scores were compared. The

frequency plot of the MAS5 generated gene set was not the same

as a similar plot where a random gene list was generated (Figure 3).

Importantly, the random list had maximum -log p values of 3.8,

whereas, the maximum -log p value obtained from our dataset was

5.8. Thus our differentially expressed gene list cannot be

considered to be a random outcome.

This list was further validated by performing QPCR analysis on

a subset of genes. This analysis demonstrated high agreement

between microarray and QPCR results (Figure 4). The fold change

found in microarray experiment was positively correlated with the

fold change found in the QPCR experiment (r = 0.85, p,0.01).

Pathway and GO Analysis
The potential biological differences that may occur between

differentially expressed genes (DEGs) was determined by perform-

ing an analysis that interprets how the DEGs are known to interact

in biological pathways, gene regulation networks, and protein

interaction maps. This analysis, termed pathway reconstruction,

computationally finds how/if gene products have previously

reported functional relationships based on what is known from

existing scientific literature (see Methods for complete description).

This analysis generated 7 pathways utilizing 59 proteins that had

165 functional relationships. However 6 of the 7 pathways

involved 4 or fewer proteins, and were thus not considered

further. The seventh network comprised 46 proteins with 157

known direct relationships (Figure 5).

The shape of each symbol representing a gene indicates the

putative function of the gene product. In addition the figure

indicates, by colour, whether the gene was up-regulated (red) or

Figure 1. PCA demonstrates separation of control and depressed suicide subject groups. PCA of microarray expression data based on
complete data set. Red nodes represent control subjects, blue nodes - depressed suicide victims. Variable shading indicates distance from a viewer in
3D space.
doi:10.1371/journal.pone.0047581.g001
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down-regulated (blue). Functional annotation and enrichment

analysis of these 46 proteins demonstrated that this pathway was

enriched (p,0.01) with gene products involved in cell differenti-

ation, neurogenesis and axon growth (Table 3). Interestingly, five

gene products appeared as network ‘‘hubs’’ as they were

functionally implicated with at least 20 other proteins (see

Figure 5 and Table 4). Each of these hubs is a gene that has an

established functionality in the central nervous system.

In order to further validate this assessment a pathway analysis

was performed where random 238 probes sets were selected from

all genes shown to be present. This was done 100 times. For each

of these randomly chosen gene lists the same analysis was

performed as that used for the gene list found to be differentially

expressed. As in the MAS5 generated data set, determinations

were made of 1) the total number of networks and the number of

proteins and relationships in all pathways; 2) the largest network

generated, and 3) proteins and relationships per network. These

simulations did not produce networks of similar size nor

complexity. This is summarized in Table 5 where we compare

the average complexity of these simulations in comparison to the

values we found in the MAS 5 generated data set. For each

parameter the data set was significantly different from the

simulations (p values for each ,0.01).

The experimental DEGs list generated values that were up to

36 Z-scores from the means generated from the random lists

(p,0.01). Specifically, we found that the randomly generated

probe lists produced a range of 2–15 network sets (median = 8).

The total number of proteins and relationships in these networks

ranged from 25–73 and 20–144, respectively, with approximately

46 proteins and 66 relationships on average. Mean connectivity of

the largest networks from 100 random probe set lists was 1.7

relationships per entity, whereas the connectivity within the

network generated from our experimental data was twice as high

(3.4 relationships per entity). The biggest individual network

generated from the random gene lists had only 73 proteins with

only 95 relationships. In all cases, the number of relationships in

the biggest networks generated for each simulation was consider-

ably less than those generated from the experimentally derived

DEG list (shown in Figure 5). To further illustrate this difference,

Figure 6 shows a plot of the number of proteins in the largest

Figure 2. Heat Map and dendrogram of all Control and depressed/suicide samples show both up and down-regulation and
clustering of 238 differentially expressed genes. Relative Expression values were normalized across all samples within each data set. Rows
represent probes while columns represent individual samples. Grey bars indicate no difference in expression, whereas blue and red indicate more and
less expression, respectively.
doi:10.1371/journal.pone.0047581.g002
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network for each simulation versus the number of relations within

each of these networks and the corresponding value from the

network. The number of proteins and relationships from the

experimentally derived data is graphed as well. As can be seen,

these values do not lie within the distribution of the random gene

list values. Thus, it is highly unlikely that the network generated

from the biological data occurred by chance.

