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Purpose: Magnetic resonance imaging protocols for the assessment of quantitative 
information suffer from long acquisition times since multiple measurements 
in a parametric dimension are required. To facilitate the clinical applicability, 
accelerating the acquisition is of high importance. To this end, we propose a model‐
based optimization framework in conjunction with undersampling 3D radial stack‐
of‐stars data.
Theory and Methods: High resolution 3D T1 maps are generated from subsampled 
data by employing model‐based reconstruction combined with a regularization func-
tional, coupling information from the spatial and parametric dimension, to exploit 
redundancies in the acquired parameter encodings and across parameter maps. To 
cope with the resulting non‐linear, non‐differentiable optimization problem, we pro-
pose a solution strategy based on the iteratively regularized Gauss‐Newton method. 
The importance of 3D‐spectral regularization is demonstrated by a comparison to 
2D‐spectral regularized results. The algorithm is validated for the variable flip angle 
(VFA) and inversion recovery Look‐Locker (IRLL) method on numerical simulated 
data, MRI phantoms, and in vivo data.
Results: Evaluation of the proposed method using numerical simulations and phan-
tom scans shows excellent quantitative agreement and image quality. T1 maps from 
accelerated 3D in vivo measurements, e.g. 1.8 s/slice with the VFA method, are in 
high accordance with fully sampled reference reconstructions.
Conclusions: The proposed algorithm is able to recover T1 maps with an isotropic 
resolution of 1 mm3 from highly undersampled radial data by exploiting structural 
similarities in the imaging volume and across parameter maps.
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1  |  INTRODUCTION

Quantitative MRI (qMRI) is a promising tool for precision 
medicine and offers the possibility to classify diseases based 
on physical quantities. Challenges for clinical applications in-
clude prolonged scan time and partial volume effects,1 in par-
ticular for focal lesions. Because in classical qMRI2,3 several 
images of the same anatomical region are needed, the clinical 
applicability has been limited so far, especially when imaging 
large volumes. To overcome these limitations, acceleration of 
the data acquisition is essential. Since modern MRI scanners 
operate at the limits for peripheral nerve stimulation (PNS) 
and energy deposition (SAR), the most important strategy for 
further acceleration is reducing the number of encoding steps.

In recent years, many reconstruction techniques have been 
presented for recovering high quality images from incom-
plete data. Initially, these methods were based on the parallel 
imaging principle,4,5 which synthesizes missing k‐space data 
from independent receiver coil information. In a next step, 
compressed sensing theory6,7 had been integrated, which 
offers the possibility to incorporate a priori information on 
image sparsity in an iterative reconstruction process and can 
be synergistically combined with parallel imaging to further 
enhance the reconstruction quality with improved noise sup-
pression. When used for qMRI, the quantitative maps are ob-
tained from the recovered images with a pixel‐wise fitting 
approach.

However, in qMRI specific a priori information is usually 
available in the from of analytical signal models derived from 
the Bloch equations. The inclusion of explicit models into the 
reconstruction problem with the goal of directly estimating 
quantitative maps is commonly referred to as model‐based 
reconstruction. This method has been successfully applied to 
various parameter quantification problems,8-15 demonstrat-
ing the potential for shortening the acquisition time while 
maintaining excellent quantification accuracy and high res-
olution. The model‐based reconstruction approaches aim to 
solve an inverse problem, inferring on the unknown NMR 
tissue parameters, using iterative optimization techniques. 
The problem typically consists of a non‐linear and often non‐
convex data consistency term, composed of the forward op-
erator and a pulse sequence specific signal equation. Classic 
model‐based schemes8,11,14,16 employ smooth regularization 
functionals directly on the parameter maps rather than re-
constructing the image series for each imaging parameter 
variation individually. In contrast to that, Tran‐Gia et al.10,12 
proposed to alternate between a pixel‐wise fit in image space 

and a data consistency step in the measured k‐space with no 
explicit regularization strategy. Doneva et al.9 proposed a 
different approach to model‐based reconstruction by utiliz-
ing the signal model to compute an overcomplete dictionary 
that is subsequently used as sparsifying transform in the re-
construction process. This can be seen as a first step towards 
the recently proposed iterative reconstruction for Magnetic 
Resonance Fingerprinting (MRF).17-19 Other approaches im-
pose locally low rank constraints in parametric dimension,20 
or a combination of low rank and sparsity constraints21,22 
on the image series and reconstruct the parameter maps in 
a second step from a non‐linear least squares problem. The 
advantage of such approaches is that the image reconstruc-
tion problem is convex and no assumptions on the involved 
relaxation process are necessary, e.g. mono‐ vs. multi‐expo-
nential. The selection of the rank L can introduce small errors 
in the reconstructed maps22 but an additional reference data 
set can be used to determine L and translate it to data sets 
with similar acquisition parameters.21 Further, the estimation 
of the parameter maps still involves solving a non‐convex, 
non‐linear problem. The common optimization strategy for 
the model‐based reconstruction methods11,16 is based on 
the non‐linear conjugate gradient (CG) algorithm.23,24 This 
approach only allows for smooth regularization techniques, 
which insufficiently describe the structural information con-
tained in the parameter maps. Recently, iteratively regular-
ized Gauss‐Newton (IRGN) methods have been applied in 
the context of model‐based reconstruction problems.14,15,25 
Combined with smooth regularization,14 the subproblem can 
be solved using a CG algorithm but IRGN can be combined 
with regularization terms enforcing more specific a priori 
knowledge on the parameter maps, e.g. joint sparsity using 
wavelets.15 Such regularization terms can be added to further 
improve the reconstruction quality but require different op-
timization approaches due to their non‐differentiability, e.g. 
fast iterative shrinkage‐thresholding algorithm (FISTA).26

In contrast to previous work,11,12,14-16,25 we propose the 
following improvements. Firstly, more specific a priori in-
formation is introduced by means of the concept of Total‐
Generalized‐Variation (TGV)‐based regularization,27 which 
was shown to yield improved noise suppression, especially 
for low SNR situations,28,29 as compared to Total‐Variation. 
Furthermore, the TGV functional is adapted to the multipara-
metric setting by means of a Frobenius‐norm‐type TGV func-
tional,30 which exploits structural information and shared 
features across parameter maps. Secondly, the optimization 
is applied to volumetric data in order to exploit structural 

K E Y W O R D S
constrained reconstruction, inversion‐recovery Look‐Locker, imaging, model‐based reconstruction, MRI, 
T1 quantification, variable flip angle



MAIER et al.2074 |   

information not only between parameter maps but also within 
the complete imaging volume. This allows for higher acceler-
ation of the data acquisition while maintaining high accuracy 
of the parameter maps. The performance of the proposed re-
construction framework was analyzed for T1 quantification 
from 3D golden‐angle radial VIBE (RAVE)31 data, utilizing 
the variable flip angle (VFA) method,3 as well as for 3D 
golden‐angle radial stack‐of‐stars Inversion‐Recovery Look‐
Locker (IRLL)32,33 data. The agreement of undersampled 
VFA data to numerically simulated references was evaluated 
to investigate the gain in image quality between 2D and 3D 
regularization and show the advantages of joining the TGV 
functionals. Subsequently, MRI phantom measurements for 
VFA and IRLL data, acquired in a prospective manner, were 
compared to fully‐sampled reference reconstructions, by fit-
ting the non‐linear model in image space. Finally, accelerated 
in vivo brain measurements from healthy volunteers were 
compared to established references for both models, studying 
the gain in image quality between 2D and 3D regularization.

2 |  THEORY

We denote by Nx, Ny and Nz the dimensions of image space 
U = ℂ

Nx × Ny × Nz, by Np the number of imaging parameter 
encodings, and by Nc the number of coils. Denoted by Nd 
is the number of k‐space encodings defining the data space 
as V = ℂ

Np × Nc × Nd. Further we define Nu as the number of 
unknown tissue parameters and N∇ as the number of spatial 
derivative directions, i.e. the x, y and z direction.

2.1 | Iteratively regularized Gauss‐
Newton with Frobenius total generalized 
variation constraint
Model‐based parameter quantification utilizes an analytical 
relationship of the MR signal p(u) to the unknown tissue 
parameter maps of interest, e.g. u = (M0,T1) ∈ U2, to quan-
tify the latter. p(u) varies depending on the used imaging 
sequence with the imaging parameters p and is included in 
the MR signal equation to map to the acquired multicoil, 
multiparametric k‐space data dp,c. The basic MR signal equa-

tion modulates the magnetization mp = p(u) for the p‐th 
acquisition with the receiver coil sensitivities bc for receive‐
channel c, followed by (non‐uniform) Fourier encoding p. 
Here, index p denotes a variable k‐space coverage for each 
parameter acquisition, such that the final non‐linear forward 
mapping  can be written as follows:

The resulting cost function to identify the unknown param-
eters u is given by

and comprises a L2‐data fidelity term, which measures the 
mismatch between the forward model in Equation 1 and ac-
quired data. Use of the L2 norm is justified by the well‐known 
normally distributed noise statistics in k‐space data. The typi-
cally bi‐linear forward mapping  leads to a non‐convex 
data fidelity term. Due to additional undersampling, this re-
construction problem is ill‐posed and, hence, the regulariza-
tion term  plays a crucial role. A proper value needs to be 
chosen for the parameter λ to balance between data fidelity 
term and regularization. To exploit additional information, 
advanced regularization terms need to be introduced that re-
flect specific a priori knowledge. Typical assumptions about 
natural and medical images are that the images are composed 
of regions with smooth or linear varying contrast, separated 
by sharp edges. Therefore, we replace (u) by a well‐studied 
functional reflecting these properties, namely the 2nd‐order 
Total Generalized Variation (TGV2).27 It has been shown 
that TGV2 yields excellent image quality for reconstructed 
images from undersampled MR data.28 To additionally ex-
ploit shared features between the parameters of interest, the 
TGV2 functionals are joined using a Frobenius norm, which 
will be used throughout the paper and denoted as (u). The 
TGV2

Frob
 regularization itself is characterized as minimiza-

tion problem of the following form

where α0 and α1 are chosen to balance between the first and 
second derivative information, ∇ corresponds to finite for-
ward differences and  denotes the symmetrized derivative 
v =

1

2

(
∇v + ∇vT

)
. Here, we abuse the notation of the norm 

‖·‖1,2,2 defined for v = (v1,i,v2,i,v3,i)
Nu

i= 1
∈ U3 × Nu as

and for � = (�1, i, �2, i, �3, i, �4, i, �5, i, �6, i)
Nu

i= 1
∈ U6×Nu as

where the factor 2 in front of ξ4, i, ξ5, i, ξ6, i compensates for 
the symmetrization of the Jacobian in the definition of . 
Incorporating this functional in Equation 2 yields the follow-
ing optimization problem:
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2.2 | Numerical solution
The optimization problem in Equation (4) is difficult to solve 
for several reasons. The non‐differentiability prevents the use 
of first‐order derivative‐based optimization algorithms, e.g. 
non‐linear CG, and the non‐linear operator  further limits 
the applicable solution strategies. Therefore, a solution strat-
egy based on the Gauss‐Newton approach is applied, i.e lin-
earizing  with respect to u around uk as

such that Equation (4) is solved by iterating sufficient Gauss‐
Newton steps with convex inner subproblems of the form

It was shown by Salzo et al.34 that the GN approach con-
verges with linear rate to a critical point for non‐convex 
problems with non‐differentiable penalty functions if ini-
tialization is sufficiently close. Here, the additional L2 norm 
on (u−uk) serves as step size penalty and improves the con-
vexity of the subproblem. Constant terms, stemming from 
the linearization, are combined with the k‐space data, i.e. 
dk = d−(uk) + DAuk and the matrix DA =

�

�u
|u= uk

(u) is 
precomputed at each linearization step. Equation (6) can be 
related to a saddle point problem of the form

that can be efficiently solved with the primal‐dual (PD) algo-
rithm described in.35 Here, K is a linear operator, F and G are 
convex, lower semi‐continuous functionals, and F* denotes 
the convex conjugate of F. The required saddle point formu-
lation in Equation (7) for Equation (6) can be obtained using 
the convex conjugate as follows:

with K =

(
DA 0

K1

)
,

K1 =

�
∇ −id

0 

�
, F∗(y) = F∗(z,r) = ⟨dk,r⟩ + 1

2
‖r‖2

2

+{‖⋅‖∞≤α0λ,α1λ
}(z)

, and 

G(x) = G(u) =
1

2γ
‖u−uk‖2

2
. DA is the Jacobian matrix at 

uk of the non‐linear MR signal equation for all scans p, un-
knowns i and coils c:

The update scheme for the PD algorithm is given in Algorithm 
1 as pseudo code.