Correlative Gene Expression Analysis
As prior reports using QPCR analysis demonstrated a high

degree of correlation of gene expression of GABAA receptor sub-

units in control brain relative to depressed suicide brain [1,17], we

analyzed whether a similar profile would be apparent in a much

larger set of differentially expressed genes (i.e., in the 238 DEG in

our data set). As doing analysis of all present genes in both cohorts

independent of whether they were differentially expressed or not is

not feasible/interpretable (due to high a error associated with so

many comparisons), we limited the analysis to those genes that

were differentially expressed, treating the two groups separately. In

effect this analysis asks if the altered gene expression is

accompanied by a loss of coordinated expression as well. Pearson’s

correlation-based gene networks generated from the expression

data (the 340 differentially expressed probe sets) revealed 45 genes

with 134 relationships having a correlation coefficient r .0.8

(positive or negative) at p,0.01 (Figure 7). Examination of the

same gene list in the depressed/suicide cohort showed far fewer

such relationships; only 21 genes with 80 correlations were

identified (Figure 8). GO analysis of these genes again showed the

cellular processes involved in synaptic transmission and cell to cell

adhesion were enriched in this list (see Table 6 and Table S2).

Discussion

The present findings revealed that in the frontopolar cortex of

depressed individuals that died by suicide, networks of gene

products exist that appear to be dysregulated relative to the non-

depressed cohort that died quickly of causes other than suicide. We

used two types of analysis to provide insight into how the biology

of the depressed suicide brain might be different from normal

controls. The first, pathway analysis, provided the gene networks

shown in Figure 5 which was based on the ‘‘reading’’ of the

scientific literature by the software. The second set of networks

(Figures 7–8) was created by an analysis of gene expression

Table 2. Summary of GO cluster analysis results for the lists of
all differentially expressed genes.

Differentially Expressed Genes

GO Term
Gene
count p

cellular homeostasis and signaling 158 4.8E205

synaptic transmission 14 1.2E204

cellular localization 27 1.3E204

transmission of nerve impulse 15 1.7E204

localization of protein 60 2.2E204

homeostatic process 22 6.4E204

establishment of cellular localization 53 7.3E204

transport 52 1.0E203

establishment of localization in cell 23 1.3E203

cell-cell signaling 18 1.8E203

Enrichment score is a –Log10 of a geometric mean of individual p reported for
individual GO terms within cluster. Only the top two clusters that exceed
enrichment score cut-off of 2 (corresponds to geometric mean of p = 0.01) are
listed. The listed terms that are present in cluster are the most representative of
the main themes of all GO terms included in cluster.
doi:10.1371/journal.pone.0047581.t002

Figure 3. Functional annotation analysis demonstrates that
differentially expressed probe sets represent true biological
difference between control and depressed suicide subject
groups. Comparison of functional annotation analysis of differentially
expressed probe sets generated at different p and FC cut-offs and
randomly generated probe sets lists of the same size. Note the shift of
the experimental curve to the right.
doi:10.1371/journal.pone.0047581.g003

Figure 4. Relationship between Fold Change (FC) reported in
microarray and QPCR experiments. Pearson’s correlation r = 0.86
and p,0.01. Circles represent individual genes. If more than one probe
set was present in microarray dataset for a particular gene, an average
FC was used for this gene as a ‘‘MAS5 FC’’.
doi:10.1371/journal.pone.0047581.g004

Pathway Analysis of Depressed/Suicide Brain
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correlations in controls and in depressed individuals that died by

suicide. These analyses indicated agreement in the biological

processes that were implicated as being different in the depressed

suicide brain. The potential biological processes that have been

implicated for these networks are listed in Table 6 (and Table S3).

Although the functional relevance of a few processes are obviously

Figure 5. Gene relationship network generated for differentially expressed genes based on known direct relationships. For detailed
description of various types of relationships see Table S1.
doi:10.1371/journal.pone.0047581.g005
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difficult to reconcile with known brain functions (myeloid

leukocyte differentiation for example), the overwhelming majority

are involved in regulatory or developmental process, synaptic

communication and cell to cell interactions.

These conclusions are based on a computational analysis which

relies on identifying functional relationships that have been

established to various degrees of certainty in the biomedical

literature. The analysis enables the effective access of 21 million

PubMed abstracts and 61 full text journals that cover mammalian

biology, a task that is obviously not possible by conventional

reading of the scientific literature. Although this analysis, at face

value appears useful and exciting, there is, simply by sheer number

of possible interactions analyzed, the question of whether or not

this analysis is valid. First, some proteins have many functions and

will therefore link with many others. Enzymes may have many

targets or substrates and so relationships that are reported by this

analysis may not be valid within a certain cell type that does not

express a target molecule. The analysis is only as good as the

present day knowledge of the protein interactions that are

reported. There is also no ‘‘quality control’’ for the validity of

the data contained in the publications. These limitations make the

GO analysis particularly important as it identifies the overall

implications of the gene interactions that are being reported.

These caveats notwithstanding, our data/analysis is remarkably

consistent in that each GO analysis generated similar functional

groups, those involved in cell structure and communication. As

well, we showed that the pathway analysis of a random selection of

the same number of genes did not provide apparently biologically

relevant networks. This conclusion is based on the pathway

analysis of the 100 random probe set lists of the same size where

we reconstructed relationship networks and then assessed number

of proteins and relationships in these networks. A statistical

analysis showed that random networks identified by the pathway

analysis were significantly smaller and less connected than the

networks generated from the experimentally derived DEG list.

This indicates that the interrelations found through the pathway

analysis likely represent true biological differences between

controls and depressed suicide samples. The function of this

network is implicated in cell to cell communication as many of the

processes suggested are involved in cell adhesion, cell morphology

and synapse formation. A similar approach, commonly referred to

as ‘‘bootstrapping’’ is a standard statistical procedure in other

studies [18] but to our knowledge has not been done before in an

analysis of this kind.

The pathway analysis also identified five genes that appeared as

‘‘network hubs’’ with connectivity higher than 20: RAC1,

CTNNB1, STAT3, EP300 and PTK2. These genes are of interest

as they represent the central points in cellular machinery that have

relationships with a variety of other proteins. For example, there

are more than 1500 relationships currently known for each of the

Table 3. Summary of GO cluster analysis results for the lists of differentially expressed genes with known direct relationships.

Genes with direct relationships

GO terms present in cluster
Enrichment score p value
range Genes present in cluster Gene Count

positive regulation of cellular and
biological process, system
development

4.0 1E204,p,0.01 CALR, CTNNB1, EP300, FMR1, HDAC7, ID2, IL6R, KDR, LEPR, MEF2D,
NRCAM, NRP2, PLAGL1, PTK2, RAC1, RTN4, SOD2, STAT3, TFE3, TIMP2,
TNFSF10, VCAM1, XRCC5

23

regulation of cellular and biological
process

3.9 1E204,p,0.001 ARG2, C1D, CALR, CCNC, CREM, CTNNB1, DAD1, DBNL, EP300, GDI1,
HDAC7, HMGB1, ID2, IL6R, KDR, LEPR, LRRFIP1, MEF2D, NCOR2, NR2C1,
NRCAM, PLAGL1, PRDX4, PTK2, RAB7A, RAC1, RTN4, SOD2, STAT3,
TFE3, TIMP2, TNFSF10, TXN, VCAM1, XRCC5

35

regulation of cell differentiation and
developmental process

3.9 1E206.,p,0.01 CALR, CTNNB1, HDAC7, ID2, IL6R, NRCAM, PTK2, RTN4, SOD2, TFE3,
TIMP2, XRCC5

12

neurogenesis, cell differentiation,
developmental process, cell development

3.7 1E204,p,0.01 ARG2, CALR, CREM, CTNNB1, DAD1, EP300, FMR1, ID2, IL6R, KDR,
LEPR, MEF2D, NRCAM, NRP2, PTK2, RAC1, RTN4, SOD2, STAT3,
TIMP2, VCAM1, XRCC5

22

regulation of cell differentiation,
neurogenesis, regulation of axiogenesis

3.3 1E204,p,0.06 CALR, CTNNB1, EP300, HDAC7, HMGB1, ID2, IL6R, KDR, NRCAM, NRP2,
PTK2, RAC1, RTN4, SOD2, STAT3, TFE3, TIMP2, XRCC5

18

Enrichment score is a –Log10 of a geometric mean of individual p reported for individual GO terms within cluster. Only top 5 clusters that exceed enrichment score cut-
off of 2 (corresponds to geometric mean of p = 0.01) are listed. The listed terms present in cluster are the most representative of the main themes of all GO terms
included in cluster.
doi:10.1371/journal.pone.0047581.t003

Table 4. Summary of the known functions of genes that were found to be ‘‘hubs’’ in the pathway analysis network of DEGs’.

Gene symbol Gene name Role

CTNNB1 catenin, beta 1 nervous system development, neuroprotection

EP300 E1A binding protein p300 neuronal differentiation

PTK2 protein tyrosine kinase 2 neuronal migration, neuronal plasticity

RAC1 rho family, small GTP binding protein Neuronal development,myelination

STAT3 signal transducer and activator of transcription 3 neuronal survival and regeneration, leptin signalling

doi:10.1371/journal.pone.0047581.t004
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five aforementioned proteins. Importantly, each of these has an

established role in nervous system processes, having been

implicated in nervous system development, neuronal migration

and differentiation, neuroprotection and neuronal plasticity

(Table 3).