To speed up the convergence of the PD algorithm, a re-
cently proposed implementation with line search is used.36 
Computational complexity of one GN step of the algorithm 
amounts to (NpNcNz(Nd log Nd) + NuNzNxNy), the com-
plete complexity analysis is shown in the supporting material 
as Supporting Information Text S1. The algorithm is termi-
nated if either a predetermined number of steps is reached, a 
convergence criterion is fulfilled, or stagnation is detected. 
For convergence, the energy decrease in the primal problem 
as well as in the primal‐dual gap are monitored and the algo-
rithm terminates if changes in the energy are below a prede-
termined threshold. The regularization parameters λ and γ are 
altered after each inner iteration to reduce regularization over 
the course of minimization, leading to stronger regularization 
at the initial iterations and more data weighting at the end. 
Changing the regularization parameters during optimization 
can have serious impact on convergence and speed of the al-
gorithm and has been shown to be beneficial in the context of 
IRGN methods.37 For comparison, we also implemented a TV 
and L1‐wavelet, constrained imposed on each parameter map, 
by replacing H in Equation 11 with a gradient respectively 
Daubechies‐4 wavelet transformation from PyWavelets,38 the 
same wavelet type as used by Wang et al.15

For optimization, the same PD algorithm (Algorithm 2) 
as in the TGV case is used. For the L1‐wavelet regularization, 
the norm ‖·‖1, 2, 2 is computed for all levels. The number of 
levels was determined in 2D by the PyWavelets toolbox.

Additionally a seperate regularization approach for all 
regularization strategies is employed by changing the defini-
tion of the norm ‖·‖1, 2, 2 to ‖·‖1, 2 given by
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2.3 | The application to T1 quantification
In the present work, two commonly used models are im-
plemented to quantify T1 from radially acquired 3D data, 
the VFA‐T1 approach3,39 as well as the model for the IRLL 
sequence.32,40

The VFA‐T1 model describes the signal intensity in de-
pendency on the flip angle α and TR for a RF and gradient 
spoiled gradient echo sequence (FLASH) and is given by

with

The measurements were carried out with fixed TR for a 
defined range of flip angle variations (αp). Literature sugges-
tions on optimal flip angle selection for the VFA technique 
vary. We used a set of 10 flip angles ranging from 1∘ to 19∘ in 
2∘ steps, as suggested in.41TE was kept as short as possible to 
reduce T2* effects, which were subsequently neglected. The 
method is known to be sensitive to transmit field (B1+) in-
homogeneities. Therefore, additional flip angle mapping was 
performed.

The second investigated T1 mapping procedure, the IRLL 
technique, is based on an inversion pulse followed by a train of 
N read‐out pulses with a fixed small flip angle α. The model 
depends on the time delay td between the inversion pulse and 
the first α pulse, the time between subsequent pulses τ and 
an optional time tr at the end of the pulse train, describing a 
recovery of longitudinal relaxation to equilibrium. The signal 
intensity Sn of the nth gradient echo read out can be described 
as32,33,40

with

Here, N is the total number of acquired readouts. In 
general, α, τ, and td should be kept as short as possible.33 
Furthermore, the signal equation assumes a perfect inversion. 
However, models exists that take non perfect inversion into 
account.32 In the special case of radial acquired single shot 
IRLL data, the model equation is valid for every acquired 

spoke. This can be used to achieve a certain amount of tem-
poral resolution by binning a predefined number of spokes 
into one k‐space. The forward computation consists of evalu-
ating the model for every acquired spoke, followed by mean 
value calculation over the computed images according to the 
number of combined spokes per k‐space. For in‐vivo data 13 
spokes are combined together, which has been shown to be 
a suitable trade‐off between temporal fidelity and computa-
tional burden,14 for phantom data 5 spokes are combined to 
enhance temporal resolution.

3 |  METHODS

3.1 | Data preprocessing
To improve the general applicability of the algorithm, the 
acquired k‐space data was normalized by its L2‐norm. This 
leads to an almost measurement independent data norm and 
allows for use of uniform regularization parameters across 
different measurements. Scaling was chosen to yield a data 
L2‐norm of 1000 times the square root of slices. Balancing 
the partial derivatives was achieved by introducing scale fac-
tors for each unknown separately. Proton density scale was 
fixed to match the mean of the acquired signal curve for a 
simulated range of T1 from 10 ms to 5000 ms. T1 scale was 
adjusted after each GN step keep the partial derivatives bal-
anced. Additionally, the numerical gradients were balanced 
after each GN‐step by calculating their L2‐norm and applying 
a scaling to match each other in the forward and adjoint eval-
uation of the gradient. In a subsequent preprocessing step, 
coil sensitivities were estimated from parameter‐averaged 
data using the method of Uecker et al.42 Deviations from the 
nominal flip angle were taken into account by performing  
B+

1
 mapping with a modified Bloch‐Siegert43,44 and DREAM45 

method for VFA respectively IRLL data. The Bloch‐Siegert 
map was acquired on a Cartesian grid with half the resolu-
tion of the VFA data and a block undersampling pattern with 
size of 12 × 4 as described by Lesch et al.,43 leading to an 
acquisition time of about 15s for the whole 3D volume. The 
resulting B+

1
 map is normalized to the nominal flip angle of 

the Bloch‐Siegert encoding pulse, leading to a spatially de-
pendent correction factor for α. The DREAM mapping was 
acquired similarly and employed the following parameters: 
STEAM angle 60∘, TR/TE1/TE2  =  4.5/1.5/2.1 ms, acquisition 
time: 4 s, resolution 3.2 × 3.2 × 4 mm3. Subsequently cor-
rection maps were interpolated to match the resolution of the 
acquired measurements.

3.2 | Simulation studies
Numerical T1 and (pseudo) proton density M0 brain phan-
toms were used as ground truth for the simulation stud-
ies, which are part of the MRiLab toolbox46 for MATLAB 
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i
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(The Mathworks, Natick, Massachusetts). T1 and M0 val-
ues were chosen to agree with in vivo brain structures for 
3T. Additional, a tumor was simulated as an 3D elliptical 
structure with linearly varying contrast in white matter. 
By applying the signal equations introduced in the Theory 
section, image data was generated with the corresponding 
VFA forward model in Equation 13 and modulated with 
seven artificial coil sensitivity profiles, generated using 
Biot‐Savart’s law. The synthetic coil images were Fourier‐
transformed and resampled along a specified Fibonacci‐
number of radial spokes according to the golden‐angle 
(111.25∘) scheme.47 The golden‐angle scheme was contin-
ued over all simulated scans, see Supporting Information 
Figure S1. Matrix sizes for the VFA phantoms were set 
to 216 × 216 voxels and transformed using a non‐uniform 
FFT to yield 432 read‐out samples per spoke and 34 spokes 
per flip angle variation, simulating undersampled acquisi-
tion. The number of spokes was chosen according to the 
Fibonacci series to achieve uniform k‐space coverage. 
Simulated flip angles ranged from 1∘ to 19∘ in 2∘ steps, re-
sulting in 10 independent simulations. A TR of 5.38 ms was 
used throughout all simulations. Gaussian noise was added 
to the k‐space data, to emulate typical SNR levels for in 
vivo measurements.

All methods were terminated according to the described 
stopping criteria. Thirteen Gauss‐Newton iterations were 
run to ensure convergence to an optimal solution. The initial 
number of PD iterations was set to 100 and increased to 200 
and 300 in the first GN steps, which was found to be suffi-
cient for convergence.

3.3 | MRI measurements of phantoms and 
healthy human volunteers
VFA measurements were performed on a clinical 3T 
MAGNETOM Skyra scanner (Siemens Healthineers, 
Erlangen, Germany), employing a 20‐channel head coil 
for phantom measurements and a 32‐channel head coil 
for in vivo acquisitions. The MRI phantom consists of 5 
tubes filled with doped water, surrounded by tap water. 
VFA measurements were performed using the RAVE se-
quence with golden‐angle ordering scheme. The measure-
ment protocol consisted of a fully‐sampled reference scan 
using 10 flip angles for standard reconstruction and fitting 
in image space, followed by accelerated scans. In the case 
of undersampled acquisition, the trajectory is rotated in the 
same fashion as in the simulation studies. Fully sampled 
acquisition consisted of 400 acquired spokes. Forty refer-
ence lines were acquired prior to all acquisitions to account 
for gradient system imperfections.48 For the MRI phantom 
measurements, a flip angle set ranging from 1∘ to 19∘ in 2∘ 
steps was acquired with a matrix size of 256 × 256 × 40 
and 1 mm3 resolution followed by accelerated scans with 

21, 13, and 8 spokes. Bandwidth was set to 490 Hz/Pixel 
and 25% oversampling in kz direction with TR = 5 ms and 
TE = 2 ms. In vivo experiments were performed using the 
same flip angle range, matrix size, and 89 to 8 spokes. TR 
was set to 5.5 ms and TE to 2.46 ms to measure the first 
in‐phase echo. Furthermore, bandwidth was reduced to 
340 Hz/Pixel to increase SNR.

The IRLL data was acquired on a 3T Philips Ingenia sys-
tem (Philips Medical Systems, Eindhoven, The Netherlands) 
using a 16‐channel head coil. Measurements of the ISMRM‐
NIST phantom49 and in vivo head data were acquired. The 
IRLL sequence consisted of an inversion pulse followed by 
a single‐shot readout using a radial stack‐of‐star FLASH se-
quence, which was repeated for every acquired kz encoding. 
The delay between inversion and the first readout pulse was 
measured as 14.3 ms followed by a train of 5∘ readout pulses 
spaced 5.5 ms apart. A total number of 731 spokes were ac-
quired after each inversion with a 212 × 212 × 40 scan ma-
trix, 1 mm3 isotropic resolution, and 50% oversampling along 
kz. The total shot time per slice was chosen to be 8 seconds. 
For reconstruction, every 13 consecutive spokes were binned 
to reduce the overall computational burden while maintain-
ing high temporal resolution. For validation and comparison 
purposes, a fully sampled 2D Cartesian reference mea-
surement of the central slice was performed in 2 min and 
41 s. The same protocol was used for phantom and in vivo 
measurements.

The reference reconstructions for the VFA and IRLL meth-
ods were generated with a model‐based fit in image space 
from fully‐sampled non‐Cartesian respectively Cartesian 
data with simple regridding and Fourier transformation or 
Fourier transformation. Different ROIs are specified to re-
flect white matter (WM), central and cortical gray matter 
(GM), and cerebrospinal fluid (CSF). For all in vivo appli-
cations, written informed consent was obtained from healthy 
volunteers in compliance with the guidelines from the local 
ethical commission.