It is also interesting that 11 transcription factors were identified

that regulate at least two genes from the initial network. Of these,

8 have well established roles in nervous system functioning.

Specifically, SP1, SP3 and RELA are involved in neurite growth,

myelination and neuron survival [19–22], and TCF4 is important

for nervous system development, axon morphogenesis and

oligodendrocyte differentiation [23]. FOXO3 [24] regulates

neural progenitor stem cell proliferation as well as the induction

of genomic death responses upon its’ translocation from the

cytosol to the nucleus in response to excitotoxic stimuli [25].

MeCP2 is one of the central factors involved in gene regulation

through differential CpG methylation in various tissues and

organs, including the nervous system [26]. Finally, CREB1 and

EGR1 have well established roles in synaptic plasticity, learning

and memory [27–30].

We also found 7 genes that were under control of at least 2

transcription factors implicated in the direct relationship network

in Figure 3. Of these, 5 have a well-established role in nervous

system functioning. FAS is involved in neuronal development and

degeneration [31,32], CCND1 is important for neuronal cells

proliferation [33,34], and GFAP and ERBB2 are involved in glia

and Schwann cell function, as well as synapse formation and

maturation [35,36]. Furthermore, VEGFA is involved in angio-

genesis and is also implicated in development of amyotrophic

lateral sclerosis (ALS) [37,38]. How any of these factors contribute

to the underlying depressive behavior is unclear, but the wide

ranging effects on the expression of these transcription factors

suggest broad disturbances in gene function.

Networks Identified through Correlation Analyses
As we have previously shown in a much more limited analysis,

gene expression in MDD/suicide brain seems to be much less

coordinated than in control samples [8]. In the correlation

analyses done here we found 43 correlated genes in the control

(non-depressed) class, forming two distinct sub-networks with 134

correlated relationships. In the depressed/suicide condition, by

contrast, only 21 proteins were significantly correlated to one

another. The loss of coordinated expression seemed to be more

profound among genes that were up-regulated in MDD/suicide

group. Specifically, in the depressed/suicide PC networks, 12

DEG’s were up-regulated in the depressed/suicide class and 33

were down-regulated (approx. 1:3). In MDD/suicide PC network,

in contrast, only 2 DEG’s were up-regulated and 19 were down-

regulated (approx. 1:10). This suggests that the down-regulation is

‘‘concerted’’, whereas genes that were up-regulated in expression

appear to do so in a more ‘‘random’’ manner. Overall this analysis

suggests that in depressed/suicide individuals there is a wide

ranging loss of organized expression among genes that are

important for determining the wiring neural networks.

A number of genes were down-regulated in depressed/suicide

tissue, but were not present in the network (Figure 5) that

nonetheless would be predicted to have wide ranging effects on

synaptic function. One of these, GNAS (stimulatory alpha subunit

of G protein), is involved in many neurotransmitter signaling

cascades, including 5-HT and dopamine receptors. Another is

RTN4 or neurite outgrowth inhibitor, a regulator of apoptosis and

was implicated in neurodevelopmental processes [39–41]. As well,

the expression of synaptosomal-associated protein 25 (SNAP25),

which is involved in synaptic vesicle membrane docking and fusion

and regulation of neurotransmitter release was reduced. The

down-regulation of this protein has also been implicated in several

psychiatric disorders [42]. In addition, SPARCL1 or hevin is a

putative extracellular matrix glycoprotein that binds calcium and

plays an important role in the developing nervous system [43].

Finally, GLUL or glutamate-ammonia ligase clears L-glutamate,

the major neurotransmitter in the central nervous system, from

Table 5. Summary of the attributes of the randomly generated gene networks and the networks that were generated from the
MAS5 DEG list.

Parameter Average for 100 generated lists ± SEM MAS 5 generated list Z p

Proteins 45.661.0 59 13.4 ,0.01

Relationships 66.362.7 165 36.0 ,0.01

Proteins in the largest network 29.161.4 46 12.5 ,0.01

Relationships in the largest network 53.763.2 157 32.6 ,0.01

Proteins per network 7.060.4 8.4 3.6 ,0.01

Relationships per network 11.060.9 23.6 14.0 ,0.01

In comparison to parameters from the randomly generated networks, each parameter from the Mas 5 DEG generated Z-scores that were significantly different from the
average values that were generated by 100 simulations.
doi:10.1371/journal.pone.0047581.t005

Figure 6. Comparison of complexity of relationship networks
generated for the DEG’s list and 100 random probe set lists of
the same size. Total number of entities and relationships present in
the largest network generated for a list were used to construct the
graph. Circles represent random probe set lists, yellow square
represents the average for 100 random list networks and the red
diamond represents the DEG list. The red triangle shows the value of
entities versus relationships found from our gene list. The Z score for
this value in relation to average (yellow square) was 12.5 (p,0.01).
doi:10.1371/journal.pone.0047581.g006

Pathway Analysis of Depressed/Suicide Brain

PLOS ONE | www.plosone.org 9 October 2012 | Volume 7 | Issue 10 | e47581



neuronal synapses [44]. Overall these changes implicate a

profound disturbance in excitatory amino transmission irrespective

of any other changes in gene expression within the networks

identified. The fact that they appear to be altered in expression but

are not represented in the largest network identified (Figure 5)

suggests a wider disturbance in the gene expression than was

identified by pathway analysis.

One of the limitations of this study is the small n of both the

control and sample groups. This was deliberate as we choose to

analyze a small number of well-matched samples (similar age RIN

Figure 7. Pearson’s correlation based gene network for differentially expressed genes for the control cohort. Red nodes represent
genes up-regulated in the depressed suicide group, blue nodes represent genes down-regulated in the depressed suicide. Network contains 45
genes connected by 134 correlation relationships higher than 0.8.
doi:10.1371/journal.pone.0047581.g007

Pathway Analysis of Depressed/Suicide Brain

PLOS ONE | www.plosone.org 10 October 2012 | Volume 7 | Issue 10 | e47581



sex etc) rather than a larger more variable cohort. For the

correlation analysis, where hundreds of correlations were com-

pared, the a error may be potentially high, however, this ought to

be comparable in both groups. Thus our results showing many

fewer correlations in depressed/suicide cannot be attributed to the

number of genes compared. We should also note that some genes

that we and others have found to be down-regulated (BDNF,

GABRA1 [1,45] ) were not found in these analyses (although they

Figure 8. Coordinated gene expression is greatly reduced in suicide/MDD cohort. Pearson’s correlation-based gene network for
differentially expressed genes for depressed suicide class. Red nodes represent genes up-regulated in depressed suicide class, blue nodes represent
genes down-regulated in depressed suicide class, graphs - correlation of gene expression. Network contains 21 genes connected by 80 correlation
relationships higher than 0.8.
doi:10.1371/journal.pone.0047581.g008
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were near the cut-off used here). This is likely attributed to the fact

that although microarray analysis is very reproducible is not very

sensitive in detecting small changes in gene expression. This fact

can be observed in Figure 2 where a 1.3 fold change in expression

detected on the microarray correlated to more than 2 cycles of

change in the QPCR data. Thus the differences reported here are

likely the largest differences in gene expression between these two

groups. Finally, our cohort is also confounded by the fact that the

samples come from those who also committed suicide. Thus our

findings may be relevant to suicidality and/or depression. Recent

studies by Turecki and others have shown that there may be gene

expression patterns that are associated with suicidality [6,46] albeit

with some overlap in those associated MDD. This overlap is a

significant confound in ‘‘teasing out’’ the gene expression that is

unique to these two psychiatric states. Studies of gene expression in

those with MDD who did not die from suicide found two highly

dysregulated genes including stresscopin, a neuropeptide involved

in stress responses and Forkhead box D3 (FOXD3), a transcription

factor as well as factors related to synapse formation [47,48]. The

finding of another Forkhead box transcription factor is similar to

the data reported here where we found FOXO3 and many factors

related to synaptogenesis/maintenance. This suggests that our

data speak more to depressive syndrome rather suicidality.

In summary, the present findings indicate that among depressed

individuals that died by suicide, profound alterations exist in the

expression of genes that control synaptic function, cell adhesion

and cytoarchitecture. They also extend and support our observa-

tion [8,17] that coordinated gene expression is apparently

disturbed in the MDD/suicide samples in comparison to normal

controls. Interestingly, we also found that in mice acute and

chronic stressors can also alter coordinated gene expression of the

GABAA receptor gene cassette [49]. As stressful events may be a

precipitating factor in the development of MDD, it might be

important to identify the biochemical and/or epigenetic processes

that disturb normal gene expression. These data also provide a

number of new targets for interventions that could help treat

MDD.
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