3.4 | Implementation
Reconstruction was performed offline using Python (Python 
Software Foundation, https://www.python.org/) and a 
gpuNUFFT50 wrapper from the Primal‐Dual toolbox51 on 
desktop PCs equipped with a Tesla K40 and GeForce GTX 
1070 (NVIDIA, Santa Clara, California). The regulariza-
tion parameters for the described algorithm were selected 
according to parameter training and are altered after every 
GN iteration. Reconstruction for all methods was started with 
λ = 10−2 and γ = 101. The weight λ was decreased by a factor 
of qλ = 0.7 and γ was increased by a factor of qγ = 2 in order 
to avoid over‐regularization throughout the optimization.  
λmin = 1.8 × 10−3/2.3 × 10−3/1 × 10−2 and γmax = 102 had 
been chosen as limits for numerical phantom data for TGV/

https://www.python.org/)


MAIER et al.2078 |   

TV/L1‐wavelet regularization, λmin = 1.8 × 10−3/2.3 × 10−3

/3.7 × 10−3 for VFA Phantom and λmin = 3.4 × 10−3/3.4 × 
10−3/2.3 × 10−3 for VFA in‐vivo experiments. IRLL recon-
structions were performed with λmin = 3.7 × 10−3/3.7 × 10−

3/2.3 × 10−3, γmax = 102 for MRI phantom and in vivo data. 
The model parameters for the TGV2

Frob
 functional were set 

to α1/α0 = 1/2 equally for VFA and IRLL, which proved to be 
a reasonable choice for gray scale images.28 PD line‐search 
parameters were set to β = 400, the initial weight between 
primal and dual step size, and μ = 0.5, the reduction factor of 
the primal step size τ. The choice was taken from36“Algorithm 
2” to assure compliance with 𝜎𝜏‖K‖2

2
<1, the necessary con-

dition to guarantee convergence of the PD algorithm. The 
reconstruction was initialized with constant M0 = 1 and 
T1 = 800 ms. The influence of different T1 initialization was 
evaluated by randomly selecting a T1 ∈ [200, 5000] ms and 
running the algorithm 100 times, see Supporting Information 
Figure S2. The source code together with some examples can 
be found at: https://github.com/IMTtugraz

4 |  RESULTS

Figure 1 shows the comparison of simulated MRI phantom re-
constructions from undersampled VFA data to the numerical 
T1 reference. Visually, no difference is observable between 
2D and 3D, respectively joint and separate regularization. TV 
and TGV regularized results show lower noise levels than 
L1‐wavelet results. The difference between the regulariza-
tion strategies becomes evident by looking at corresponding 
error maps in Figure 2 and the mean relative absolute error 
(MRAE) respecively structural similarity index (SSIM) of 

the whole volume. Joint 3D TGV regularization performs 
best with a MRAE of 11.2% and SSIM of 0.868 compared 
to the 2nd best result of joint 3D TV with a MRAE of 11.6% 
and SSIM of 0.859. For tissue with little to no signal, e.g. 
the skull, larger differences can be observed. Reconstructions 
from 34 spokes of VFA in vivo data in Figure 3 show the in-
fluence of 3D versus 2D regularization and joint versus sepa-
rate regularization. In the reformatted sagittal views, artifacts 
in slice direction are visible in the 2D reconstruction, marked 
with white arrows. Error maps in Supporting Information 
Figure S3 show a good agreement of all methods except for 
CSF boundaries and vessels to the reference reconstruction. 
3D reconstruction decreases the MRAE and improves the 
SSIM in cases of TV and TGV based regularization, how-
ever, SSIM decreases for 3D reconstruction using wavelets, 
as shown in Supporting Information Figure S3. Again, TGV 
and TV reconstructions lead to improved noise suppression 
as compared to wavelet based regularization. The reconstruc-
tion results obtained from accelerated VFA MRI phantom 
measurements with 3D TGV, TV, and wavelet regulariza-
tion are compared in Figure 4 to a fully sampled reference. 
Mean T1 values with the corresponding standard deviation 
(SD) were computed from marked and numbered ROIs for all 
reconstructions and are summarized in Table 1. SD of TGV 
and TV based results are lower compared to wavelet based 
results which also agrees with the visual impression in Figure 
4. Computed mean T1 values from all reconstructions exhibit 
good compliance with the reference, lying within one to two 
SD of mean T1 values of the reference. However, the recon-
struction from only eight spokes exhibits increased blurring 
in areas with little to no signal intensity, e.g. at the boundary 
of the tubes. L1‐wavelet reconstructions are corrupted with 

F I G U R E  1  Numerical simulated VFA T1 reconstructions with 34 simulated spokes compared to a numerical reference in the top left. T1 
values are given in milliseconds. Shown are transversal, sagittal and coronal views of the phantom with a simulated “tumor” in the white matter. 
The corresponding relative absolute error is given in Figure 2. 

https://github.com/IMTtugraz
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artefacts at the border of the tubes for all cases compared to 
TV and TGV based results. Similar results are obtained from 
IRLL data from the ISMRM‐NIST phantom, as displayed in 
Figure 4. T1 maps are in agreement with the reference which 

is further supported by a comparison of quantitative values 
for 14 selected ROIs, provided in Table 2. Again, TGV and 
TV perform similar and both outperform wavelets regarding 
noise suppression.

F I G U R E  3  Comparison of 3D to 2D regularization for in vivo VFA T1 reconstruction from 34 acquired spokes. T1 maps are given in 
milliseconds. Visually observable differences are marked with white arrows. The corresponding relative absolute error maps are given in 
Supporting Information Figure S3. The skull has been masked out. 

F I G U R E  2  Relative absolute error of numerical simulated VFA T1 reconstructions with 34 simulated spokes compared to a numerical 
reference in.1 Shown are transversal, sagittal and coronal views of the phantom with a simulated “tumor” in the white matter. The error is given 
given in percent. The numbers next to the images indicate the mean relative absolute error in the corresponding parameter maps as well as the 
structural similarity index. 
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The reconstructions of the full volume for the VFA ap-
proach are shown in Figure 5, displaying also the refor-
matted sagittal and coronal planes for a decreasing number 
of acquired spokes. For comparison, a T1 estimate from 
a fully‐sampled reconstruction is shown in the top left. 
For down to 21 spokes, the T1 maps show distinct edges 
with improved noise suppression in homogeneous areas 

throughout the whole volume. T1 mean and SD for spec-
ified ROIs are given in Table 3. Mean T1 values for accel-
erated reconstruction are contained in one SD of reference 
for down to 21 spokes. The accordance of the accelerated 
to the reference reconstructions is supported by error maps 
in the lower part of the figure. Only small errors are visible 
at the boundaries of CSF. The error, especially at tissue 

F I G U R E  4  MRI phantom T1 measurements using a VFA based sequence are shown in the upper part. Fully sampled reference in the top left, 
compared to the proposed method in the 1st row, TV regularization in the 2nd row, and L1‐wavelet regularization in the 3rd row. The lower part 
shows MRI phantom reconstructions using a IRLL based sequence. Cartesian reference in the lower left, compared to the proposed method and TV 
respectively L1‐wavelet regularization. All values are given in milliseconds. Quantitative evaluation of ROIs, marked in the reference, are given in 
Table 1 for VFA and Table 2 for IRLL reconstructions. 
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boundaries, increases with increasing acceleration, as vis-
ible in Figure 5. SSIM values of higher than 0.91 can be 
achieved for down to 21 acquired spokes. 2D histograms in 
Figure 6, showing dense clusters at T1 values for GM, WM 
and CSF, also support the quantitative accuracy compared 
to the reference for down to 21 spokes. Due to the pro-
posed 3D regularization it was possible to decrease overall 
scan time from 21.5 s per slice to 1.8–1.1 s per slice for 34 
respectively 21 spokes, depending on the accepted image 
degradation.

The reconstruction of the full volume for the IRLL ap-
proach is provided in Figure 7, showing the reformatted sagit-
tal and coronal plane. T1 maps are in good agreement with the 
fully sampled Cartesian reference, generated with a model‐
based framework in image space. T1 mean and SD for spec-
ified ROIs are given in Table 3 and lie within one SD from 

the fully sampled reconstruction, except for CSF. Exemplary 
3D M0 maps are shown in the lower part of the figure. The 
proposed method was able to recover 3D T1 and M0 maps, ac-
quired in 8 s per slice with 3D encoding and 1 mm3 isotropic 
resolution, compared to 110 s per slice for a fully sampled 
acquisition similar to the reference.

5 |  DISCUSSION

The proposed reconstruction framework for accelerated T1 
quantification was successfully applied to highly undersam-
pled, radially acquired VFA and IRLL data with 1 mm3 iso-
tropic resolution. Validation of the algorithm was carried out 
with numerical, MRI phantom, and in vivo measurements. 
Substantial improvement in noise suppression compared to 

T A B L E  1  MRI phantom measurement results using the VFA method. Quantitative evaluation of specified ROIs in Figure 4. All values are 
given in ms as mean ± SD.

ROI 1 ROI 2 ROI 3 ROI 4 ROI 5

Reference 199 ± 5 368 ± 10 634 ± 19 1012 ± 43 1437 ± 80

3D TGV2‐Frobenius

21 Spokes 195 ± 1 362 ± 2 621 ± 7 998 ± 17 1433 ± 38

13 Spokes 200 ± 2 361 ± 2 622 ± 7 981 ± 20 1412 ± 37

08 Spokes 202 ± 1 373 ± 8 607 ± 12 978 ± 33 1415 ± 74

3D TV

21 Spokes 202 ± 1 367 ± 2 624 ± 6 997 ± 15 1429 ± 33

13 Spokes 201 ± 1 361 ± 2 621 ± 7 985 ± 18 1412 ± 36

08 Spokes 204 ± 1 374 ± 5 606 ± 10 976 ± 27 1416 ± 64

L1‐wavelet

21 Spokes 195 ± 11 360 ± 14 622 ± 20 1010 ± 36 1425 ± 66

13 Spokes 193 ± 13 353 ± 15 619 ± 21 994 ± 33 1396 ± 78

08 Spokes 196 ± 12 362 ± 13 603 ± 24 992 ± 50 1391 ± 95

T A B L E  2  MRI NIST phantom measurement results obtained with an IRLL sequence. Quantitative evaluation of the ROIs specified in Figure 
4. All values are given in ms and as mean ± SD.

ROI 1 2 3 4 5 6 7

Reference49 1838 1398 998 726 509 367 259

2D Cartesian 1842 ± 100 1283 ± 58 884 ± 45 650 ± 34 474 ± 30 356 ± 33 255 ± 21

8s 3D TGV2

Frob
1856 ± 56 1338 ± 33 944 ± 16 672 ± 7 477 ± 4 336 ± 4 239 ± 1

8s 3D TV 1857 ± 59 1336 ± 31 944 ± 16 672 ± 8 478 ± 4 337 ± 3 240 ± 1

8s L1‐wavelet 1850 ± 110 1347 ± 69 959 ± 45 666 ± 27 477 ± 18 330 ± 16 236 ± 9

ROI 8 9 10 11 12 13 14

Reference49 185 131 91 64 46 33 23

2D Cartesian 176 ± 15 126 ± 9 93 ± 9 70 ± 9 49 ± 8 38 ± 7 26 ± 6

8s 3D TGV2

Frob
182 ± 2 130 ± 5 96 ± 2 68 ± 1 51 ± 2 38 ± 1 22 ± 4

8s 3D TV 183 ± 1 130 ± 4 96 ± 2 68 (0) 50 ± 1 38(0) 23 ± 2

8s L1‐wavelet 174 ± 8 125 ± 10 95 ± 6 61 ± 4 46 ± 8 34 ± 7 21 ± 8
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F I G U R E  5  In vivo VFA T1 measurements of the brain of a healthy volunteer reconstructed with the proposed method. Shown are reformatted 
views of the acquired volume in transversal, coronal and sagittal plane. T1 values given in milliseconds. Top left, fully sampled reference. From left 
to right and top to bottom increasing acceleration from 89 to 8 spokes per slice. Quantitative evaluation of ROIs is given in Table 3. The bottom half 
of the figure shows the corresponding error maps with a mask applied to the skull area. 
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regularization was achieved with the proposed 3D TGV2

Frob
 

type regularization. Noise suppression is a well known  
behavior of TGV functionals in general28 while omitting 
“stair‐casing” artifacts and the proposed 3D Frobenius norm 
coupling takes full advantage of information from spatial and 
parametric space. In the present work, no stair‐casing was 
observable in the TV regularized reconstructions, yielding 

similar results compared to TGV based reconstruction. The 
structure of the reconstructed T1 maps, especially in the MRI 
phantoms, does support TV based regularization by show-
ing large areas of flat T1 values separated by sharp edges, 
leading to a slight reduction of SD compared to TGV based 
reconstructions. The full potential of TGV can be exploited 
in areas with smoothly varying contrast which can be present 

T A B L E  3  Quantitative evaluation of 3D in vivo reconstructions for VFA and IRLL. All values are given as mean ± SD in ms. First part of 
the Table shows the quantitative evaluation for VFA brain measurements with ROIs specified in Figure 5. The second part lists the values for brain 
measurement with the IRLL method for ROIs given in Figure 7.

ROI 1 ROI 2 ROI 3 ROI 4 ROI 5 ROI 6

VFA

Fully sampled 940 ± 75 935 ± 74 1482 ± 102 1433 ± 72 1323 ± 118 3826 ± 674

3D TGV

89 Spokes 963 ± 35 944 ± 23 1479 ± 100 1440 ± 69 1356 ± 49 3843 ± 359

55 Spokes 969 ± 51 958 ± 33 1469 ± 116 1436 ± 110 1393 ± 73 3862 ± 432

34 Spokes 979 ± 63 951 ± 48 1412 ± 125 1433 ± 126 1415 ± 97 3572 ± 592

21 Spokes 982 ± 74 963 ± 66 1456 ± 129 1453 ± 157 1487 ± 136 3468 ± 694

13 Spokes 998 ± 85 967 ± 72 1470 ± 212 1512 ± 168 1447 ± 131 3647 ± 975

08 Spokes 1008 ± 79 989 ± 65 1658 ± 196 1582 ± 180 1509 ± 108 2866 ± 604

IRLL

Fully sampled 793 ± 73 805 ± 77 1406 ± 172 1376 ± 120 1421 ± 169 2904 ± 271

8 s/slice TGV 786 ± 53 802 ± 61 1455 ± 201 1388 ± 190 1549 ± 239 3502 ± 1288

8 s/slice TV 786 ± 54 802 ± 61 1455 ± 201 1389 ± 190 1549 ± 239 3503 ± 1289

8 s/slice L1‐wavelet 792 ± 151 806 ± 156 1465 ± 284 1419 ± 335 1623 ± 476 3548 ± 1339

F I G U R E  6  2D histogram contour plot of reference T1 values versus accelerated acquired and reconstructed T1 values for increasing 
acceleration using the VFA method. The color map encodes ares of mutual voxel values and is transformed using an exponential scaling. Red line 
indicates 45∘, corresponding to a perfect match, i.e. plotting the same data against each other. r indicates the Pearson correlation coefficient. 
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in pathogenic tissue, e.g. brain tumors. The deterioration 
in performance of L1‐wavelet regularization could be due 
to limitation to 2D wavelet computation since only a small 
amount of slices is available. Moreover, it was shown in52 
that discrete difference based regularization marginally out-
performs wavelets for cartilage T1 mapping, which agrees 
with our findings.

In vivo parameter maps from accelerated VFA data ex-
hibit almost no detectable degradation for down to 34 spokes 
per slice (Figure 5). Further reduction of data results in in-
creasing residual artifacts and a loss of quantitative accuracy, 
starting at 21 spokes. The influence on quantitative accuracy 
is clearly visible in the comparison of accelerated and fully 
sampled 2D histogram information (Figure 6), as well as in 
the error maps and ROI evaluations. Depending on the ac-
ceptable image quality, 21 to 34 spokes offer high accelera-
tion with little to no loss in quantitative accuracy and image 
fidelity.

Reducing the amount of data can manifest in small devia-
tions at tissue boundaries. Due to the reduced amount of data, 
structures at edges in the reconstructions are approximated by 
piecewise linear functions leading to a reduction of sharpness 
as explained in.30 A certain amount of SNR in the k‐space 
data is therefore mandatory in order to achieve reconstruction 

results with sufficient fidelity. This condition can be met by 
acquiring volumes, which is also of general diagnostic inter-
est. Still, the used acquisition protocols lead to challenging 
SNR levels that were successfully tackled with the proposed 
reconstruction method.

For the proposed method it was observed that T1 values of 
small areas with low signal will be approximated by neigh-
bouring values. This is observable for the border of the vials 
within the MR phantoms and in the skull area of the numeri-
cal simulations. However, corresponding M0 is close to back-
ground values (see Supporting Information Figure S4).

The reported mean and SD for T1 from VFA data, given 
in Table 1, are within one to two SD compared to the fully 
sampled reference. Tables 1 and 2 also support the visual 
intuition of increased SNR in reconstructions with the pro-
posed algorithm, which can be seen by the reduced amount 
of SD in these reconstructions compared to regularization. 
Reported T1 values in selected ROIs of in vivo head data 
agree with values from literature.2 Slab profile effects can be 
seen at the top edge of the coronal view in Figure 5, leading 
to underestimated T1 values The piecewise linear approxi-
mation of structures from the TGV2

Frob
 functional leads to 

systematic overestimation of low T1 values and an underesti-
mation of high T1 values for in vivo acquisitions with thirteen 

F I G U R E  7  In vivo IRLL measurements of the brain of a healthy volunteer. Shown is a reformatted view of the acquired volume in 
transversal, coronal and sagittal plane. Top left, fully sampled Cartesian reference. In the upper row T1 reconstructions from data acquired in 8 s/
slice. The pseudo proton density M0 is shown in the bottom row. Quantitative evaluation of ROIs for T1 is given in Table 3. T1 map values are given 
in milliseconds, M0 intensity values in arbitrary units (a.u.). 
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and eight spokes, an effect also apparent in TV and wave-
let based results. However, deviations are less than two SD, 
except for ROI 5, where a reconstruction artifact is present. 
The 3D isotropic nature of data acquisition is beneficial for 
T1 quantification in general, leading to reduced partial vol-
ume artifacts. The influence of 3D over 2D regularization 
is immanent as shown for VFA reconstructions in Figures 
1–3, and Supporting Information Figure S3. The additional 
information exploited by regularizing on the whole 3D vol-
ume enables to reconstruct volumetric images from highly 
accelerated data, whereas 2D regularization results in higher 
proneness to noise, which manifests in discontinuities along 
the slice encoding direction (sagittal and coronal view). The 
3D reconstruction approach stabilizes the ill‐posed optimi-
zation problem and removes discontinuities along the slice 
in the T1 maps for all investigated regularization strategies. 
Additionally we have shown that our method yields good re-
sults from prospectively accelerated data, a step often omit-
ted. However, reconstruction from as few as eight spokes 
shows image degradation due to the limited amount of avail-
able data.

Opposed to the VFA method, the overall larger deviations 
for IRLL reconstruction compared to reference originate 
from the different acquisition techniques, i.e. 2D Cartesian 
vs 3D radial sampling. Care should be taken for short T1 val-
ues due to the binning of 13 spokes into one image frame, 
resulting in a temporal resolution of 65 ms, similar to 80 ms 
effective echo time of the 2D IRLL sequence. If accurate de-
termination of short T1 values is important, temporal resolu-
tion can be reduced by binning fewer spokes into one frame 
without overall increase in scan time, a distinct advantage 
over Cartesian IRLL sequences. For IRLL, another interest-
ing aspect can be exploited. In radial scans, every spoke con-
tributes the same amount of information to the overall image 
contrast, a distinct difference to Cartesian scans. This con-
tribution is included in the model by calculation of a mean 
according to the number of spokes‐per‐frame, reflecting the 
real data acquisition process more accurately, in contrast to 
the Cartesian case, where an apparent echo spacing has to be 
used.

Due to the multiplicative connection to the coil sensitivi-
ties, intensity inhomogeneities are corrected throughout opti-
mization by M0 variations. This effect is visible in the frontal 
area of the transversal IRLL M0 map, whereas the T1 map is 
homogeneous in the corresponding area.

Compared to recent single shot model‐based reconstruc-
tion techniques for IRLL,14,15 the proposed method offers 
high resolution 3D parameter maps with isotropic voxels. 
However, acquisition time is prolonged due to the necessity 
of sufficient relaxation after the readout even though the 
model accounts for shorter undisturbed relaxation.32,33 Thus 
8s/slice seemed to be the lower bound for accurate T1 estima-
tions in 3D from IRLL data. The VFA method does not show 

such a limitation and enables T1 quantification in 1.8 s/slice 
equally to a almost 12‐fold reduction of scan time as com-
pared to 6‐fold reduction as shown in recent work.20

Choosing the optimal regularization parameters is import 
for all iterative reconstruction techniques and usually specific 
for an imaging application. However, with the proposed nor-
malization and scaling strategies, the regularization param-
eters, found after parameter training for the VFA and IRLL 
method, are in a similar range.

A common challenge for model‐based parameter quan-
tification are relative long computation times14,15 due to 
the repeated mapping from k‐space to parameter space. As 
a first step, the computationally expensive part of calculat-
ing the non‐uniform FFT is executed on the GPU, reducing 
reconstruction time by a factor of 20‐30 compared to pure 
python code. The reconstruction time for TGV2

Frob
/TV/L1‐

wavelet based reconstruction depends heavily on the number 
of non‐uniform FFT computations, resulting in ∼9/6/9 min/
slice for VFA data and ∼11/10/12 min/slice for IRLL data 
with the current implementation. Due to the same number 
of involved FFT computations, no increase in reconstruction 
time between 2D and 3D was observed. It is expected that a 
proper implementation of the framework using C/C++ and 
GPU programming will lead to further reduction of the re-
construction time.

6 |  CONCLUSIONS

With the proposed method it was possible to reconstruct 
1 mm3 isotropic T1 maps from highly undersampled radi-
ally acquired data. Acquisition time could be reduced to 
1.8–1.1 s/slice for VFA and 8 s/slice for IRLL data while 
preserving excellent quantitative accuracy. Reconstructions 
showed a gain in image fidelity compared to the fully sam-
pled reference even for moderate to high acceleration. This 
was achieved by utilizing 3D TGV2 regularization combined 
with a spectral Frobenius norm to maximize the acceleration 
potential. We have further shown that the proposed solution 
strategy is applicable to different types of model‐based quan-
tification problems.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the on-
line version of this article.

FIGURE S1 Acquisition trajectories for the VFA and IRLL 
measurements. Top row shows an animated view, following 
the real acquisition trajectory, bottom row the full k‐space 
trajectory without any animation.
FIGURE S2 Convergence rate over 13 GN steps for ran-
domly chosen T1 ∈ [200, 5000] ms on a semi log scale. Values 

at x = 0 amount to the residual value after the first GN step. 
Data was normalized to yield an L2

2
‐norm of 1000.

FIGURE S3 Error maps corresponding to the reconstruc-
tions in Figure 3.
FIGURE S4 Exemplary T1 and M0 reconstruction for the 
VFA phantom acquired with 21 radial spokes. Colormap is 
scaled between minimal and maximal occurring M0 values. 
Areas with little to no signal are showing M0 values close to 
the background and a simple threshold could be used to mask 
out these areas in the corresponding T1 map. Due to M0 being 
influenced by technical and physiological factors neglected 
in the signal equation such as T2* and coil sensitivity varia-
tions, inhomoegneites in M0 can be introduced as seen in this 
exemplary reconstruction.
TEXT S1 Computational complexity analysis for one itera-
tion of the described PD algorithm within a GN step.

APPENDIX 
Numerical solution
As described in Section “Numerical Solution” it is our goal to 
solve the following optimization problem within each GN 
iteration

where ∇:UNu ↦U3×Nu and  :U3×Nu ↦U6×Nu are defined as

and

The operators δx+, δy+, δz+ and δx−, δy−, δz− define sym-
metrically extended forward and backward finite difference 
operators, respectively, with respect to the x, y and z coordi-
nate. To compute the update steps of the PD algorithm as

the following operations need to be defined.
The adjoint operations of K, KH are
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where the divergence operators div1 and div2 are the nega-
tive adjoints of ∇ and , respectively. The adjoint of DAk 
reads as

The operators P corresponding to the proximal mapping of 
F*, i.e. the convex conjugate of F, and G in the algorithm are 
given by

DAH
k
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→
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